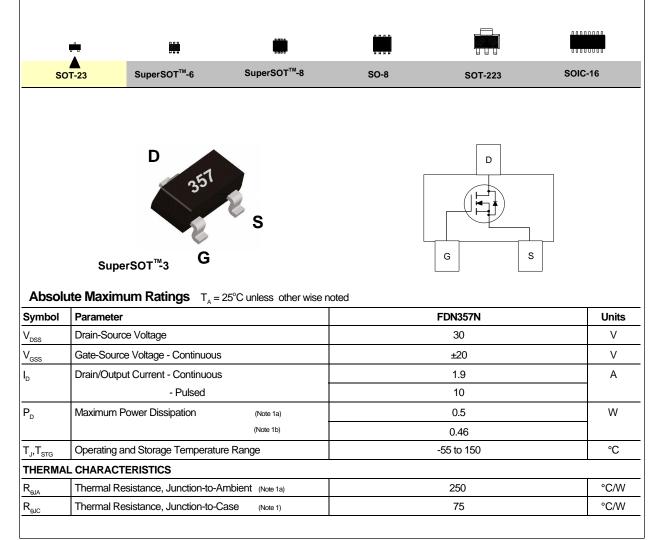


ON Semiconductor®


FDN357N N-Channel Logic Level Enhancement Mode Field Effect Transistor

General Description

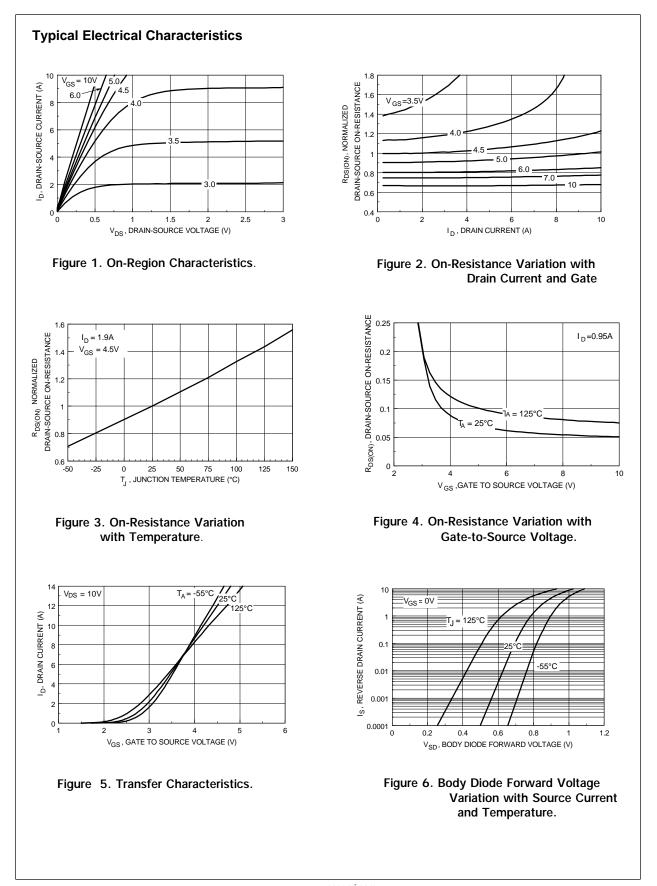
SuperSOTTM-3 N-Channel logic level enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package

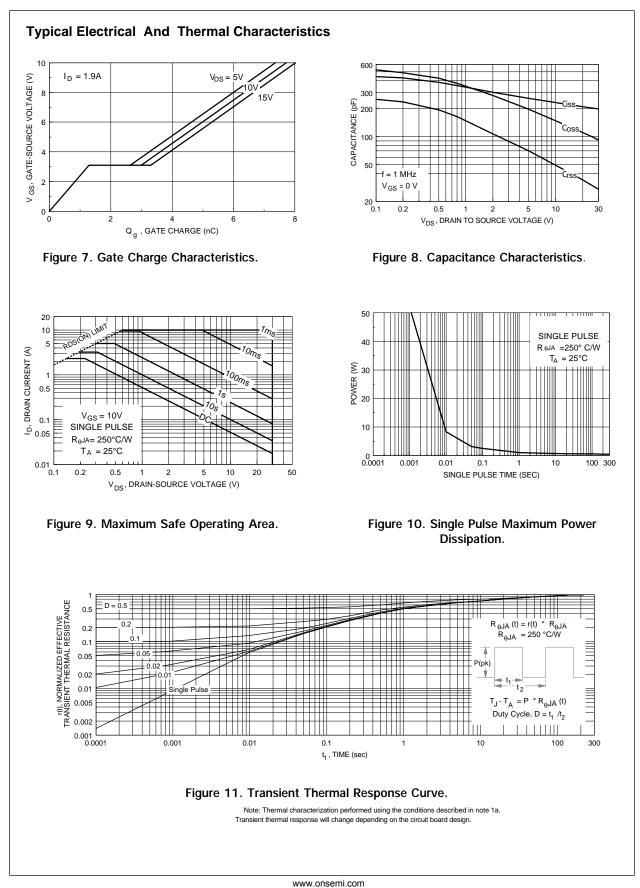
Features

- Industry standard outline SOT-23 surface mount package using proprietary SuperSOT[™]-3 design for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	30			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_{\rm D}$ = 250 µA, Referenced to 25 °C		36		mV/ °C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $T_{J} = 55^{\circ}\text{C}$			1	μA
					10	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note)					
V _{GS(th)}	Gate Threshold Voltage	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = 250 \ \mu A$	1	1.6	2	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient	I_{D} = 250 µA, Referenced to 25 °C		-3.6		mV/ °C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, \ I_{D} = 1.9 \text{ A}$		0.081	0.09	Ω
		T _J =125°C		0.11	0.14	
		$V_{\rm GS} = 10 \text{ V}, \ I_{\rm D} = 2.2 \text{ A}$		0.053	0.06	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	5			А
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_{D} = 1.9 A$		5		S
DYNAMIC (CHARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		235		pF
C _{oss}	Output Capacitance			145		pF
C _{rss}	Reverse Transfer Capacitance			50		pF
SWITCHING	G CHARACTERISTICS (Note)					
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		5	10	ns
ţ	Turn - On Rise Time			12	22	ns
t _{D(off)}	Turn - Off Delay Time			12	22	ns
t,	Turn - Off Fall Time			3	8	ns
Q _g	Total Gate Charge	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1.9 \text{ A},$ $V_{GS} = 5 \text{ V}$		4.2	5.9	nC
Q _{gs}	Gate-Source Charge			1.3		nC
Q _{gd}	Gate-Drain Charge			1.7		nC
DRAIN-SO	URCE DIODE CHARACTERISTICS AND M	AXIMUM RATINGS		1		1
l _s	Maximum Continuous Drain-Source Diode For	1			0.42	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{\rm GS} = 0 \ V, \ I_{\rm S} = 0.42 \ A \ ({\rm Note})$		0.71	1.2	V

1. R_{8.4} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{acc} is guaranteed by design while $\mathsf{R}_{_{\theta \mathsf{CA}}}$ is determined by the user's board design.


Typical $R_{_{\rm BM}}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment :



ំ ./\

b. 270°C/W when mounted on a 0.001 in² pad of 2oz Cu.

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative