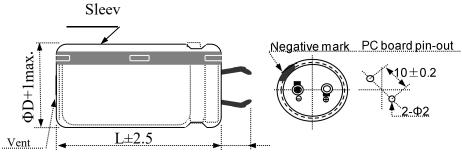
G BERY 绿宝石	L	ALUMIN	UM ELECTR	OLYTIC CA	APACITORS
		规	格书		
SI	PECIE	FICA	ΓΙΟΝ	SHE	ET
Customer	name :				
BERYL S	ERIES : KS]	FYPE : Sna	ip-in
DESCRI	PTION : 470	uF/200V 4	022*40		
Apply	date :				
	BERYL			CUSTOMEI	R
P/N:KS200M47	/18I222*40TA-1H	B3Et	P/N:		
PREPARED	CHECKED	APPROVAL	PREPARED	CHECKED	APPROVAL
	Zhao Qing	Bervl Electr	onic Technol	ngv Co., Ltd.	
	2 72	201 ji Lietti		- 5 7 - 500, L 100	

Revise record

NO.	Date	Revise reason	Revise content	Prepared
01	2024.04.22	First issue	First issue	胡晓敏

1、 Application

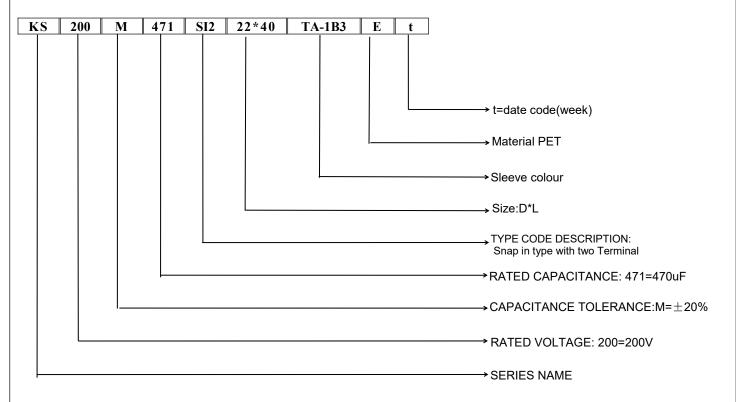
This specification applies to Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC 60384.

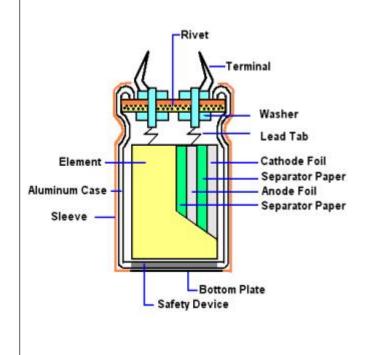

2. Table of specification and characteristics

Series	Cap(uF	· · · ·	WV(V)	Si	ize(1	nm)	Temperature (°C)		- 1		Capaci		Life(hours)
	120Hz/20°C		°C			L	(°C)		Tolerance		@105(°C)		
KS	470		200	22		40	-25~ +105		± 20		3000		
	DF (%)(MAX) 120Hz/20°C		LC(μA)(MAX) 5min/20°C ESR(Ω)(N 100KHz/		SR(Ω)(M 100KHz/2		RC (A rms) (MAX)105°C/120Hz		Surge voltage(V)				
≤15 ≤920 -		-		1.54	ł		230						

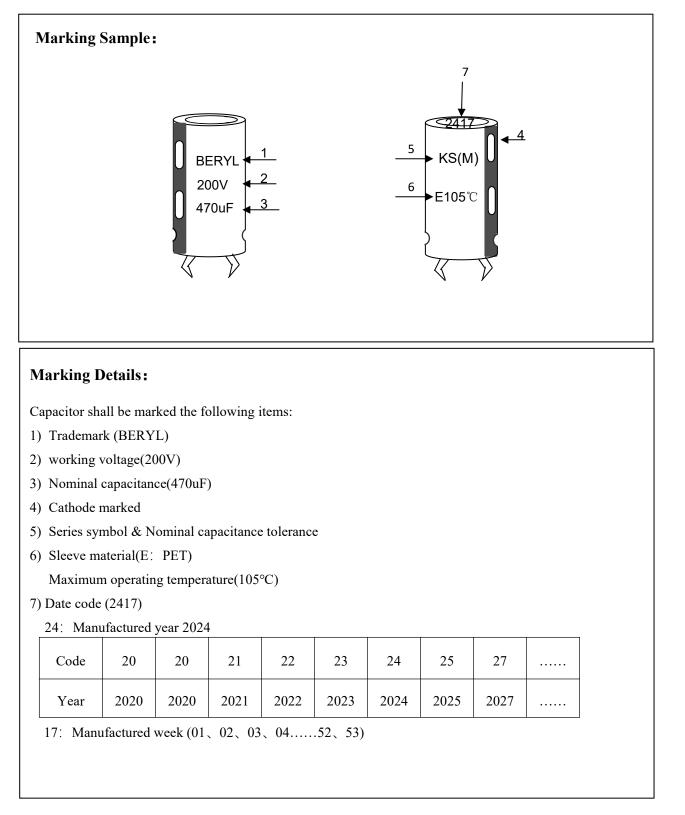
Other: /

3、 Product Dimensions


Туре S(Ф22~Ф35)


 $6.0{\pm}0.5$

4、Part Number


5、Construction

Material name	Composition	Supplier name
1.Terminal	Copper, tin	ZXH、XH
2.Seal	Bakelite, phenolic, etc.	ZXH、TY、XH、QK
3.Washer	Aluminum, 99.9%	ZXH、TY、XH
4.Tab	Aluminum, 99.9%	ЈҮ
5.Sleeve	PET	YL、DS
6. Case	Aluminum, 99.8%	OX、YJ、LY2
7.Element	Aluminum foils, separator, electrolyte, etc.	
7-1.Anode foil	Formed aluminum, 99.99% or 99.98%	HX1、GD、FC、ZH、 HF
7-2.Cathode foil	Etched aluminum, 99.7% or 99.4%	GY、FL、TL
7-3.Separat or	fiber paper	KE、CY、NKK、JLT
7-4.Electrol yte	Ethylene glycol,Ammonium salt,etc.	XZB、JZ2
8.Gasket	PVC/PP/PET	ZXH、XH
9.Adhesive tape	propylene , butyl acrylate	RK、CW

6、Product Marking

7、 Characteristics

Standard atmospheric conditions

Unless other specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature :15°C to 35°CRelative humidity:45% to 85%

Air pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature : $20^{\circ}C \pm 2^{\circ}C$ Relative humidity : 60% to 70%Air pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is $(200 \sim 500 \text{WV}) - 25^{\circ}\text{C}$ to $+105^{\circ}\text{C}$.

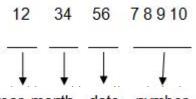
Table

	ITEM	PERFORMANCE
1	Nominal capacitance (Tolerance)	<condition> Measuring Frequency: 120Hz±12Hz Measuring circuit:Series equivalent circuit Measuring Voltage: Not more than 0.5Vrms +1.5~2.0V.DC Measuring Temperature: 20±2°C <criteria> Shall be within the specified capacitance tolerance.</criteria></condition>
2	Leakage current	$\begin{array}{c} < \textbf{Condition} > \\ \text{Connecting the capacitor with a protective resistor } (1k\Omega \pm 10\Omega) \text{ in series for} \\ 5 \text{ minutes, and then, measure leakage current.} \\ < \textbf{Criteria} > \\ \text{I: Leakage current (uA)} \\ \text{I (uA) } \leq 3\sqrt{\text{CV}} \text{ (uA)} \text{ ,} \\ \text{measurement circuit refer to right drawing.} \\ \text{C: Capacitance } (\mu\text{F}) \\ \text{V: Rated DC working voltage (V)} \end{array}$
3	Dissipation factor	<condition> Nominal capacitance, for measuring frequency, voltage and temperature.<criteria> Must be within the parameters (See page 3)</criteria></condition>

	ITEM			PERFO	RMANCI	E		
4	Impedance	<condition> Measuring frequency:100kHz; Measuring temperature:20±2°C Measuring point: 2mm max. from the surface of a sealing rubber on the lead wire. <criteria> (20°C) Must be within the parameters (See page 3)</criteria></condition>						
5	Load life test	<condition> According to IEC6038 Maximum operating te current for Rated life + exceed the rated work recovering time at atm <criteria> The characteristic shall Leakage current Capacitance Change Dissipation Factor Appearance</criteria></condition>	mperature = 48/0hours. ing voltage) ospheric co meet the fo Not m Within	=2°C with (The sum) Then the onditions. The pollowing re- ore than the $\pm 20\%$ of pre than 20	DC bias v of DC and product sh The result equiremen the specific initial valu 20% of the	oltage plus d ripple pea nould be tes should mee ts. d value.	the rated rij k voltage sl ted after 16 the follow	pple nall not hours
6	Shelf life test	<condition> The capacitors are then stored with no voltage applied at a temperature of Maximum operatemperature±2°C for1000+48/0 hours. Following this period, the capacitors shall be remonstrated from the test chamber and be allowed to stabilized at room temperature for16 hours. mean leakage current <criteria> The characteristic shall meet the following requirements. Leakage current Not more than 200% of the specified value. Dissipation Factor Not more than 150% of the specified value. Appearance There shall be no leakage of electrolyte.</criteria></condition>						s shall be remove
7	Maximum permissible (ripple current, temperature coefficient)	Condition> The maximum permissil applied at maximum operation Table-3 The combined value of voltage and shall not rev Frequency Multipliers: Freq (Hz Rated Voltage(V) 200 Temperature Coefficient Temperature (D.C voltage verse voltage) 50 0.81	erature and the p				

	ITEM				PER	FORMA	NCE		
8	Terminal strength	<condition> Tensile strength of terminals Fixed the capacitor, applied force to the terminal in lead out direction for30-seconds. Bending strength of terminals. Fixed the capacitor, applied force to bent the terminal (1~4 mm from the rul 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds. Diameter of lead wire Tensile force N (kgf) 0.5mm and less 5 (0.51) 2.5 (0.25)</condition>						te rubber) for 90° within seconds.	
		<criteria></criteria>	0.6~0.8	mm .nges shall be		breakage		(0.51) ss at the te	erminal.
9	Temperature characteristics	<criteria> a. At +10 Dissipa The lea b. In step Dissipa The lea</criteria>	Testi Testi nce, DF, 5°C, cap. tion fact kage cur 5, capac tion fact kage cur C, Imped	or shall be wi	ce shall b ured at + thin the 1 1 shall no ed at +20 thin the 1 more tha	Time to Time to Time to Time to e measure 20°C shall imit of Ite t more that i°C shall t imit of Ite n the spece	1 be within = cm 7.3 an 10 times be within ± 1 cm 7.3 cified value.	al equilib al equilib al equilib al equilib al equilib al equilib ±25% of i of its spec 0% of its	orium orium orium orium its original value. cified value. original value.
10	Surge test	series for 30: 1000 times. ' before measu CR : Nomin <criteria></criteria> Leakage of Capacitan Dissipation Appearan Attention:	ed a surg ±5 secon Then the trement nal Capac <u>urrent</u> <u>ce Chan</u> <u>n Factor</u> ce imulates	ds in every 5± capacitors sha citance (μF) ge Wit Not The over voltage	$\frac{10.5 \text{ minu}}{100000000000000000000000000000000000$	an the spectrum th	-35°C.Proce rmal humidi ccified value l value. ccified value cage of elect	dure shall ity for 1-2	

ITEM		PERFORMANCE							
		Acc	lition> perature cycle: ording to IEC60384-4 No ording as below:	.4.7 methods, capacitor	shall be placed in an over	n, the condition			
				nperature	Time				
			(1) +20°C		3 Minutes				
	Change of		(2) Rated low temperatu	are (-25°C)	30±2 Minutes				
11	temperature test		(3) Rated high temperat	ure (+105°C)	30±2 Minutes				
			(1) to (3) =1 cycle, total	5 cycle					
		<criter The</criter 	ria> characteristic shall meet t						
			Leakage current	Not more than the sp					
			Dissipation Factor	Not more than the sp	pecified value.				
			Appearance	There shall be no lea	kage of electrolyte.				
			ording to IEC60384-4 No.	4.12 methods canacito	rchall				
12	Damp heat	40±2		an atmosphere of 90~5 nge shall meet the follo	95%R H .at wing requirement.				
12	Damp heat test	40±2	2°C, the characteristic cha ria> Leakage current	n an atmosphere of 90~9 nge shall meet the follo Not more than the spec	95%R H .at wing requirement. cified value.				
12	heat	40±2 < Criter []	2°C, the characteristic cha ria> Leakage current Capacitance Change	n an atmosphere of 90~5 nge shall meet the follo Not more than the spec Within ±10% of initial	95%R H .at wing requirement. cified value.				
12	heat	40±2 < Criter []	2°C, the characteristic cha ria> Leakage current Capacitance Change Dissipation Factor	h an atmosphere of $90 \sim 9$ nge shall meet the follo Not more than the spec Within $\pm 10\%$ of initial Not more than 120% c	95%R H .at wing requirement. cified value. value. f the specified value.				
12	heat	40±2 < Criter []	2°C, the characteristic cha ria> Leakage current Capacitance Change	n an atmosphere of 90~5 nge shall meet the follo Not more than the spec Within ±10% of initial	95%R H .at wing requirement. cified value. value. f the specified value.				
12	heat	40±2 <criter I C I A C C I A C C I A C D I D I D I D I D I D</criter 	2°C, the characteristic cha ria> Leakage current Capacitance Change Dissipation Factor Appearance lition> capacitor shall be tested u lering temperature : 245 ping depth : 2m ping speed : 255 ping time : 3±0	n an atmosphere of 90~5 nge shall meet the follo Not more than the spec Within ±10% of initial Not more than 120% of There shall be no leaks under the following cond 5 ±5°C m ±2.5mm/s	95%R H .at wing requirement. cified value. value. of the specified value. age of electrolyte.				
	heat test Solderabilit	40±2 < Criter I C I A C C I A C C I A C C I D D D D D D D D D D D D D	2°C, the characteristic cha ria> Leakage current Capacitance Change Dissipation Factor Appearance lition> capacitor shall be tested u lering temperature : 245 ping depth : 2m ping speed : 255 ping time : 3±0	n an atmosphere of 90~5 nge shall meet the follo Not more than the spec Within ±10% of initial Not more than 120% of There shall be no leaks under the following cond 5 ±5°C m ±2.5mm/s	95%R H .at wing requirement. cified value. value. of the specified value. age of electrolyte.				


	ITEM	PERFORMANCE						
14	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz each to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. 4mm or less Within 30°						
		<criteria> To be soldered After the test, the following items shall be tested: Inner construction Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.</criteria>						
	Resistance	Condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°Cfor10±1seconds or400±10°Cfor3 ⁻⁰ seconds to 1.5~2.0 mm from the body of capacitor. Then the capacitor shall be left under the normal temperature and normal humidity for 1~2 hours before measurement. Criteria>						
15	to solder heat	Leakage current Not more than the specified value.						
	test	Capacitance Change Within ±5% of initial value.						
		Dissipation Factor Not more than the specified value.						
		AppearanceThere shall be no leakage of electrolyte.						
16	Vent test	<condition> The following test only apply to those products with vent products at diameter ≥Ø6.3 with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a currer selected from Table 2 is applied. <table 2=""> Diameter (mm) DC Current (A) 22.4 or less 1</table></condition>						
		Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.						

8、 Packing Information

Packing Label Marked (the following items shall be marked on the label)
(Inside box or bag)
(1)Clint order number (2)Client part number (3)Beryl part number (4)Capacitance (5)Voltage (6)Dimension
(7)Packaging quantity (8)Capacitance tolerance (9) QC Marking (10) Lot number (11) Series

LOT Number :

year month date number

1) Bulk Packing:

BERYL	Zhao Qin	g Beryl Ele Ltd.	ctronic	c Technology Co.,
C.S.R:				
C.S.R P/C):			ROHS HE
C.S.R P/N	4:			
S.P.R P/N	1:			QC
SPEC:				
QTY:	PCS	TOL:	%	
L/N:		S.P.R:		3

2) Packaging quantity

Product size	Case/box	PCS/box
22Φ	84	840
25Φ	84	840
300*20~45	45	450
350*20~45	45	450
300+*50~90	45	270
354*50~90	45	270

3) The outer box and the inner Case size

外箱

* 内盒包装要求: 牛角朝上,每内盒装完后,须放一层锡箔纸或负箔,加垫一层垫板起放 电作用

9、 Prohibition to Use Environment- related Substances

We are hereby to certify the followings:

Our company hereby warrants and guarantees that all or part of products, including, but not limited to, the peripherals, accessories or package, delivered to your company (including your subsidiaries and affiliated companies) directly or indirectly by our company are free from any of the substances listed below.

-					
	Cadmium and cadmium compounds				
Accord with	Lead and lead compounds				
heavy metal	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Onconio chlorin	Polychlorinated naphthalenes (PCN)				
Organic chlorin compounds	Polychlorinated terphenyls (PCT)				
compounds	Chlorinated paraffins (CP)				
	Other chlorinated organic compounds				
Organic Polybrominated biphenyls (PBB)					
bromine	Polybrominated diphenylethers (PBDE)				
compounds	Other brominated organic compounds				
Tributyltin compo	bunds				
Triphenyltin com	pounds				
Asbestos					
Specific azo comp	pounds				
Formaldehyde					
Polyvinyl chlorid	e (PVC) and PVC blends				
F、Cl、Br、I					
REACH					

The latest version of <Substances Prohibited as per RoHS or <Sony-SS-00259>