

DESCRIPTION

The HSN75176ADR used for RS-485/RS-422 communication is a 10Mbps high-speed transceiver for half duplex communication, which includes one driver Device and a receiver.

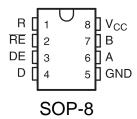
Equippedwith ± 8kV human mode ESD protection and failure protection circuit, ensuring that when the receiver input is open or short circuited Receiver output logic high level.

If all transmitters attached to the terminal matching bus are disabled (high resistance), the receiver will output logic high Level.

The HSN75176ADR driver does not limit the swing rate and can ensure a communication rate of up to 10Mbps.

HSN75176ADR has a receiver with 1 Unit load input impedance, up to 32 transceivers can be connected to the bus.

In addition, HSN75176ADR also has an built-in overtemperature protection circuit to ensure the chip is not damaged under high temperature conditions.

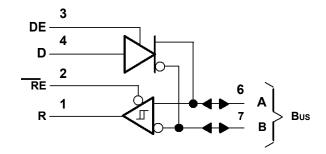

FEATURES

- · Provide low current shutdown mode
- · Provide industry standard 8-pin SOP packaging
- Up to 32 transceivers are allowed to be mounted on the bus
- · True fail safe receiver compatible with EIA/TIA-485
- Built in over temperature protection circuit ensures that the chip is not damaged due to High temperatures
- Provide enhanced ESD protection for RS-485/ RS-422 A/B pins

APPLICATIONS

- SCSI "Fast 40" Drivers and Receivers.
- · Motor Controller/Position Encoder Systems
- · Factory Automation

PIN CONFIGURATION



Pin Functions

Р	IN	1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
Α	6	Bus input/output	Driver output or receiver input (complementary to B)
В	7	Bus input/output	Driver output or receiver input (complementary to A)
D	4	Digital input	Driver data input
DE	3	Digital input	Active-HIGH driver enable
GND	5	Reference potential	Local device ground
R	1	Digital output	Receiver data output
RE	2	Digital input	Active-LOW receiver enable
V _{CC}	8	Supply	4.75-V to 5.25-V supply

LOGIC DIAGRAM

FEATUER DESCRIPTION

DRIVER FUNCTION TABLE

INPUT	ENABLE	OUT	PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
Х	L	Z	Z

H = high level,

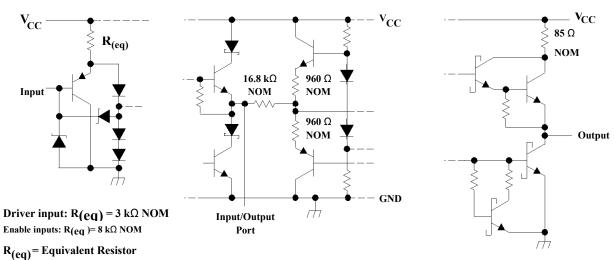
L = low level,

X = irrelevant,

Z = high impedance (off)

RECEIVER FUNCTION TABLE

DIFFERENTIAL INPUTS A-B	EN <u>AB</u> LE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
-0.2 V < V _{ID} < 0.2 V	L	?
V _{ID} ≤ -0.2 V	L	L
X	Н	Z
Open	L	?


H = high level,

L = low level,

? = indeterminate,

X = irrelevant, Z = high impedance (off)

EQUIVALENT OF EACH INPUT

ABSOLUTE MAXIMUM RATINGS

($V_{CC} = 5V \pm 5\%$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) over operating free-air temperature range (unless otherwise noted)1)

SYMBOL	PARAMETER	MIN	MAX	UNIT
V	Supply voltage (2)		7	V
	Voltage range at any bus terminal	-10	15	V
VI	Enable input voltage		5.5	V
$\theta_{\scriptscriptstyle JA}$	Package thermal impedance ⁽³⁾⁽⁴⁾		85	°C/W
TJ	Operating virtual junction temperature		150	C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	C
Tstg	Storage temperature range	-65	150	C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.
- (3) Maximum power dissipation is a function of T_{J(max)}, θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is PD = $(T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			TYP	MAX	UNIT
V_{CC}	Supply voltage			5	5.25	V
VI or VIC	Voltage et any hye terminal (constr				12	\/
ALOI AIC	Voltage at any bus terminal (separately or common mode)				– 7	V
Vih	High-level input voltage	D, DE, and RE	2			V
Vıl	Low-level input voltage	D, DE, and RE			0.8	V
V _{ID}	Differential input voltage	Differential input voltage (1)			±12	V
		Driver			-60	mA
I _{OH}	High-level output current	Receiver			-400	μA
		Driver			60	
loL	Low-level output current	Receiver			8	mA
T _A	Operating free-air temperature		0		70	C

⁽¹⁾ Differential input/output bus voltage is measured at the noninverting terminal A, with respect to the inverting terminal B.

DRVER SECTION Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

SYMBOL	PARAMETER	TEST CON	DITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V_{IK}	Input clamp voltage	I _I = -18 mA				-1.5	V
VO	Output voltage	I _O = 0		0		6	V
VOD1	Differential output voltage	IO = 0		1.5	3.6	6	V
		R _L = 100 Ω		1/2 V _{OD1} or 2 (3)			
VOD2	Differential output voltage	R _L = 54 Ω		1.5	2.5	5	V
V _{OD3}	Differential output voltage	See (4)		1.5		5	V
Δ V _{OD}	Change in magnitude of differential output voltage ⁽⁵⁾	R _L = 54 Ω or 100 Ω				±0.2	V
Voc	Common-mode output voltage	R _L = 54 Ω or 100 Ω				+3 –1	V
ΔIVOCI	Change in magnitude of common-mode output voltage ⁽³⁾	R_L = 54 Ω or 100 Ω				±0.2	V
lo	Output current	Output disabled ⁽⁶⁾	$V_O = 12 V$ $V_O = -7 V$			1 -0.8	mA
Іш	High-level input current	V _I = 2.4 V				20	μA
I⊩	Low-level input current	V _I = 0.4 V				-400	μA
		V _O = -7 V				-250	
		VO = 0				-150	
los	Short-circuit output current	V - V O CC				250	mA
		V _O = 12 V				250	
			Outputs enabled		42	70	
Icc	Supply current (total package)	No load	Outputs disabled		26	35	mA

- (1) The power-off measurement in ANSI Standard TIA/EIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs.
- All typical values are at V_{CC} = 5 V and T_A = 25°C.
- (3) The minimum V_{OD2} with a 100-Ω load is either 1/2 V_{OD1} or 2 V, whichever is greater.
 (4) See ANSI Standard TIA/EIA-485-A, Figure 3.5, Test Termination Measurement 2.
- (5) |VOD| and |VOC| are the changes in magnitude of VOD and VOC, respectively, that occur when the input is changed from a high level
- This applies for both power on and off; refer to ANSI Standard TIA/EIA-485-A for exact conditions. The TIA/EIA-422-B limit does not apply for a combined driver and receiver terminal.

Switching Characteristics

 V_{CC} = 5 V, R_L = 110 Ω , T_A = 25°C (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text{d}(\text{OD})}$	Differential-output delay time	R _L = 54 Ω		15	22	ns
$t_{t(OD)}$	Differential-output transition time	R _L = 54 Ω		20	30	ns
t _{PZH}	Output enable time to high level			85	120	ns
t _{PZL}	Output enable time to low level			40	60	ns
t _{PHZ}	Output disable time from high level			150	250	ns
t _{PLZ}	Output disable time from low level			20	30	ns

Symbol Equivalents

DATA SHEET PARAMETER	TIA/EIA-422-B	TIA/EIA-485-A
VO	Voa, Vob	Voa, Vob
VOD1	Vo	Vo
V _{OD2}	V _t (R _L = 100 Ω)	V _t (R _L = 54 Ω)
V _{OD3}		V _t (test termination measurement 2)
Δ VOD	$ V_t - \overline{V_t} $	V _t - -
Voc	V _{os}	V _{os}
Δ VOC	$ V_{OS} - \overline{V}_{OS} $	V _{OS} - \(\overline{V} \) os
los	I _{sa} , I _{sb}	
lo	I _{xa} , I _{xb}	lia, lib

RECEIVER SECTION Electrical Characteristics

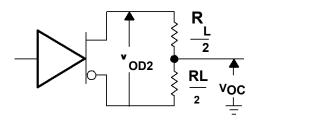
over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_0 = 2.7 \text{ V}, I_0 = -0.4$	1 mA			0.2	V
V _{II-}	Negative-going input threshold voltage	VO= 0.5 V, IO = 8 mA	4	-0.2 ⁽²⁾			V
V _{hys}	Input hysteresis voltage (V _{IT+} – V _{IT-})				50		mV
Vıĸ	Enable Input clamp voltage	I _I = -18 mA				-1.5	V
V _{OH}	High-level output voltage	V _{ID} = 200 mV, I _{OH} =	: –400 uA	2.7			V
Vol	Low-level output voltage	V _{ID} = -200 mV, l _{OL} :	= 8 mA			0.45	V
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V				±20	μA
	Line input current	Other input = 0 V ⁽³⁾	V _I = 12 V			1	mA
1	Zine input current		V _I = -7 V			-0.8	
Iн	High-level enable input current	V _{IH} = 2.7 V				20	μA
I IL	Low-level enable input current	V _{IL} = 0.4 V				-100	μA
rı	Input resistance	V _I = 12 V		12			kΩ
los	Short-circuit output current			-15		-85	mA
			Outputs enabled		42	55	
Icc	Supply current (total package)	No load	Outputs disabled		26	35	mA

⁽¹⁾ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

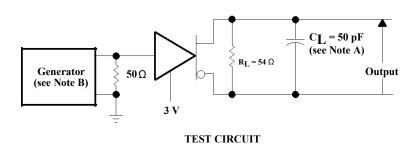
Switching Characteristics

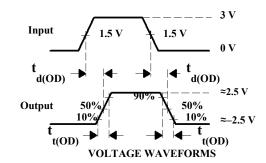
V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C


SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	\\- = 0 to 2 \\		21	35	ns
t _{PHL}	Propagation delay time, high- to low-level output	V _{ID} = 0 to 3 V		23	35	115
t PZH	Output enable time to high level			10	20	ns
tpzL	Output enable time to low level			12	20	115
t PHZ	Output disable time from high level			20	35	ns
t PLZ	Output disable time from low level]		17	25	110

⁽²⁾ The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

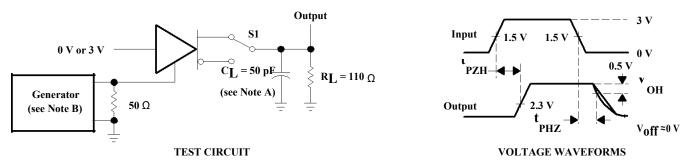
⁽³⁾ This applies for both power on and power off. Refer to EIA Standard TIA/EIA-485-A for exact conditions.


Parameter Measurement Information



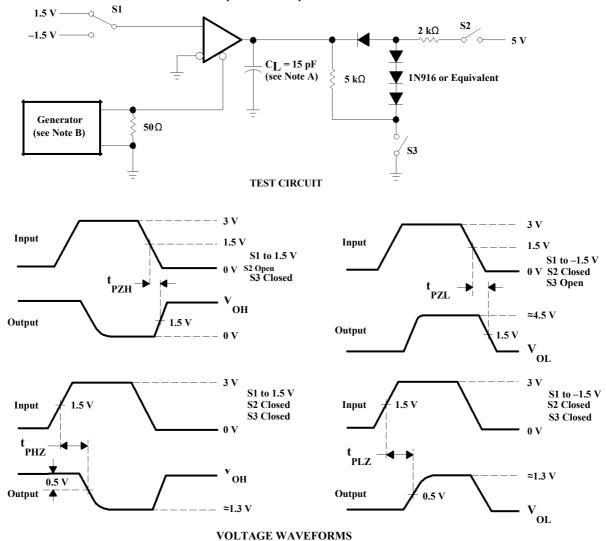
OL TOPHONION

Figure 1. Driver $V_{\mbox{\scriptsize OD}}$ and $V_{\mbox{\scriptsize OC}}$


Figure 2. Receiver VOH and VOL

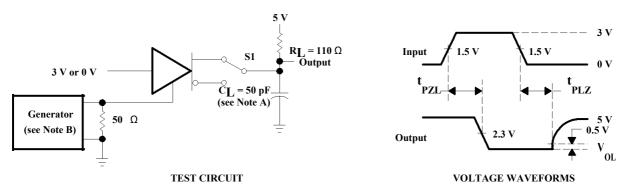
- A. C_L includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_\Gamma \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \ \Omega$.

Figure 3. Driver Test Circuit and Voltage Waveforms



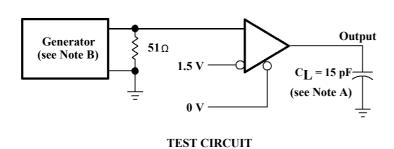
- A. CL includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_\Gamma \leq$ 6 ns, $t_f \leq$ 6 ns, $t_T \leq$ 7 ns, $t_T \leq$ 8 ns, $t_T \leq$ 8 ns, $t_T \leq$ 9 ns,

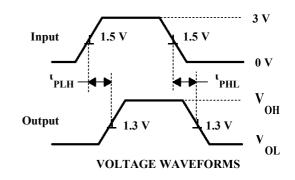
Figure 4. Driver Test Circuit and Voltage Waveforms



Parameter Measurement Information (continued)

- A. CL includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 7 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_{\Gamma} \leq$ 9


Figure 5. Receiver Test Circuit and Voltage Waveforms



- A. C_L includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns,

Figure 6. Driver Test Circuit and Voltage Waveforms

- A. C_L includes probe and jig capacitance.
- B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.

Figure 7. Receiver Test Circuit and Voltage Waveforms

TYPOCAL CHARACTERISTICS

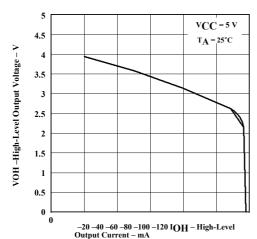
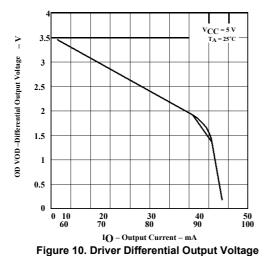



Figure 8. Driver High-Level Output Voltage vs
High-Level Output Current

Output Current

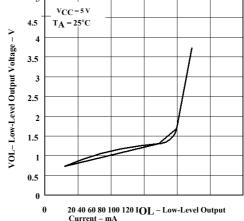
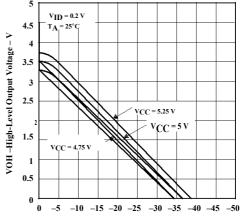



Figure 9. Driver Low-Level Output Voltage vs
Low-Level Output Current

IOH – High-Level Output Current – mA
Figure 11. Receiver High-Level Output Voltage
vs
High-Level Output Current

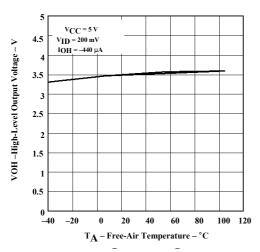


Figure 12. VOH-High-Level Output Voltage vs Free-Air Temperature

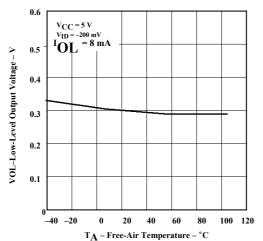


Figure 14. Receiver Low-Level Output Voltage vs
Free-Air Temperature

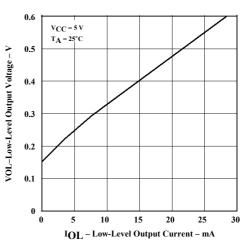
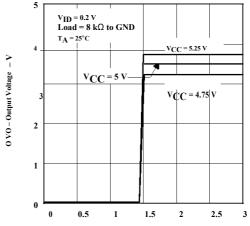
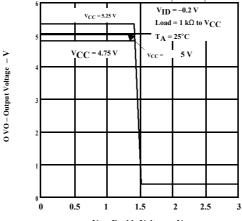
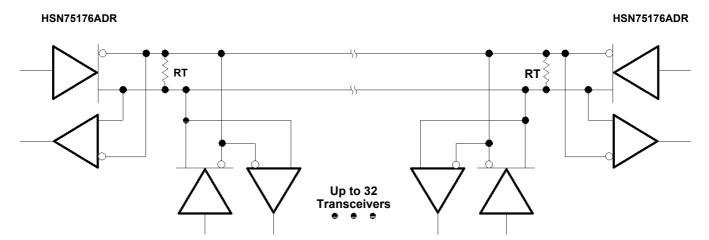
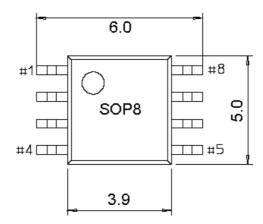




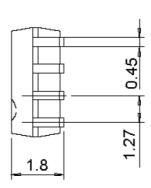
Figure 13. VOL-Low-Level Output Voltage vs
Low -Level Output Current

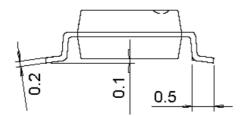

VI – Enable Voltage – V Figure 15. Receiver Output Voltage vs Enable Voltage

VI – Enable Voltage – V Figure 16. Receiver Output Voltage vs Enable Voltage

APPLICATION INFORMATION




The line should be terminated at both ends in its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.


Figure 17. Typical Application Circuit

PACKAGE OUTLINE DIMENSIONS

SOP-8

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.