

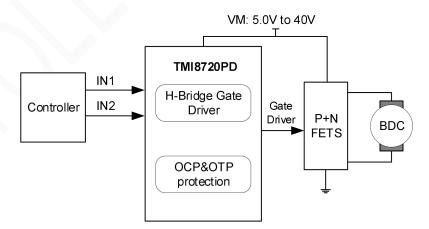
Brushed DC Motor Full-Bridge Gate Driver

FEATURES

- Single Channel H-bridge Gate Driver
 Drive 2 external P+N MOSFETs
- . Wide 5V to 40V Operating Voltage
- Supports 1.8V, 3.3V, 5V Logic Inputs
- . PWM Control Interface
- . VM Undervoltage Lockout (UVLO)
- . Overcurrent Protection (OCP)
- . Thermal Shutdown (TSD)
- Small Package and Footprint
 -DFN3x3-10 package

APPLICATIONS

- . Brushed DC Motors
- Mopping machine
- . Massager
- Robots


GENERAL DESCRIPTION

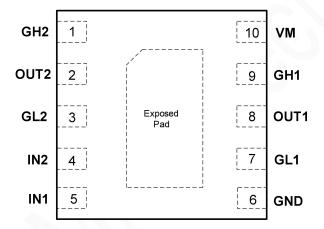
TMI8720PD is an H-bridge gate driver that uses 2 external P+N channel MOSFETs. It is mainly used to drive 5.5V to 40V brushed DC motors, and other small machines. There are two logic input terminals, used to control the motor forward, reverse and brake, PWM mode control mode.

The maximum current capacity is up to 10A, support for ultra-low power sleep mode; built-in UVLO, Thermal Shutdown, OCP protection circuit.

The package form of TMI8720PD is DFN3x3-10 package, which complies with ROHS specifications, and the lead frame is 100% lead-free.

TYPICAL APPILCATION

Figure 1. Basic Application Circuit


www.toll-semi.com

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Min	Max	Unit
Power supply voltage (VM)	-0.3	45	V
Logic input voltage (IN1, IN2)	-0.3	7	V
High-side gate pin voltage (GH1, GH2)	-0.3	VM-7	٧
Low-side gate pin voltage (GL1, GL2)	-0.3	7	V
Continuous phase node pin voltage (OUT1, OUT2)	-0.3	VM+0.3	V
T _a , Operating ambient temperature	-30	85	°C
Operating junction temperature (Note 2)	-40	150	°C
Storage temperature	-65	150	°C

PACKAGE/ORDER INFORMATION

DFN3x3-10(Top view)

Part Number	Package	Top mark	Quantity/ Reel
		TMI	
TMI8720PD	DFN3x3-10	8720PD	5000
		xxxxOH	

TMI8720PD device is Pb-free and RoHS compliant.

PIN FUNCTIONS

Pin	Name	Function
1	GH2	High-side gate, Connect to high-side FET gate.
2	OUT2	Connect to high-side FET source and low-side FET drain.
3	GL2	Low-side gate, Connect to low-side FET gate.
4	IN2	Logic inputs. Controls the output. Has internal pulldowns.
5	IN1	Logic inputs. Controls the output. Has internal pulldowns.
6	GND	Logic ground. Connect to board ground.
7	GL1	Connect to high-side FET source and low-side FET drain.
8	OUT1	Low-side gate, Connect to low-side FET gate.
9	GH1	High-side gate, Connect to high-side FET gate.
10	VM	5V to 40V power supply input. Connect a 0.1µF bypass capacitor to ground,
10	VIVI	as well as a sufficient bulk capacitance rated for VM.
11	GND	Ground Pin (Exposed Pad).

ESD RATING

Items	Description	Value	Unit
V_{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit				
VM	Power supply voltage range	5	40	V				
Logic input	V _{IN_} X	-0.3	6	V				
Logic input	F _{IN_X}	0	50	kHz				

ELECTRICAL CHARACTERISTICS

$T_A = 25$ °C, over recommended operating conditions unless otherwise noted.)

Parameter	rameter Symbol Conditions		Min	Тур.	Max	Unit
Power supply (VM)						
Operation voltage	V_{VM}		5		40	V
Shutdown current	I _{VMQ}	VM=24V, IN1=IN2=0V, no load			20	nA
		VM=24V, IN1=IN2=5V or IN1=5V				
Standby current	I_{VM}	l _{VM} & IN2=0V or IN1=0V & IN2=5V, no		0.5	0.6	mA
		load				
PWM current VM=24V, IN1=5V, IN2=50kHz, no load		1	1.8	3	mA	
VM undervoltage	V _{UVLO_fall}	VM falls until UVLO triggers	4.2	4.4	4.5	V
lockout	V _{UVLO_rise}	VM rises until operation recovers	4.5	4.7	4.8	V
Logic inputs						
Input logic high voltage	V _{INH}		1.4		5.5	V
Input logic low voltage	V _{INL}				0.7	V
Input logic high current	I _{INH}	VM=24V, IN _X =5V		50	75	μA
Input logic low current	I _{INL}	VM=24V, IN _X =0V			1	μA
FET GATE DRIVERS (GH1, GH2,	GL1, GL2, OUT1, OUT2)				
	V _{GHS}	VM>24V	-5.6	-5.8	-6.0	V
High-side VGS gate drive (gate-to- source)		VM=12V	-5.5	-5.7	-5.8	
anve (gate to beares)		VM=8V	-5.1	-5.2	-5.3	
		VM>24V	5.6	5.8	6.0	
Low-side VGS gate drive (gate-to- source)	V_{GLS}	VM=12V	5.5	5.7	5.8	V
drive (gate-to- source)		VM=8V	5.4	5.5	5.6	
High-side Gate		Peak Sink current		50		_
Drive current	I_{GHX}	Peak Source current		200		mA
Low-side Gate		Peak Sink current		200		
Drive current	I_{GLX}	Peak Source current		50		
Output dead time	t _{DEAD}	Body diode conducting		300		ns
Output rise time	t _{RISE}	VM=24V, OUTx rising 10% to 90%		165		ns
Output fall time	t _{FALL}	VM=24V, OUTx falling 90% to 10%		150		ns
Input to output propagation delay	t _{PD}			150		ns

ELECTRICAL CHARACTERISTICS (Continued)

 $T_A = 25$ °C, over recommended operating conditions unless otherwise noted)

Over temperature pro	tection					
Thermal shutdown	T _{SD (Note 3)}			160		°C
Thermal shutdown	T _{HYS (Note 3)}			35		
hysteresis	11110 (14010 0)					
Over current protection	on					
	VDS H-side	VM=24V, High side FETs: VM –		0.38		V
N/		OUTx		0.50		V
V _{DS(OCP)}	V	VM=24V, Low side FETs: OUTx –	0.26		V	
	V _{DS_L-side}	GND		0.20		V
Overcurrent deglitch	4			2.5		
time	tocp			3.5		μs
Overcurrent retry time	t _{RETRY}			2.5		ms
	•NEIRY			2.5		1113

Note 1: Absolute Maximum Ratings are values beyond which the life of devices may be impaired.

Note 2: T_J is calculated from the amIN2ent temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D \times \theta_{JA}$. The maximum allowable continuous power dissipation at any amIN2ent temperature is calculated by $P_{D \text{ (MAX)}} = (T_{J \text{(MAX)}} - T_A)/\theta_{JA}$.

Note 3: Thermal shutdown threshold and hysteresis are guaranteed by design.

OPERATION

Overview

The TMI8720PD is an H-bridge gate driver. The device integrates FET gate drivers in order to control 2 external P+N channel MOSFETs.. The device can be powered with a supply voltage between 5V to 40 V.

Bridge Control

The TMI8720PD output consists of 2 external P+N channel MOSFETs. TMI8720PD that are designed to drive high current. These outputs are controlled by the two logic inputs IN1and IN2 as listed in Table 1.

Table 1. H-Bridge Control

IN1	IN2	OUT1	OUT2	DESCRIPTION		
L	L	High-Z	High-Z	Coast; H-bridge disabled to High-Z		
L	Н	L	Н	Reverse (Current OUT2 → OUT1)		
Н	L	Н	L	Forward (Current OUT1 → OUT2)		
Н	Н	L	L	Brake; low-side slow decay		

The inputs can be set to static voltages for 100% duty cycle drive, or they can be pulse-width modulated (PWM) for variable motor speed. When the VM voltage is set above the UVLO point and the logic input pins is left floating or connected to logic low voltage, the OUTx is at high

www.toll-semi.com

resistance state. The OUTx is connected to GND via the internal N-channel MOSFET once the corresponding Inx is turned logic high.

Figure 2. Propagation Delay Time

VM Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pin falls below the undervoltage-lockout threshold voltage, all FETs in the device will be disabled. Operation resumes when VM rises above the UVLO threshold.

Overcurrent Protection (OCP)

If the output current exceeds the OCP threshold, IOCP, for longer than t_{OCP} , all FETs in the device are disabled. After a duration of t_{RETRY} , the MOSFET is re-enabled according to the state of the INx pins. If the overcurrent fault is still present, the cycle repeats; otherwise normal device operation resumes.

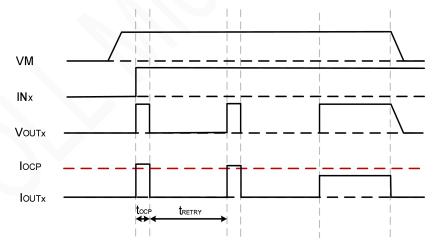


Figure 3. Over current protection Time Periods

Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the device are disabled. After the die temperature has fallen to a safe level, operation automatically resumes.

APPLICATION INFORMATION

The TMI8720PD devices are typically used to drive two directional motors as below:

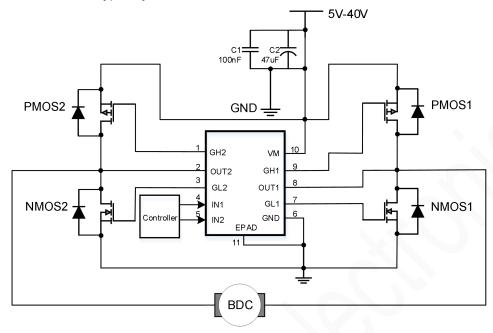


Figure 4. TMI8720PD Typical Application

Block Diagram

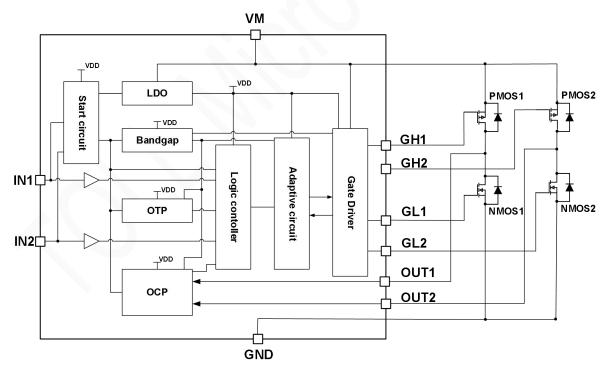
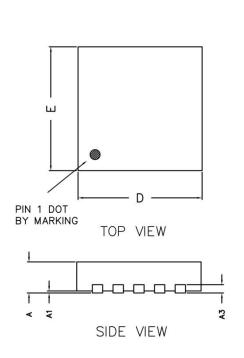
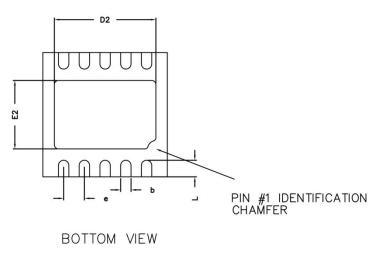


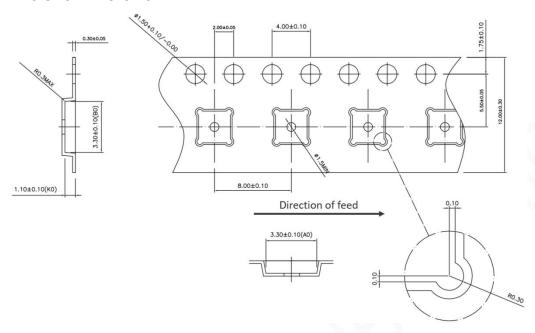
Figure 5. TMI8720PD Block Diagram


TMÍ SUNTO

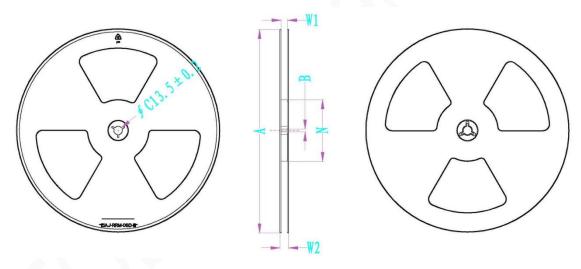

www.toll-semi.com

Package Information

DFN3x3-10


Unit: mm

Symbol	Dimensions In Millimeters			Cumbal	Dimensions In Millimeters		
	Min	Nom	Max	Symbol	Min	Nom	Max
Α	0.70	0.75	0.80	b	0.18	0.23	0.28
A1	0.00	-	0.05	L	0.30	0.40	0.50
А3	0.2 REF			D2	2.30	2.45	2.55
D	2.95	3.00	3.05	E2	1.50	1.65	1.75
E	2.95	3.00	3.05	е	0.50 BSC		



TAPE AND REEL INFORMATION

TAPE DIMENSIONS: DFN3x3-10

REEL DIMENSIONS: DFN3x3-10

Unit: mm

Ø A	ØС	В	W1	W2	N
330±1.0	13.5±0.2	4.7±0.5	13.4±0.5	17.4±0.5	100±0.5

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 5000
- 3) MSL level is level 3.

Important Notification

This document only provides product information. Xi'an TOLL Microelectronic Inc. (TMI) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

Xi'an TOLL Microelectronic Inc. (TMI) cannot assume responsilN2lity for use of any circuitry other than circuitry entirely embodied in a TMI product. No circuit patent licenses are implied.

All rights are reserved by Xi'an TOLL Microelectronic Inc. http://www.toll-semi.com