1. **DESCRIPTION**

The XL5615 and XD5615 are 10-bit voltage output digital-to-analog converter (DAC) with a buffered reference input (high impedance). The DAC has an output voltage range that is two times the reference voltage, and the DAC is monotonic. The device is simple to use, running from a single supply of 5V. A power-on-reset function is incorporated to ensure repeatable start-up conditions.

Digital control of the XL5615 and XD5615 are over a three-wire serial bus that is CMOS compatible and easily interfaced to industry standard microprocessor and microcontroller devices. The device receives a 16-bit data word to produce the analog output. The digital inputs feature Schmitt triggers for high noise immunity. Digital communication protocols include the SPI[™], QSPI[™], and Microwire[™] standards.

The 8-terminal small-outline D package allows digital control of analog functions in space-critical applications. The XL5615 and XD5615 are characterized for operation from -40°C to +85°C.

2. FEATURES

- 10-Bit CMOS Voltage Output DAC in an 8-Terminal Package
- 5V Single Supply Operation
- 3-Wire Serial Interface
- High-Impedance Reference Inputs
- Voltage Output Range: 2 Times the Reference Input Voltage
- Internal Power-On Reset
- Low Power Consumption: 1.75mW Max
- Update Rate of 1.21MHz
- Settling Time to 0.5LSB: 12.5µs Typ
- Monotonic Over Temperature

3. TYPICAL APPLICATION

- Battery-Powered Test Instruments
- Digital Offset and Gain Adjustment
- Battery Operated/Remote Industrial Controls
- Machine and Motion Control Devices
- Cellular Telephones

4. PIN CONFIGURATIONS AND FUNCTIONS

TERMINAL		1/0			
NAME	NO.	1/0	DESCRIPTION		
DIN	1	I	Serial data input		
SCLK	2	I	Serial clock input		
CS	3	I	Chip select, active low		
DOUT	4	0	Serial data output for daisy chaining		
AGND	5		Analog ground		
REFIN	6	I	Reference input		
OUT	7	0	DAC analog voltage output		
V _{DD}	8		Positive power supply		

5. BLOCK DIAGRAM

6. ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	UNIT		
Supply voltage (V _{DD} to AGND)	7V		
Digital input voltage range to AGND	-0.3V to VDD + 0.3V		
Reference input voltage range to AGND	-0.3V to VDD + 0.3V		
Output voltage at OUT from external source	VDD + 0.3V		
Continuous current at any terminal		20mA	
Operating free-air temperature range, T _A	XL5615	-40 °C to +85 °C	
XD5615		-40°C to +85°C	
Storage temperature range, T _{stg}	-65°C to +150°C		
Lead temperature 1,6mm (1/16 inch) from case	for 10 seconds	+260°C	

Stressesbeyondthosel i stedunderAbsol uteMaxi mumRati ngsmaycausepermanentdamagetothedevi ce. Thesearestress rati ngsonly, andfuncti onal operati onofthedevi ceattheseoranyothercondi ti onsbeyondthosei ndi catedunder RecommendedOperati ngCondi ti onsi snoti mplied. Exposuretoabsol ute-maxi mum-ratedcondi ti onsforextendedperi ods may affectdevi cerel i abili ty.

7. RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}		4.5	5	5.5	V
High-level digital input voltage, V _{IH}		2.4			V
Low-level digital input voltage, V _{IL}				0.8	V
Reference voltage, V _{ref} to REFIN terminal		2	2.048	V _{DD} -2	V
Load resistance, R _L		2			kΩ
	XL5615	-40		85	°C
Operating free-air temperature, I _A	XD5615	-40		85	°C

8. ELECTRICAL CHARAC TERISTICS

over recommended operating free-air temperature range, V_{DD} = 5V \pm 5%, V_{ref} = 2.048V (unless otherwise noted)

STATI	C DAC SPECIFICATIONS						
	PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
	Resolution			10			bits
	Integral nonlinearity, end po	oint adjusted (INL)	$V_{ref} = 2.048V$, See ⁽¹⁾			±1	LSB
Differential nonlinearity (DNL)			$V_{ref} = 2.048V$, See ⁽²⁾		±0.1	±0.5	LSB
E _{ZS}	Zero-scale error (offset error	V _{ref} = 2.048V, See ⁽³⁾			±3	LSB	
	Zero-scale-error temperatur	V _{ref} = 2.048V, See ⁽⁴⁾		3		ppm/°C	
E _G	Gain error		$V_{ref} = 2.048V$, See ⁽⁵⁾			±3	LSB
	Gain-error temperature coe	V _{ref} = 2.048V, See ⁽⁶⁾		1		ppm/°C	
DCDD	Device events estention estin	Zero scale	Sec (7)(8)	80			dD
PSRK	Power-supply rejection ratio	Gain	See (1)(-)	80			aв
Analog full scale output			$R_L = 100k\Omega$		2V _{ref} (1023	/1024)	V

(1) The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors (see text). Tested from code 3 to code 1024.

- (2) The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code. Tested from code 3 to code 1024.
- (3) Zero-scale error is the deviation from zero-voltage output when the digital input code is zero (see text).
- (4) Zero-scale-error temperature coefficient is given by:EZS TC = [EZS (Tmax) EZS (Tmin)]/Vref \times 106/(Tmax–Tmin).
- (5) Gain error is the deviation from the ideal output (Vref 1LSB) with an output load of 10kΩ excluding the effects of the zeroscale error.
- (6) Gain temperature coefficient is given by: $E_G TC = [E_G(T_{max}) E_G (T_{min})]/V_{ref} \times 10^6/(T_{max} T_{min})$.
- (7) Zero-scale-error rejection ratio (EZS-RR) is measured by varying the VDD from 4.5V to 5.5V dc and measuring the proportion of this signal imposed on the zero-code output voltage.
- (8) Gain-error rejection ratio (EG-RR) is measured by varying the VDD from 4.5V to 5.5V dc and measuring the proportion of this signal imposed on the full-scale output voltage after subtracting the zero-scale change.

9. VOLTAGE OUTPUT(OUT)

PA	RAMETER	TEST CONDIT	IONS	MIN	ТҮР	MAX	UNIT
Vo	Voltage output range	$R_L=10k\Omega$		0		V _{DD} -0.4	V
	Output load regulation accuracy	V _{O(OUT)} = 2V,	$R_L = 2k\Omega$			0.5	LSB
I _{OSC}	Output short circuit current	OUT to V_{DD} or AGND			2 0		mA
V _{OL(low)}	Output voltage, low-level	I _{O(OUT)} ≤ 5mA				0.25	V
V _{OH(high)}	Output voltage, high-level	I _{O(OUT)} ≤− 5mA		4.75			V
REFEREN	ICE INPUT (REFIN)						
VI	Input voltage			0		V _{DD} -2	V
r _i	Input resistance			10			MΩ
Ci	Input capacitance				5		pF
DIGITAL	INPUTS (DIN, SCLK, CS)						
V _{IH}	High-level digital input voltage			2.4			V
V _{IL}	Low-level digital input voltage					0.8	V
I _{IH}	High-level digital input current	V _I = V _{DD}				±1	μΑ
I _{IL}	Low-level digital input current	V ₁ = 0				±1	μΑ
Ci	Input capacitance				8		pF
DIGITAL	OUTPUT (DOUT)						
V _{OH}	Output voltage, high-level	I ₀ = -2mA		V _{DD} -1			V
V _{OL}	Output voltage, low-level	I ₀ = 2mA				0.4	V
POWER	SUPPLY						
V _{DD}	Supply voltage			4.5	5	5.5	V
I _{DD}	Power supply current	V_{DD} = 5.5V, No load, All inputs = OV or V _{DD}	V _{ref} = 0		150	250	μА
		V_{DD} = 5.5V, No load, All inputs = 0V or V _{DD}	V _{ref} = 2.048V		230	350	μΑ
ANALOG	OUTPUT DYNAMIC PERFORMANC	E					
	Signal-to-noise + distortion, S/(N+D)	$V_{ref} = 1V_{PP}$ at 1kHz + 2.048Vdc, code = 11 11 1111 ⁽¹⁾	11	60			dB

[1] The limiting frequency value at $1V_{PP}$ is determined by the output-amplifier slew rate.

10. DIGITAL INPUT TIMING REQUIREMENTS (See Figure 1)

	PARAMETER	MIN	NOM	МАХ	UNIT
t _{su(DS)}	Setup time, DIN before SCLK high	45			ns
t _{h(DH)}	Hold time, DIN valid after SCLK high	0			ns
t _{su(CSS)}	Setup time, CS low to SCLK high	1			ns
t _{su(CS1)}	Setup time, CS high to SCLK high	50			ns
t _{h(CSH0)}	Hold time, SCLK low to CS low	1			ns
t _{h(CSH1)}	Hold time, SCLK low to CS high	0			ns
t _{w(CS)}	Pulse duration, minimum chip select pulse width high	20			ns
t _{w(CL)}	Pulse duration, SCLK low	25			ns
t _{w(CH)}	Pulse duration, SCLK high	25			ns

11. OUTPUT SWITCHING CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	MIN NOM MAX	UNIT
t _{pd(DOUT)}	Propagation delay time, DOUT	C _L = 50pF	50	ns

12. OPERATING CHARACTERISTICS

over recommended operating free-air temperature range, VDD = 5V \pm 5%, Vref = 2.048V (unless otherwise noted)

	PARAMETER	MIN	ТҮР	MAX	UNIT		
ANA	LOG OUTPUT DYNAMIC PER						
SR	Output slew rate	C _L = 100pF, T _A = +25°C	$R_L = 10k\Omega$,	0.3	0.5		V/µs
ts	Output settling time	Output settling time To 0.5LSB, $R_L = 10k\Omega$, $C_L = 10$			12.5		μs
	Glitch energy	DIN = All 0s to all 1s			5		nV-s
REFE	RENCE INPUT (REFIN)						
	Reference feedthrough	REFIN = 1V _{PP} at 1kHz + 2.048	Vdc ⁽²⁾		-80		dB
	Reference input bandwidth				30		kHz

[1] Settling time is the time for the output signal to remain within ±0.5LSB of the final measured value for a digital input code change of 000 hex to 3FF hex or 3FF hex to 000 hex.

[2] Reference feedthrough is measured at the DAC output with an input code = 000 hex and a V_{ref} input = 2.048Vdc + $1V_{pp}$ at 1kHz.

CS th(CSH0) t_{su(CSS)} tw(CS) th(CSH1) t_{su(CS1)} tw(CH) tw(CL) SCLK See Note A See Note C See Note A th(DH) t_{su(DS)} DIN tpd(DOUT) Previous LSB MSB LSB DOUT See Note B

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The input clock, applied at the SCLK terminal, should be inhibited low when $\overline{\text{CS}}$ is high to minimize clock feedthrough. B. Data input from preceeding conversion cycle.

C. Sixteenth SCLK falling edge

Figure 1. Timing Digram

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

Input Code Figure 8. Integral Nonlinearity With Input Code

APPLICATION INFORMATION

GENERAL FUNCTION

The XL5615 uses a resistor string network buffered with an op amp in a fixed gain of 2 to convert 10-bit digital data to analog voltage levels (see functional block diagram and Figure 9). The output of the XL5615 is the same polarity as the reference input (see Table 1).

An internal circuit resets the DAC register to all zeros on power up.

Figure 9. XL5615 Typical Operating Circuit

Table 1. Dinary Code Table (ov to 2 v REFINOULPUL), Gain - 2	Tab	ble	1.	Binary	Code	Table	(0V 1	to 2V _F		put),	Gain :	= 2
--	-----	-----	----	---------------	------	-------	-------	--------------------	--	-------	--------	-----

INPUT ⁽¹⁾			OUTPUT
1111	1111	11(00)	2(v _{REFIN}) ¹⁰²³ /1024
1000	: 0000	01(00)	: 2(v _{REFIN}) ⁵¹³ / ¹⁰²⁴
1000	0000	00(00)	$_{2}(v_{\text{REFIN}})^{512}$ $_{1024} = v_{\text{REFIN}}$
0111	1111	11(00)	2(v _{REFIN}) ⁵¹¹ /1024
0000	: 0000	01(00)	: 2(V _{REFIN}) ¹ /1024
0000	0000	00(00)	0 V

(1) A 10-bit data word with two bits below the LSB bit (sub-LSB) with 0 values must be written since the DAC input latch is 12 bits wide.

13. ORDERING INFORMATION

Part Number	Device Marking	Package Type	Body size (mm)	Temperature (°C)	MSL	Transport Media	Package Quantity
XL5615	XL5615	SOP8	4.90 * 3.90	- 40 to 85	MSL3	T&R	2500
XD5615	XD5615	DIP8	9.25 * 6.38	- 40 to 85	MSL3	Tube 50	2000

Ordering Information

14. DIMENSIONAL DRAWINGS

