The S-8351/8352 Series is a CMOS PFM-control step-up switching regulator that mainly consists of a reference voltage source, an oscillator, and a comparator. The PFM controller allows the duty ratio to be automatically switched according to the load (light load: 50\%, high output current: 75\%), enabling products with a low ripple over a wide range, high efficiency, and high output current (product types A, B, and D). Products with a fixed duty ratio of 75% are also available (product type C).
With the S-8351 Series, a step-up switching regulator can be configured by using an external coil, capacitor, and diode. The built-in MOS FET is turned off by a protection circuit when the voltage at the CONT pin exceeds the limit to prevent it from being damaged. This feature, along with the mini package and low current consumption, makes the S-8351 Series ideal for applications such as the power supply unit of portable equipment.
The S-8352 Series, which features an external transistor, is suitable for applications requiring a high output current.

Features

- Low voltage operation:
- Low input current:

Startup at 0.9 V min. (lout $=1 \mathrm{~mA})$ guaranteed
During maximum operation: $23.2 \mu \mathrm{~A}\left(\mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}\right.$, typ.)
During shutdown: $0.5 \mu \mathrm{~A}$ (max.)

- Duty ratio: $50 / 75 \%$, built-in auto-switching-type PFM controller (product types A, B, D) 75\%, built-in fixed-type PFM controller (product type C)
- External parts: Coil, capacitor, diode
- Output voltage: Settable to between 2.0 to 6.5 V (product types $\mathrm{A}, \mathrm{B}, \mathrm{C}$) or 1.5 to 6.5 V (product type D) in 0.1 V steps, accuracy of $\pm 2.4 \%$
- Shutdown function (product type A)
- $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {OUT }}$ separate type (product type D)
- External transistor type available (S-8352 Series)

- Packages

- SOT-23-3 (package drawing code: MP003-A)
- SOT-23-5 (package drawing code: MP005-A)
- SOT-89-3 (package drawing code: UP003-A)

- Applications

- Power supply for portable equipment such as digital cameras, electronic notebooks, and PDAs
- Power supply for audio equipment such as portable CD/MD players
- Constant voltage power supply for cameras, video equipment, and communications equipment
- Power supply for microcomputers

Applications

1. Function List

Product Name	Control System (Duty Ratio (\%))	Switching Frequency (kHz)	Shutdown Function	$V_{\text {DD }} / V_{\text {OUT }}$ Separate Type	Power MOS FET	Package	Application
S-8351AxxMC	PFM (50/75)	100	Yes	-	Built-in	SOT-23-5	Application requiring shutdown function
S-8351BxxMA	PFM (50/75)	100	-	-	Built-in	SOT-23-3	Application not requiring shutdown function
S-8351CxxMA	PFM (75)	100	-	-	Built-in	SOT-23-3	Application not requiring shutdown function
S-8351CxxUA	PFM (75)	100	-	-	Built-in	SOT-89-3	Application not requiring shutdown function
S-8351DxxMC	PFM (50/75)	100	-	Yes	Built-in	SOT-23-5	Application in which output voltage is adjusted by external resistance
S-8352AxxMC	PFM (50/75)	100	Yes	-	External	SOT-23-5	Application requiring shutdown function
S-8352BxxMA	PFM $(50 / 75)$	100	-	-	External	SOT-23-3	Application not requiring shutdown function
S-8352CxxMA	PFM (75)	100	-	-	External	SOT-23-3	Application not requiring shutdown function
S-8352CxxUA	PFM (75)	100	-	-	External	SOT-89-3	Application not requiring shutdown function
S-8352DxxMC	PFM (50/75)	100	-	Yes	External	SOT-23-5	Application in which output voltage is adjusted by external resistance

2. Product Name

3. Product Name List

Output Voltage	S-8351AxxMC Series	S-8351BxxMA Series	S-8351CxxMA S-8351CxxUA Series	S-8351DxxMC Series
3.0	S-8351A30MC-J2P-T2	S-8351B30MA-J4P-T2	-	-
3.3	S-8351A33MC-J2S-T2	-	-	-
3.5	S-8351A35MC-J2U-T2	-	-	-
5.0	S-8351A50MC-J3J-T2	-	-	-
5.5	S-8351A55MC-J3O-T2	-	-	-

Output Voltage	S-8352AxxMC Series	S-8352BxxMA Series	S-8352CxxMA S-8352CxxUA Series	S-8352DxxMC Series
2.0	-	-	-	S-8352D20MC-K8F-T2
3.0	S-8352A30MC-K2P-T2	S-8352B30MA-K4P-T2	-	-
5.0	S-8352A50MC-K3J-T2	-	-	-

Remark Please consult our sales staff if you require a product with an output voltage other than those specified above.

Block Diagrams

(3) S-8351 Series B, C type (without shutdown function)

(5) S-8351 Series D type ($V_{D D} / V_{\text {out }}$ separate type)

(2) S-8352 Series A type (with shutdown function)

(6) S-8352 Series D type ($V_{D D} / V_{\text {out }}$ separate type)

Figure 1. Block Diagrams

- Pin Assignment

Top View

SOT-23-5

Top View

SOT-23-3

Top View

SOT-89-3

Figure 2. Pin Assignment

A type (with shutdown function)
PKG: SOT-23-5

Pin No.	Pin Name	Functions
1	ON/OFF	Shutdown pin "H": Normal operation (step-up operating) "L": Step-up stopped (entire circuit stopped)
2	VOUT	Output voltage pin and IC power supply pin
3	-	(N.C.)
4	VSS	GND pin
5	CONT*1 $^{* 1}$	External inductor connection pin (S-8351 Series)
	EXT $^{* 2}$	External transistor connection pin (S-8352 Series)

C type (without shutdown function)
PKG: SOT-89-3

Pin No.	Pin Name	Functions
1	VSS	GND pin
2	VOUT	Output voltage pin and IC power supply pin
3	CONT $^{* 1}$	External inductor connection pin (S-8351 Series)
	EXT $^{* 2}$	External transistor connection pin (S-8352 Series)

*1. Open-drain output
*2. CMOS output

B, C type (without shutdown function)
PKG: SOT-23-3

Pin No.	Pin Name	Functions
1	VOUT	Output voltage pin and IC power supply pin
2	VSS	GND pin
3	CONT $^{* 1}$	External inductor connection pin (S-8351 Series)
	EXT $^{* 2}$	External transistor connection pin (S-8352 Series)

D type ($\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {OUt }}$ separate type)
PKG: SOT-23-5

Pin No.	Pin Name	Functions
1	VOUT	Output voltage pin
2	VDD	IC power supply pin
3	-	(N.C.)
4	VSS	GND pin
5	CONT $^{* 1}$	External inductor connection pin (S-8351 Series)
	EXT $^{* 2}$	External transistor connection pin $($ S-8352 Series)

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings
(Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter		Symbol	Ratings	Unit
VOUT pin voltage		$V_{\text {OUt }}$	$V_{\text {Ss }}-0.3$ to $V_{\text {Ss }}+12$	V
ON/ $\overline{\text { OFF }}$ pin voltage (A type)		$\mathrm{V}_{\text {ON }}$ /OFF	$\mathrm{V}_{\text {SS }}-0.3$ to $\mathrm{V}_{\text {SS }}+12$	
VDD pin voltage (D type)		$V_{D D}$	$\mathrm{V}_{\text {Ss }}-0.3$ to $\mathrm{V}_{\text {Ss }}+12$	
CONT pin voltage		$\mathrm{V}_{\text {CONT }}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\text {SS }}+12$	
EXT pin voltage	$V_{\text {EXT }}$	D type	$V_{S S}-0.3$ to $V_{D D}+0.3$	
		Other than above	$\mathrm{V}_{\text {SS }}-0.3$ to $\mathrm{V}_{\text {OUT }}+0.3$	
CONT pin current		ICONT	300	mA
EXT pin current		IEXT	± 50	
Power dissipation	Pd	SOT-89-3	500	mW
		SOT-23-5	250	
		SOT-23-3	150	
Operating temperature		$\mathrm{T}_{\text {opr }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-40 to +125	

Caution Although the IC contains a static electricity protection circuit, static electricity or voltage that exceeds the limit of the protection circuit should not be applied.

Electrical Characteristics

1-1. S-8351 Series

Table 2. Electrical Characteristics

External parts

$$
\begin{array}{ll}
\text { Coil: } & \text { CDRH6D28-101 }(100 \mu \mathrm{H}) \text { from Sumida Corporation } \\
\text { Diode: } & \text { MA2Z748 (Schottky type) from Matsushita Electronic Components Co., Ltd } \\
\text { Capacitor: } & \text { F93 }(16 \mathrm{~V}, 47 \mu \mathrm{~F} \text { tantalum type) from Nichicon Corporation) }
\end{array}
$$

$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}(\mathrm{S}) \times 0.6$ applied, $\mathrm{I}_{\text {OUT }}=\mathrm{V}_{\text {OUT }}(\mathrm{S}) / 250 \Omega$
Shutdown function built-in type (A type): ON/ $\overline{O F F}$ pin is connected to $V_{\text {Out }}$
$V_{D D} / V_{\text {OUT }}$ separate type (D type): \quad VDD pin is connected to VOUT pin
Remarks 1. $\mathrm{V}_{\text {OUT }}(\mathrm{S})$ specified above is the set output voltage value, and $\mathrm{V}_{\text {OUT }}$ is the typical value of the actual output voltage.
2. $V_{D D} / V_{\text {OUT }}$ separate type (D type)

A step-up operation is performed from $\mathrm{V}_{\mathrm{DD}}=0.8 \mathrm{~V}$. However, $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 10 \mathrm{~V}$ is recommended to stabilize the output voltage and oscillation frequency. ($\mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$ must be applied for products with a set value of less than 1.9 V .)

2-1. S-8352 Series

Table 3. Electrical Characteristics

Parameter	Symbol	Conditions		Min.	Typ.	Max.	Unit	Test Circuit
Output voltage	$V_{\text {OUt }}$	-		$\begin{aligned} & \hline \mathrm{V}_{\text {out }}(\mathrm{S}) \\ & \times 0.976 \\ & \hline \end{aligned}$	$V_{\text {Out }}(\mathrm{S})$	$\begin{aligned} & \hline \mathrm{V}_{\text {out }}(\mathrm{S}) \\ & \times 1.024 \end{aligned}$	V	3
Input voltage	$\mathrm{V}_{\text {IN }}$	-		-	-	10	V	3
Operation start voltage	$\mathrm{V}_{\text {ST1 }}$	$\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$		-	-	0.9	V	3
Oscillation start voltage	$\mathrm{V}_{\text {ST } 2}$	No external parts, voltage applied to VOUT		-	-	0.8	V	4
Current consumption 1	Iss1	$\mathrm{V}_{\text {Out }}=$ Output voltage $\times 0.95$	S-8352x15 to 19	-	7.4	12.3	$\mu \mathrm{A}$	4
			S-8352x20 to 29	-	12.0	20.0		
			S-8352x30 to 39	-	17.8	29.6		
			S-8352x40 to 49	-	24.7	41.1		
			S-8352x50 to 59	-	32.7	54.5		
			S-8352x60 to 65	-	43.0	71.6		
Current consumption 2	Iss2	$\mathrm{V}_{\text {OUT }}=$ Output voltage +0.5	S-8352x15 to 19	-	2.3	3.5	$\mu \mathrm{A}$	4
			S-8352x20 to 29	-	2.5	3.8		
			S-8352x30 to 39	-	2.7	4.1		
			S-8352x40 to 49	-	2.9	4.4		
			S-8352x50 to 59	-	3.1	4.7		
			S-8352x60 to 65	-	3.3	5.1		
Current consumption during shutdown (A type)	$\mathrm{I}_{\text {sss }}$	Shutdown pin $=0 \mathrm{~V}$		-	-	0.5	$\mu \mathrm{A}$	4
EXT pin output current	$\mathrm{l}_{\text {EXTH }}$	$\mathrm{V}_{\text {EXT }}=\mathrm{V}_{\text {OUT }}-0.4 \mathrm{~V}$	S-8352x15 to 19	-3.5	-6.3	-	mA	4
			S-8352x20 to 24	-5.2	-9.4	-		
			S-8352x25 to 29	-6.8	-12.3	-		
			S-8352x30 to 39	-8.2	-14.9	-		
			S-8352x40 to 49	-10.7	-19.4	-		
			S-8352x50 to 59	-12.5	-22.8	-		
			S-8352x60 to 65	-13.9	-25.2	-		
	$l_{\text {ExtL }}$	$V_{\text {EXT }}=0.4 \mathrm{~V}$	S-8352x15 to 19	3.8	6.9	-	mA	4
			S-8352x20 to 24	5.6	10.2	-		
			S-8352x25 to 29	7.3	13.3	-		
			S-8352x30 to 39	8.9	16.2	-		
			S-8352x40 to 49	11.6	21.1	-		
			S-8352x50 to 59	13.7	25.0	-		
			S-8352x60 to 65	15.3	27.8	-		
Line regulation	$\Delta \mathrm{V}_{\text {OUT1 }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {Out }}(\mathrm{S}) \times 0.4$ to $\times 0.6$		-	30	60	mV	3
Load regulation	$\Delta \mathrm{V}_{\text {OUT2 }}$	IoUt $=10 \mu \mathrm{~A}$ to $\mathrm{V}_{\text {OUT }}(\mathrm{S}) / 100 \times 1.25$		-	30	60	mV	3
Output voltage temperature coefficient	$\frac{\Delta \mathrm{V}_{\text {OUT }}}{\Delta \mathrm{Ta} \bullet \mathrm{~V}_{\text {OUT }}}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		-	± 50	-	ppm $/{ }^{\circ} \mathrm{C}$	3
Maximum oscillation frequency	fosc	$V_{\text {Out }}=$ Output voltage $\times 0.95$, measure waveform at EXT pin		90	100	110	kHz	4
Duty ratio 1	Duty1	Vout $=$ Output voltage $\times 0.95$, measure waveform at EXT pin		70	75	80	\%	4
Duty ratio 2 (A, B, D type)	Duty2	Measure waveform at EXT pin with light load		-	50	-	\%	3
Shutdown pin input voltage (A type)	$\mathrm{V}_{\text {SH }}$	$V_{\text {OUT }}=$ Output voltage $\times 0.95$, measure oscillation at EXT pin		0.75	-	-	V	4
	$\mathrm{V}_{\text {SL1 }}$	$V_{\text {OUT }}=$ Output voltage $\times 0.95$, judge stop at EXT pin	When $\mathrm{V}_{\text {Out }} \geq 1.5 \mathrm{~V}$	-	-	0.3		
	$\mathrm{V}_{\text {SL2 }}$		When $\mathrm{V}_{\text {OUT }}<1.5 \mathrm{~V}$	-	-	0.2		
Power off pin input current (A type)	$\mathrm{I}_{\text {SH }}$	Shutdown pin $=10 \mathrm{~V}$		-0.1	-	0.1	$\mu \mathrm{A}$	4
	$\mathrm{I}_{\text {SL }}$	Shutdown pin $=0 \mathrm{~V}$		-0.1	-	0.1		
Efficiency	EFFI	-	S-8352x30	-	83	-	\%	3
			S-8352x50	-	85	-		

External parts
Coil:
Diode:
CDRH6D28-101 ($100 \mu \mathrm{H}$) from Sumida Corporation
MA2Z748 (Schottky type) from Matsushita Electronic Components Co. , Ltd
\quad F93 (16 V, $47 \mu \mathrm{~F}$ tantalum type) from Nichicon Corporation
Transistor: CPH3210 from Sanyo Electric Co., Ltd.
Base resistor (Rb): $\quad 1 \mathrm{k} \Omega$
Base capacitor (Cb): 2200 pF (ceramic type)
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}(\mathrm{S}) \times 0.6$ applied, I IUT $=\mathrm{V}_{\text {OUT }}(\mathrm{S}) / 100 \Omega$
Shutdown function built-in type (A type): ON/OFF pin is connected to $\mathrm{V}_{\text {Out }}$
$V_{D D} / V_{\text {OUt }}$ separate type (D type): \quad VDD pin is connected to VOUT pin
Remarks 1. $\mathrm{V}_{\text {OUT }}(\mathrm{S})$ specified above is the set output voltage value, and $\mathrm{V}_{\text {OUt }}$ is the typical value of the actual output voltage.
2. $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {Out }}$ separate type (D type)

A step-up operation is performed from $\mathrm{V}_{\mathrm{DD}}=0.8 \mathrm{~V}$. However, $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 10 \mathrm{~V}$ is recommended to stabilize the output voltage and oscillation frequency. ($\mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$ must be applied for products with a set value of less than 1.9 V .)

- Test Circuits

1.

2.

Figure 3. Test Circuits 1, 2, 3, and 4

Operation

1. Step-up DC/DC Converter

The S-8351/52 Series is a DC/DC converter that uses a pulse frequency modulation method (PFM) and features low current consumption. This series is an especially efficient DC/DC converter at an output current of $100 \mu \mathrm{~A}$ or lower.
In conventional fixed-duty PFM DC/DC converters, although a low duty ratio allows a lower ripple voltage when the current load is light, the efficiency is decreased when the output load current is large. Conversely, a high duty ratio increases the output load current and efficiency, but increases the ripple voltage when the output load current is low.
In the A, B, and D types, the duty ratio is automatically switched 75% when the output load current is high to secure the load drive capability, and 50% when the output load current is low to control the load drive capability to decrease pulse skipping. This suppresses a drop in the ripple frequency, enabling control of the increase in the ripple voltage. The C type adopts a 75% fixed-duty PFM method. The ripple voltage increases more than that of the duty switching type with the load is low, but the efficiency is better.
In the A, B, and D types, the duty ratio is not rapidly changed, but rather smoothly switched in the intermediate area between 50% and 75%. Therefore, fluctuation of the ripple voltage caused by duty switching is minimized. Figures 4 and 5 show the ripple voltage characteristics versus the output current. These figures show that the ripple voltage decreases as the output load current (lout) changes from large to small. The ripple voltage becomes particularly small when $l_{\text {OUT }}$ is in the coil current discontinuous region of 20 mA or less.

Figure 4. Ripple Voltage Characteristics vs. Output Current (S.8351A30MC)

S-8351A50MC

Figure 5. Ripple Voltage Characteristics vs. Output Current (S.8351A50MC)

Shutdown pin: Stops or starts step-up operation.
(Only for product type A)
Setting the shutdown pin to the "L" level stops operation of all the internal circuits and reduces the current consumption significantly.
DO NOT use the shutdown pin in a floating state because it has the structure shown in Figure 6 and is not pulled up or pulled down internally. DO NOT apply a voltage of between 0.3 V and 0.75 V to the shutdown pin because applying such a voltage increases the current consumption. If the shutdown pin is not used, connect it to the VOUT pin.
The shutdown pin does not have hysteresis.

Shutdown Pin	CR Oscillator	Output Voltage
"H"	Operating	Fixed
"L"	Stopped	$\cong \mathrm{V}_{\mathbb{N}}{ }^{*}$

* Voltage obtained by subtracting the voltage drop due to the DC resistance of the inductor and the diode forward voltage from $\mathrm{V}_{\text {IN }}$.

Figure 6. Shutdown Pin Structure

Figure 7. Step-Up Switching Regulator Circuit for Basic Equation
The following are the basic equations [(1) through (7)] of the step-up switching regulator (see Figure 7). Voltage at CONT pin at the moment M1 is turned ON (current (I_{L}) flowing through L is zero), V_{A} :

$$
\begin{align*}
V_{A}= & V_{S} \quad . ~ \tag{1}
\end{align*}
$$

The change in I_{L} over time:

$$
\begin{equation*}
\frac{d l_{\mathrm{L}}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{~L}}=\frac{\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{S}}}{\mathrm{~L}} \tag{2}
\end{equation*}
$$

Integration of the above equation $\left(I_{L}\right)$:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}}=\left(\frac{\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{S}}}{\mathrm{~L}}\right) \cdot \mathrm{t} \tag{3}
\end{equation*}
$$

L_{L} flows while M 1 is $\mathrm{ON}\left(\mathrm{t}_{\mathrm{ON}}\right)$. The time of t_{ON} is determined by the oscillation frequency of OSC. The peak current (I_{PK}) after t_{ON} :

$$
\begin{equation*}
\mathrm{I}_{\mathrm{PK}}=\left(\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{S}}}{\mathrm{~L}}\right) \cdot \mathrm{t}_{\mathrm{ON}} \tag{4}
\end{equation*}
$$

The energy stored in L is represented by $1 / 2 \bullet L\left(l_{P K}\right)^{2}$.
When M1 is turned OFF ($\mathrm{t}_{\mathrm{OFF}}$), the energy stored in L is emitted through a diode.
Then, the reverse voltage $\left(\mathrm{V}_{\mathrm{L}}\right)$ is generated:

$$
\begin{align*}
\mathrm{V}_{\mathrm{L}}= & \left(\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}\right)-\mathrm{V}_{\mathrm{IN}} \cdots \ldots \tag{5}\\
& \left(\mathrm{V}_{\mathrm{D}} \text { Diode forward voltage }\right)
\end{align*}
$$

The voltage at CONT pin rises only by $\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}$.
The change in the current $\left(\mathrm{I}_{\mathrm{L}}\right)$ flowing through the diode into $\mathrm{V}_{\text {OUT }}$ during $\mathrm{t}_{\mathrm{OFF}}$:

$$
\begin{equation*}
\frac{\mathrm{d}_{\mathrm{L}}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{~L}}=\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{IN}}}{\mathrm{~L}} \tag{6}
\end{equation*}
$$

Integration of the above equation is as follows:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{PK}}-\left(\frac{\mathrm{V}_{\text {OUT }}+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\text {IN }}}{\mathrm{L}}\right) \cdot \mathrm{t} \tag{7}
\end{equation*}
$$

During $t_{\text {ON }}$, the energy is stored in L and is not transmitted to $V_{\text {OUT }}$. When receiving the output current (lout) from $V_{\text {OUT }}$, the energy of the capacitor $\left(C_{L}\right)$ is consumed. As a result, the pin voltage of C_{L} is reduced, and goes to the lowest level after M1 is turned ON $\left(\mathrm{t}_{\mathrm{ON}}\right)$. When M1 is turned OFF, the energy stored in L is transmitted through the diode to C_{L}, and the voltage of C_{L} rises rapidly. $V_{\text {OUT }}$ is a time function, and therefore indicates the maximum value (ripple voltage: $\mathrm{V}_{\mathrm{P}-\mathrm{P}}$) when the current flowing through into $\mathrm{V}_{\mathrm{OUT}}$ and load current (lout) match.

Next, the ripple voltage is determined as follows:
$l_{\text {OUt }}$ vs. t_{1} (time) from when M1 is turned OFF (after $t_{\text {ON }}$) to when $\mathrm{V}_{\text {OUT }}$ reaches the maximum level:

$$
\begin{align*}
& \mathrm{l}_{\mathrm{OUT}}=\mathrm{I}_{\mathrm{PK}}-\left(\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{IN}}}{L}\right) \cdot t_{1} \tag{8}\\
\therefore \quad & t_{1}=\left(\mathrm{l}_{\mathrm{PK}}-\mathrm{l}_{\mathrm{OUT}}\right) \cdot\left(\frac{\mathrm{L}}{V_{\text {OUT }}+V_{D}-V_{\mathrm{IN}}}\right) \tag{9}
\end{align*}
$$

When M1 is turned OFF ($\mathrm{t}_{\text {OFF }}$), $\mathrm{I}_{\mathrm{L}}=0$ (when the energy of the inductor is completely transmitted): Based on equation (7),

$$
\begin{equation*}
\left(\frac{L}{V_{\text {OUT }}+V_{D}-V_{\text {IN }}}\right)=\frac{t_{\text {OFF }}}{I_{\text {PK }}} \tag{10}
\end{equation*}
$$

When substituting equation (10) for equation (9),

$$
\begin{equation*}
\mathrm{t}_{1}=\mathrm{t}_{\mathrm{OFF}}-\left(\frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{I}_{\mathrm{PK}}}\right) \bullet \mathrm{t}_{\mathrm{OFF}} \tag{11}
\end{equation*}
$$

Electric charge ΔQ_{1} which is charged in C_{L} during t_{1} :

$$
\begin{align*}
\Delta Q_{1}= & \int_{0}^{t_{1}} I \mathrm{Ldt}=l_{\mathrm{PK}} \bullet \int_{0}^{t_{1}} d t-\frac{V_{\mathrm{OUT}}+V_{D}-V_{\text {IN }}}{L} \bullet \int_{0}^{t_{1}} t d t \\
& =I_{\mathrm{PK}} \bullet t_{1}-\frac{V_{\mathrm{OUT}}+V_{D}-V_{I N}}{L} \bullet \frac{1}{2} t_{1}{ }^{2} \ldots \ldots \tag{12}
\end{align*}
$$

When substituting equation (12) for equation (9):

$$
\begin{equation*}
\Delta Q_{1}=I_{\mathrm{PK}}-\frac{1}{2}\left(\mathrm{I}_{\mathrm{PK}}-\mathrm{I}_{\mathrm{louT}}\right) \cdot \mathrm{t}_{1}=\frac{\mathrm{I}_{\mathrm{PK}}+\mathrm{louT}^{2}}{2} \cdot \mathrm{t}_{1} \tag{13}
\end{equation*}
$$

A rise in voltage $\left(V_{P-P}\right)$ due to ΔQ_{1} :

$$
\begin{equation*}
V_{P-P}=\frac{\Delta Q_{1}}{C_{L}}=\frac{1}{C_{L}} \cdot\left(\frac{I_{P K}+I_{O U T}}{2}\right) \cdot t_{1} \tag{14}
\end{equation*}
$$

When taking into consideration lout to be consumed during t_{1} and the ESR (Equivalent Series Resistance) of C_{L}, namely $\mathrm{R}_{\mathrm{ESR}}$:

$$
\begin{equation*}
V_{P-P}=\frac{\Delta Q_{1}}{C_{L}}=\frac{1}{C_{L}} \cdot\left(\frac{I_{\text {PK }}+I_{\text {ouT }}}{2}\right) \cdot t_{1}+\left(\frac{I_{\text {PK }}+I_{\text {OUT }}}{2}\right) \cdot R_{\text {ESR }}-\frac{\mathrm{l}_{\text {OUT }} \bullet \mathrm{t}_{1}}{C_{L}} \tag{15}
\end{equation*}
$$

When substituting equation (11) for equation (15):

$$
\begin{equation*}
V_{P-P}=\frac{\left(l_{\mathrm{PK}}-l_{\mathrm{OUT}}\right)^{2}}{21_{\mathrm{PK}}} \cdot \frac{\mathrm{t}_{\mathrm{OFF}}}{\mathrm{C}_{\mathrm{L}}}+\left(\frac{\mathrm{I}_{\mathrm{PK}}+\mathrm{l}_{\text {out }}}{2}\right) \cdot R_{\mathrm{ESR}} \tag{16}
\end{equation*}
$$

Therefore to reduce the ripple voltage, it is important that the capacitor connected to the output pin has a large capacity and a small ESR.

E External Part Selection

1. Inductor

To minimize the loss due to inductor DC resistance, select an inductor with the smallest possible DC resistance (less than 1Ω). Set the inductance value to around $22 \mu \mathrm{H}$ to 1 mH .

To make the average value of the output voltage ($\mathrm{V}_{\mathrm{OUT}}$) constant, it is necessary to supply the energy corresponding to the output current (lout) from the inductor. The amount of charge required for $\mathrm{I}_{\text {OUt }}$ is $\mathrm{l}_{\text {OUt }}$ $\times\left(t_{\text {ON }}+t_{\text {OFF }}\right)$. Because the inductor can supply energy only during $t_{\text {OFF }}$, the charge is obtained by integrating equation (7) with $0 \rightarrow \mathrm{t}_{\mathrm{OFF}}$, namely,

$$
\begin{align*}
& \frac{I_{\mathrm{PK}}}{2} \cdot \mathrm{t}_{\mathrm{OFF}} \text { Thus, } \\
& \frac{\mathrm{I}_{\mathrm{PK}}}{2} \cdot \mathrm{t}_{\mathrm{OFF}}=\mathrm{I}_{\mathrm{OUT}} \times\left(\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}\right) . \tag{17}\\
& \mathrm{I}_{\mathrm{PK}}=2 \cdot \frac{t_{\mathrm{ON}}+t_{\mathrm{OFF}}}{t_{\mathrm{OFF}}} \cdot I_{\text {OUT }} \cdots . \tag{18}
\end{align*}
$$

When the oscillation duty ratio of OSC is $75 \%, \mathrm{I}_{\mathrm{PK}}=8 \cdot I_{\mathrm{OUT}}$. Therefore, an I_{PK} current which is eight times lout flows into transistor M1.

The S-8351 Series includes a switching current controller which monitors the current flowing into the CONT pin by the voltage (CONT control voltage) and controls the current. This controller prevents destruction of the IC due to excess current.

If an inductor with a large L value is selected, both $I_{\text {PK }}$ and $l_{\text {OUT }}$ decrease. Since the energy stored in the inductor is equal to $1 / 2 \mathrm{~L} \cdot\left(\mathrm{l}_{\mathrm{PK}}\right)^{2}$, the energy decreases because I_{PK} decreases in steps of squares offsetting the increase of L. As a result, stepping up at a low voltage becomes difficult and the minimum operating input voltage becomes high. However, the DC resistance loss of L and the $M 1$ transistor decreases by the amount $I_{P K}$ decreased, and the inductance efficiency improves.

On the other hand, if an inductor with a smaller L value is selected, both $I_{P K}$ and $I_{O U T}$ increase. Accordingly, the minimum operating input voltage becomes low but the inductance efficiency deteriorates.

Caution An excessively large $I_{P K}$ may cause magnetic saturation for some core materials, leading to the destruction of the IC. Use a core with material that satisfies $I_{\text {sat }}>I_{\text {PK }}$ ($I_{\text {sat }}$: Level of current that causes magnetic saturation).

2. Diode

Use an external diode that meets the following requirements:

- Low forward voltage:
$\mathrm{V}_{\mathrm{F}}<0.3 \mathrm{~V}$
- High switching speed: 500 ns max.
- Reverse voltage: $\quad V_{\text {OUt }}+\mathrm{V}_{\mathrm{F}}$ or more
- Rated current: $l_{\text {PK }}$ or more

3. Capacitors $\left(\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{L}}\right)$

A capacitor at the input side $\left(\mathrm{C}_{\mathbb{I}}\right)$ improves the efficiency by reducing the power impedance and stabilizing the input current. Select the C_{IN} value according to the impedance of the power supply used. The capacitor value should be around $10 \mu \mathrm{~F}$.

A capacitor at the output side $\left(\mathrm{C}_{\mathrm{L}}\right)$ is used for smoothing the ripple voltage. Therefore, select a capacitor with a small ESR (Equivalent Series Resistance) and a large capacitance. The capacitor value should be $10 \mu \mathrm{~F}$ min. A tantalum electrolytic capacitor and an organic semiconductor capacitor are especially recommended because of their superior low-temperature and leakage current characteristics.

4. External transistor (S-8352 Series)

For the S-8352 Series, connecting an external transistor increases the output current. A bipolar (NPN) transistor or an enhancement (Nch) MOS FET transistor can be used as the external transistor.

4.1 Bipolar transistor

A circuit example using a bipolar transistor (NPN), the CPH3210 ($\mathrm{h}_{\mathrm{FE}}=200$ to 560) from Sanyo, is shown in Figure 12 and 13. The $h_{F E}$ and R_{b} values of the bipolar transistor determine the driving capacity to increase the output current using a bipolar transistor. A peripheral circuit example of the transistor is shown in Figure 8.

Figure 8. External Transistor Peripheral Circuit

The recommended R_{b} value is around $1 \mathrm{k} \Omega$. Actually, determine the required base current lb from the bipolar transistor $h_{F E}$ assuming $I_{b}=I_{P K} / h_{F E}$, and select the smaller R_{b} value:

$$
R_{b}=\frac{V_{\text {OUT }}-0.7}{I_{\mathrm{b}}}-\frac{0.4}{\left|I_{\text {EXTH }}\right|}
$$

$$
\left(R_{b}=\frac{V_{D D}-0.7}{I_{b}}-\frac{0.4}{\left|I_{E X T H}\right|}\right)
$$

A small Rb value can increase the output current, but reduces the efficiency. Since a current may flow on the pulse and the voltage may drop due to wiring resistance or other factors, a test should be performed to determine the optimum value.

If the speed-up capacitor $\left(C_{b}\right)$ is inserted in parallel with the R_{b} resistor as shown in Figure 8 , the switching loss is decreased and the efficiency is improved.

Select the C_{b} value according to:

$$
\mathrm{C}_{\mathrm{b}} \leq \frac{1}{2 \pi \cdot \mathrm{Rb} \cdot \mathrm{f}_{\mathrm{osc}} \cdot 0.7}
$$

However, the best C_{b} value varies depending on the characteristics of the bipolar transistor to be used, so determine the optimum value via testing.

4.2 Enhancement MOS FET type

Figure 9 is a circuit example using a MOS FET transistor (N -channel).

An N-channel power MOS FET should be used for MOS FET. In particular, the EXT pin of the S-8352 can drive a MOS FET with a gate capacitance of around 1000 pF. Because the gate voltage and current of the external power MOS FET are supplied from the stepped-up output voltage $\mathrm{V}_{\text {OUt }}$, the MOS FET is driven more effectively.

Figure 9. Circuit Example Using MOS FET

A large current may flow during startup, depending on the MOS FET selection. The S-8352 Series does not feature overcurrent protection for the external MOS FET, so perform sufficient evaluation using the devices to be actually used.

Since the on-resistance of the MOS FET might affect the output current as well as the efficiency, the threshold voltage should be low. When the output voltage is as low as 2.0 V , like in the S-8352A20, the circuit operates only when the MOS FET has a threshold voltage lower than 2.0 V .

5. $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {out }}$ separate type (S-8351/52 Series D type)

The S-8351/52 Series D type provides separate internal circuit power supply and output voltage setting pins (VDD and VOUT, respectively), making it ideal for the following applications.
$<1>$ Changing the output voltage value using an external resistor
$<2>$ Setting a high output voltage value, such as +15 V
In this case, observe the following points when using this product.
i) A step-up operation is performed from $\mathrm{V}_{\mathrm{DD}}=0.8 \mathrm{~V}$. However, $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 10 \mathrm{~V}$ is recommended to stabilize the output voltage and oscillation frequency. ($\mathrm{V}_{\mathrm{DD}} \geq 1.8 \mathrm{~V}$ must be applied for products with a set value of less than 1.9 V .)
If VDD is within the above range, the VDD pin can be connected to either the input voltage pin VIN or the output pin VOUT .
ii) There is impedance between the VOUT pin and VSS pin in the IC, so select external resistors R_{a} and R_{b} so that there are no negative effects when setting the output voltage.
The internal resistance between the VOUT and VSS pins are as follows.

$$
\begin{array}{lll}
<1>\text { S-835XD18 } & \rightarrow & 5.6 \mathrm{M} \Omega \text { to } 14.9 \mathrm{M} \Omega \\
<2>\text { S-835XD20 } & \rightarrow & 5.2 \mathrm{M} \Omega \text { to } 12.3 \mathrm{M} \Omega \\
<3>\text { S-835XD50 } & \rightarrow & 3.8 \mathrm{M} \Omega \text { to } 10.4 \mathrm{M} \Omega
\end{array}
$$

iii) If unstable operation such as oscillation of the output voltage occurs, add capacitor C_{c} in parallel with the R_{a} resistor. Determine the C_{c} value using the following equation.

$$
\mathrm{C}_{\mathrm{c}}(\mathrm{~F})=\frac{1}{2 \bullet \pi \bullet \mathrm{R}_{\mathrm{a}} \cdot 20 \mathrm{kHz}}
$$

Standard Circuits

(1) S-8351 Series A, B, C type

Figure 10. Standard Circuit (1)
(2) S-8351 Series D type

Figure 11. Standard Circuit (2)
(3) S-8352 Series A, B, C type

Figure 12. Standard Circuit (3)
(4) S-8352 Series D type

Figure 13. Standard Circuit (4)

Caution The above connection diagram and constants do not guarantee correct operation. Perform sufficient evaluation using the actual application to set the constants.

Power Dissipation of Package

Figure 12. Power Dissipation of Package (Before Mounting)

Cautions

- Mount the external capacitors, diode, and coil as close as possible to the IC.
- Ripple voltage and spike noise occur in switching regulators. Because they largely depend on the coil and the capacitor used, check these parameters using the actually mounted model.
- Seiko Instruments shall not be responsible for any patent infringement by products including S-8351/8352 Series in connection with the method of using S-8351/8352 Series in such products, the specification of such products, or the country of destination thereof.
- Ensure that the dissipation of the switching transistor (especially at high temperatures) does not exceed the allowable power dissipation of the package.
- When the impedance of the power supply is high, the shutdown pin is switched from "L" to "H", or VIN is connected to the power supply, note that the power supply voltage drops temporarily because a rush current flows into the power supply.

- Characteristics (All Data Indicates Typical Values)

1. Current consumption vs. Power supply voltage

- Power supply input current no load

- $_{\text {SS } 1}$ vs. $\mathrm{V}_{\text {OUT }}, \mathrm{Ta}$

S-8351A

S-8352A

S-8352A

2. Oscillation frequency, duty ratio vs. Temperature

3. Switching current vs. Output voltage, temperature
${ }^{-1} \mathrm{I}_{\text {sw }}$ vs. $\mathrm{V}_{\text {out }}, \mathrm{Ta}$

4. EXT pin output current vs. Output voltage, temperature

- $_{\text {Extl }}$ vs. Vout, Ta

5. Operation start voltage, retention voltage vs. Temperature

- $\mathrm{V}_{\text {St1 }}$ vs. Ta

- $\mathrm{V}_{\text {HLD }}$ vs. Ta

Reference Data (1)

1. Transient response characteristics

The conditions for external parts are the same as those specified in the electrical characteristics.
1.1 Power-on ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

S-8351A30MC

S-8351A50MC

S-8352A30MC

S-8352A50MC

S-8351A30MC

S-8351A50MC

S-8352A30MC

S-8352A50MC

S-8352A30MC

1.4 Shutdown pin response $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

S-8351A50MC

Reference Data (2)

The following shows the step-up characteristics when the coils in the table below are used for reference.
Table 4

Model	Manufacturer	L Value Resistance	Current Rating	
CDRH6D28-220	Sumida Corporation	$22 \mu \mathrm{H}$	0.128Ω	1200 mA
CDRH6D28-470	Sumida Corporation	$47 \mu \mathrm{H}$	0.238Ω	800 mA
CDRH6D28-101	Sumida Corporation	$100 \mu \mathrm{H}$	0.535Ω	540 mA
CDRH125-221	Sumida Corporation	$220 \mu \mathrm{H}$	0.4Ω	800 mA
CXLP120-470	Sumitomo Special Metals Co., Ltd	$47 \mu \mathrm{H}$	0.95Ω	450 mA
CXLP120-101	Sumitomo Special Metals Co., Ltd	$100 \mu \mathrm{H}$	2.5Ω	200 mA

1. S-8351A30MC (built-in, $\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$)

1-1 CDRH6D28-470 $(47 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

(d) Efficiency vs. Output current

1-2 CDRH6D28-101 $(100 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

1-3 CXLP120-101 $(100 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(b) Input voltage vs. Output voltage (input voltage stepped down)

(d) Efficiency vs. Output current

(c) Output current vs. Output voltage

(d) Efficiency vs. Output current

2. S-8351A50MC (built-in, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$)

2-1 CDRH6D28-101 $(100 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

(b) Input voltage vs. Output voltage (input voltage stepped down)

(d) Efficiency vs. Output current

2-2 CDRH125-221 $(220 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

(d) Efficiency vs. Output current

2-3 CXLP120-470 $(47 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

(b) Input voltage vs. Output voltage (input voltage stepped down)

(d) Efficiency vs. Output current

3. S-8352A30MC (external, $\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$)

3-1 CDRH6D28-220 $(22 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

3-2 CDRH6D28-101 $(100 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(b) Input voltage vs. Output voltage (input voltage stepped down)

(d) Efficiency vs. Output current

3-3 CXLP 120-470 $(47 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

(b) Input voltage vs. Output voltage (input voltage stepped down)

(d) Efficiency vs. Output current

4. S-8352A50MC (external, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$)

4-1 CDRH6D28-220 $(22 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

(c) Output current vs. Output voltage

(b) Input voltage vs. Output voltage (input voltage stepped down)

(d) Efficiency vs. Output current

4-2 CDRH6D28-101 $(100 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

4-3 CXLP120-101 $(100 \mu \mathrm{H}), \mathrm{Ta}=25^{\circ} \mathrm{C}$

- Dimensions

Unit:mm

No.:MP003-A-P-SD-1.0
-Taping Specifications

Feed direction \Rightarrow

- Tape Specifications

No. : MP005-A-C-SD-2.0

. SOT-89-3

- Taping Specifications

- Reel Specifications

1 reel holds 1000 ICs.

- The information described herein is subject to change without notice.
- Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
- Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

