Scope

The present specifications shall apply to a 3 phase brushless motor driver IC, SI-6633M. The present specifications shall apply to SI-6633M which is performed RoHS instructions.

Outline

Туре	Monolithic integrated circuit
Structure	Plastic molded (transfer mold)
Applications	3 phase brushless motor driver (Trapezoidal Current Control.)

Absolute maximum ratings

maximum ratings			<u> </u>	
Items	Symbol	Condition	Limit	Unit
Power supply voltage	V _{BB}		38	V
Output voltage	V _{OUT}		V _{BB}	V
Output current ^(※)	I _{OUT(Ave)}		±2	А
Output current	I _{OUT(Peak)}	tw<500msec/Duty<10%	±4	А
Logic input voltage	V _{IN(Logic)}		-0.3~5.5	V
Analog voltage	V _{IN(Analog)}		-0.3~6	V
Sense voltage	V _{SENSE}	KO'	±0.5	V
Power dissipation	PD	SK evaluation board	2.9	W
Junction temperature	TJ		150	S°
Storage temperature	T _{stg}		-40~150	S°
Ambient temperature	T _A		-20~85	S°

Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, do not exceed the specified junction temperature (T_i) .

Peak current is guaranteed by design.

Lot Re

Recommendable Operating Range

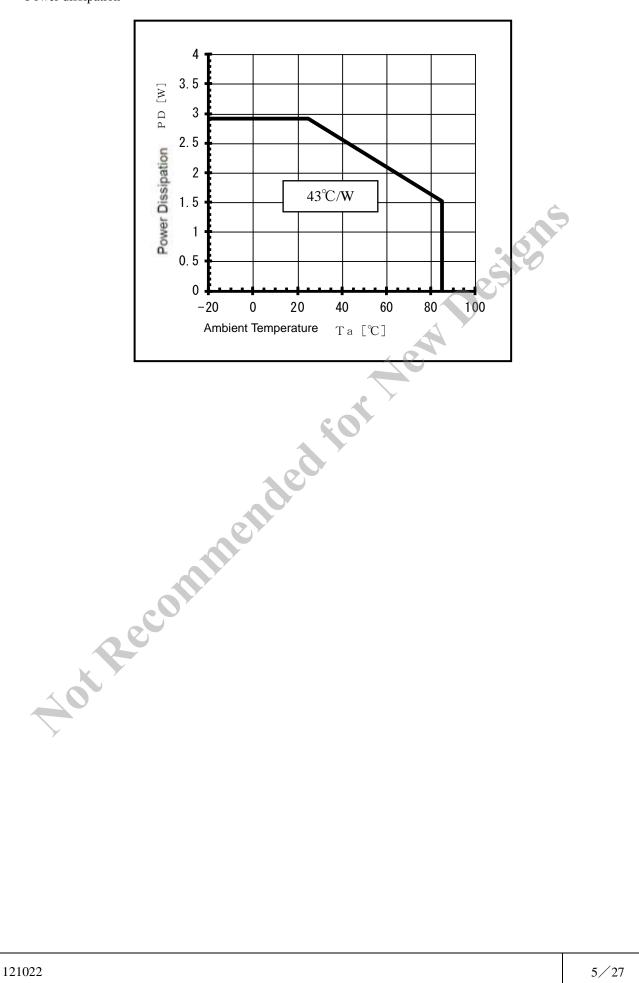
Item	Symbol	Limit	Unit	Remark
Power supply voltage	V_{BB}	10 to 30	V	Normal operation
Logic input voltage	V _{IN(Logic)}	0 to 5.5	V	
Analog input voltage	V _{IN(Analog)}	0 to 5.5	V	Except for Ref pin
Ref input voltage	V_{Ref}	0.5 to 5.5	V	Current accuracy is going down under 0.5V.
Sense voltage	V_{SEN}	±0.5	V	
Package temperature	T _C	105	С°	
Ambient temperature	T _A	-20 to 85	D°	è

Especially, care should be taken with output current on condition over recommendation range and below absolute max rating. In this case, enough evaluation is needed with thermal design data below and application note to avoid the device being over absolute max rating for other item.

Electrical Characteristic $(T_a=25^{\circ}C, V_{BB}=24V, V_{DD}=5V, Unless Otherwise Noted.)$

	Limit						
Item	Symbol	Min. Typ.		Max.	Unit	Condition	
Power supply voltage range	V _{BB}	10	-	V _{BBOV}	V	Motor operation	
Charge pump voltage	V _{CP}	6	7.5	9	V	Output disable, V	CP-VBB voltage
Charge pump frequency	f _{CP}	90	120	150	kHz		
	I _{BB}	5	10	15	mA	Output disable	N 20M
Power supply current	I _{BBSTBY}	-	100	500	μΑ	V _{STBY} =2.5V	V _{BB} =38V
Outrast lasts summer	I _{OLKL}	-200	-100	-50	μΑ	V _{BB} =38V, V _{OUT} =	=0V
Output leak current	I _{OLKH}	50	100	200	μΑ	$V_{BB} = V_{OUT} = 38V$	
MOSFET ON resistance	R _{DS(on)}	0.1	0.2	0.3	Ω	I _{DS} =2.0A、S pin connected to GNI	
Body diode forward voltage	V _{SD}	0.8	1.1	1.4	V	I _{SD} =2.0A	
	V _{STBYL}	0	-	0.8	V		0
STBY pin input voltage	V _{STBYH}	2.5	-	V _{DD}	V	S	
	ΔV_{STBY}	0.1	0.25	0.4	V	Hysteresis	
CTDV nin input ourset	I _{STBYL}	0	±1	±10	μΑ		
STBY pin input current	I _{STBYH}	20	50	100	μA	V _{STBY} =5V	
	V _{INPL}	0	-	0.8	V		
Logic input voltage	V _{INPH}	3.5	-	V _{DD}	V		Enable, Brake,
	ΔV_{INP}	1	1.5	2	V	Hysteresis	Dir、SRMD、
T :- :	I _{INPL}	0	±1	±10	μΑ	V _{IN} =0V	Decay、PWM
Logic input current	I _{INPH}	0	±1	±10	μΑ	V _{IN} =5.5V	
REF pin input current	I _{REF}	-5	-0.5	1	μΑ	V _{REF} =0 to 5.5V	
REF pin input current	V _{REF}	0.5	-	5.5	V		
SEN pin input current	I _{SEN}	0	±2.5	±10	μΑ	$V_{SEN}=0$ to $0.5V$	
Current sensing divider ratio	V_{SEN}/V_{REF}	-10	-	10	%	V_{REF} =5.5V	
Current sensing filter time	t _{LPFSEN}	0.6	1.8	3	μs		
CPWM pin threshold voltage	V _{CPWML}	1.1	1.5	1.9	V		
Cr www.piiruireshold.vonage	V _{CPWMH}	3	3.5	4	V		
CPWM pin frequency	f _{CPWM}	15	25	35	kHz	C _{PWM} =1000pF	
CLD pin frequency	f _{CLD}	54	64	74	Hz	$C_{LD}=0.1 \mu F$	
Power supply voltage range	V _{BB}	10	-	V _{BBOV}	V	Motor operation	
Charge pump voltage	V _{CP}	6	7.5	9	V	Output disable, Vo	CP-VBB voltage
Charge pump frequency	f _{CP}	90	120	150	kHz		
AIN pin input current	I _{AIN}	-1	-0.5	1	μΑ	AINP、 AINN pin	, $V_{AIN}=0$ to 5.5V
	V _{AOENA}	-	1.2	V _{CPWML}	V	AOUT pin voltage	
AOUT pin threshold voltage	V _{AOENAhys}	0.05	0.1	0.15	V	Hysteresis	Guaranteed by design
AOUT pin max output voltage	V _{AOUTH}	V _{CPWMH}	4	4.45	V	Output PWM open	rating
AOUT pin input voltage range	V _{AOUTEI}	4.5	-	5.5	V	Output 100% ON	
AOUT pin max output current	I _{AOUT}	7.5	-	-	mA	V _{AOUT} =0V	
AOUT pin pull-down resistance	R _{AOUT}	25	32.5	40	kΩ	V _{AOUT} =2.5V	
FLAG pin output voltage	V _{FLAG(ON)}	0.1	0.2	0.5	V	I _{FLAG} =2mA	FLAG
FLAG pin leak current	I _{FLAG(OFF)}	0	-	20	μΑ	V _{FLAG} =5.5V	1 1/10
FG pin output voltage	V _{FG(ON)}	0.1	0.2	0.5	V	I _{FG} =2mA	FG
FG pin leak current	I _{FG(OFF)}	0	-	20	μΑ	V _{FG} =5.5V	10

• Typ data is for reference only.


• Negative current is defined as coming out of the specified pin.

Electrical Characteristic(continued) ($T_a=25^{\circ}C, V_{BB}=24V, V_{DD}=5V$, Unless Otherwise Noted.)

T4	Course la sel		Limit		TT	Condition	
Item	Symbol	Min.	Тур.	Max.	Unit	Cor	lation
VBB under voltage lock out	V _{BBUVH}	7	7.5	9	V	VBB rising	$V_{CP} = V_{BB} + 7V$
V DD under vonage lock out	V _{BBUVhys}	0.1	0.3	0.5	V	Hysteresis	• _{CP} - • _{BB} +7 •
Over voltage threshold	V _{BBOV}	34	35	37.5	V	VBB rising	Stop operation
Over voltage uneshold	V _{BBOVhys}	1.5	2	2.5	V	Hysteresis	Stop operation
Over current detect voltage	V _{OCPLS}	1	1.3	1.5	V	OUT-GND voltag	e, Low side detect
Over current detect voltage	V _{OCPHS}	0.7	1.0	1.3	V	VBB-OUT voltage	e, High side detect
Over current filter time	t _{LPFOC}	-	0.6	t _{LPFSEN}	μs		
Thermal shutdown	T _{TSD}	150	165	-	°C	Temperature rising	
Thermal shutdown	ΔT_{TSD}	-	50	-	°C	Hysteresis	Guaranteed by
Thermal alarm	T _{TA}	-	120	-	°C	Temperature rising	g design
	ΔT_{TA}	-	10	-	°C	Hysteresis	
	t _{PDON}	-	2.3	-	μs	HALL input to out	tput ON
Dropagation dalay	t _{PDOFF}	-	2.1	-	μs	HALL input to out	tput OFF
Propagation delay	t _{PDPWMON}	-	1.1	-	μs	PWM input to out	put ON
	t _{PDPWMOFF}	-	0.9	-	μs	PWM input to out	put OFF
Dead time	t _{DEAD}	100	300	800	ns		
Hall input current	I _{HALL}	-2	-0.5	1	μA	$V_{IN}\!\!=\!\!0.2$ to $4.2V$	
Common mode voltage range	V _{CMR}	0.2	-	3.5	V		
AC input voltage range	V _{HALL}	60	-		mV		
Hysteresis	V _{HYS}	-	20	V _{HALL}	mV	Guaranteed by des	ign
Pulse reject filter	t _{pulse}	1	2	3	μs		

Typ data is for reference only. Negative current is defined as coming out of the specified pin. s ou Recommended

Power dissipation

Excitation control input (Hall and Logic input)

	Truth table							
				0	utput statu	IS		
Status			Input		DIR=H (L))		
	HallU ^{*1}	HallV ^{*1}	HallW ^{%1}	Enable	Brake	OUTU	OUTV	OUTW
F1	+	-	+	L	Н	H (L)	L (H)	Z
F2	+	-	-	L	Н	H (L)	Z	L (H)
F3	+	+	-	L	Н	Z	H (L)	L (H)
F4	-	+	-	L	Н	L (H)	H (L)	Z
F5	-	+	+	L	Н	L (H)	Z	H (L)
F6	-	-	+	L	Н	Z	L (H)	H (L)
Error	-	-	-	Х	Н	Z	Z	Z
Error	+	+	+	Х	Н	Z	Z	Ż
Brake	Х	Х	Х	L	L	L	L V	Ĺ
Disable ^{%2}	Х	Х	Х	Н	Х	Z	Z	Z
			*	•1 HallU	HallV H	allW · ∕+	'=H+>H-	'_'=H+<

%1 HallU、HallV、HallW : '+'=H+>H- 、'-'=H+<H-%2 There are conditions for the device to be disable

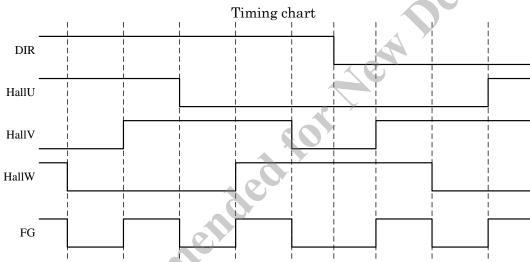
- HallU, HallV and HallW are internal logic signal made from HU+, HU-, HV+, HV-, HW+ and HW-
- Refer to "10.12 Enable and Brake" for disable operation

Stand-By pin

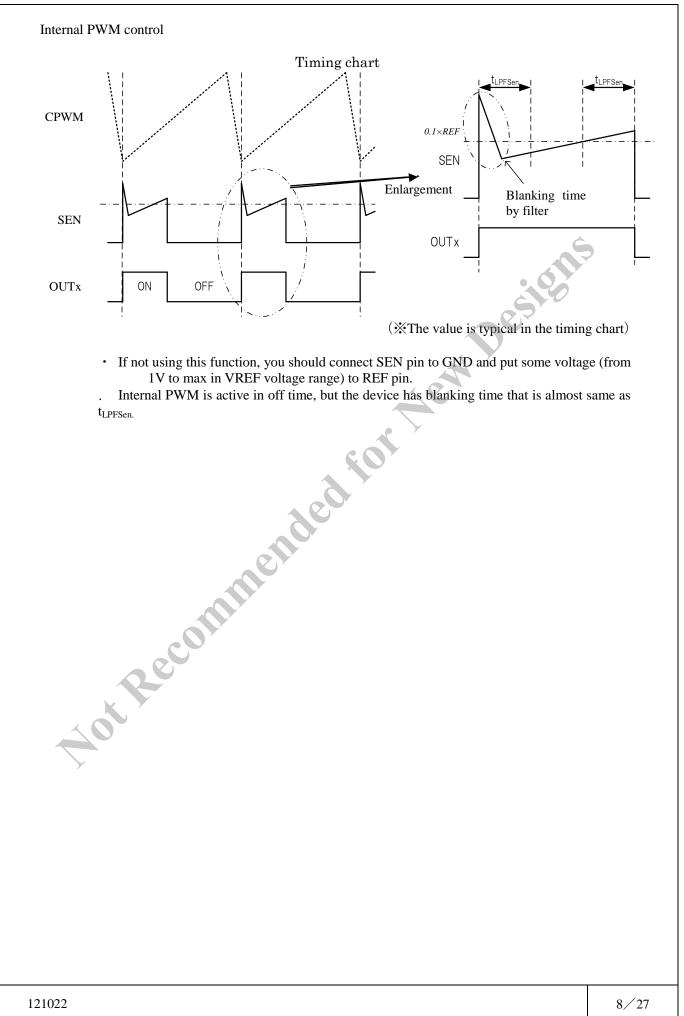
	Truth table	
STBY	Status	
L	Operation mode	
Н	Stand-By mode	

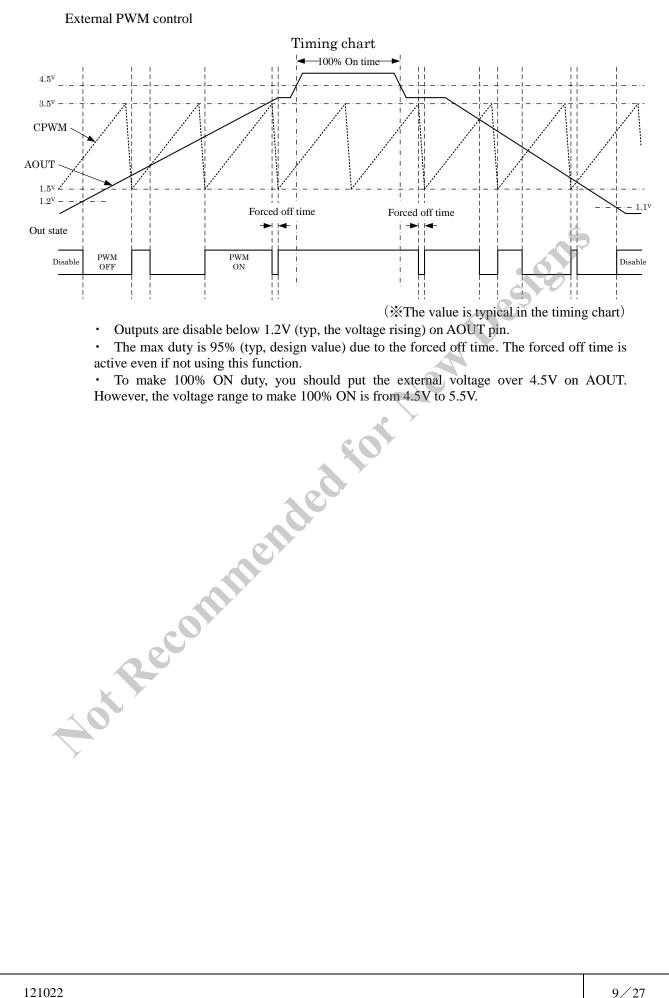
In stand-by mode, some internal circuits are shut down with bias current being cut.

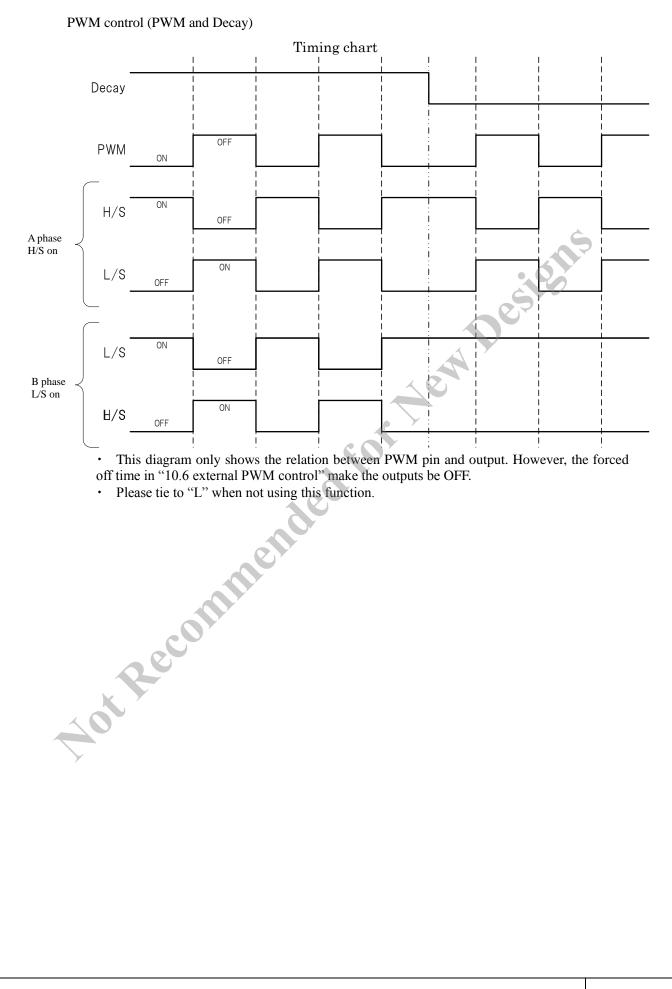
FLAG output


Truth table

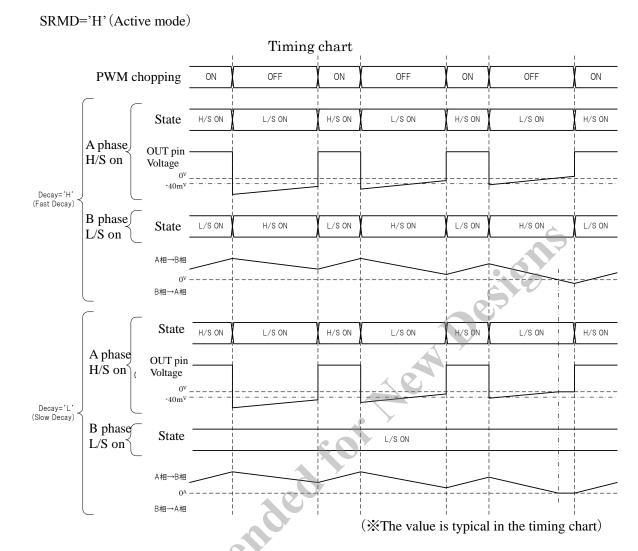
Status	Fault
Normal	Output OFF (High impedance)
Fault	L


Below are the fault conditions.


- ① Under voltage lock out for VBB (internal regulator)
- ② Under voltage lock out for charge pump
- ③ Overvoltage
- ④ Thermal alarm
- \bigcirc t_{OFFOCP} after over current detection
- 6 Lock detection
- Please take care for FLAG output due to the internal circuit may not be fixed with VBB being low.

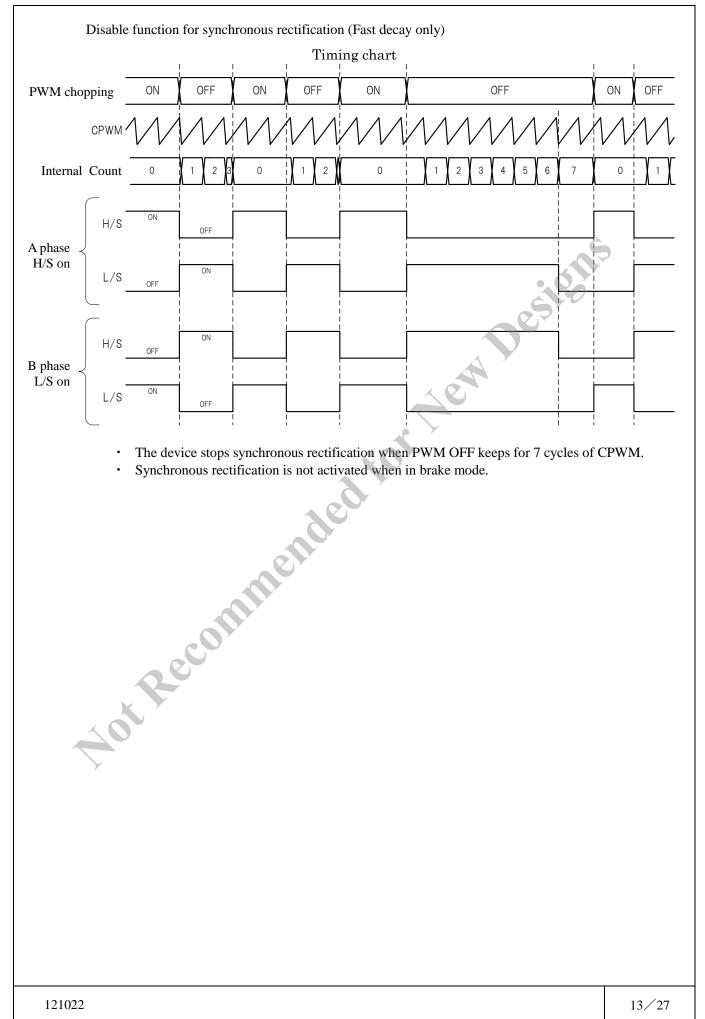


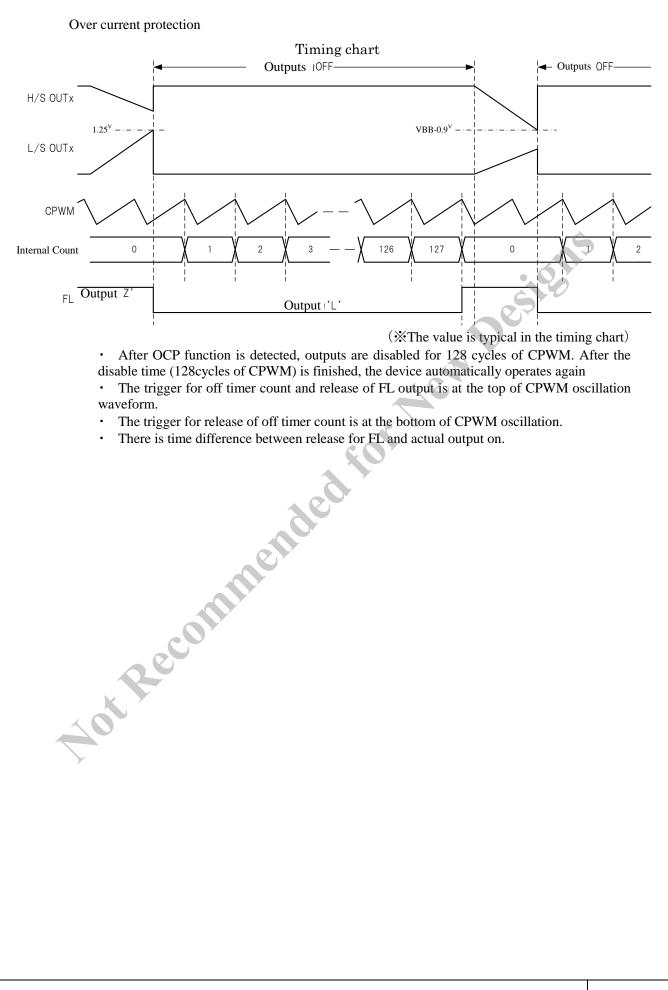
- Refer to "10.1 Hall and Logic input" on HalU, HallV and HallW
- FG is toggled by each phase changed



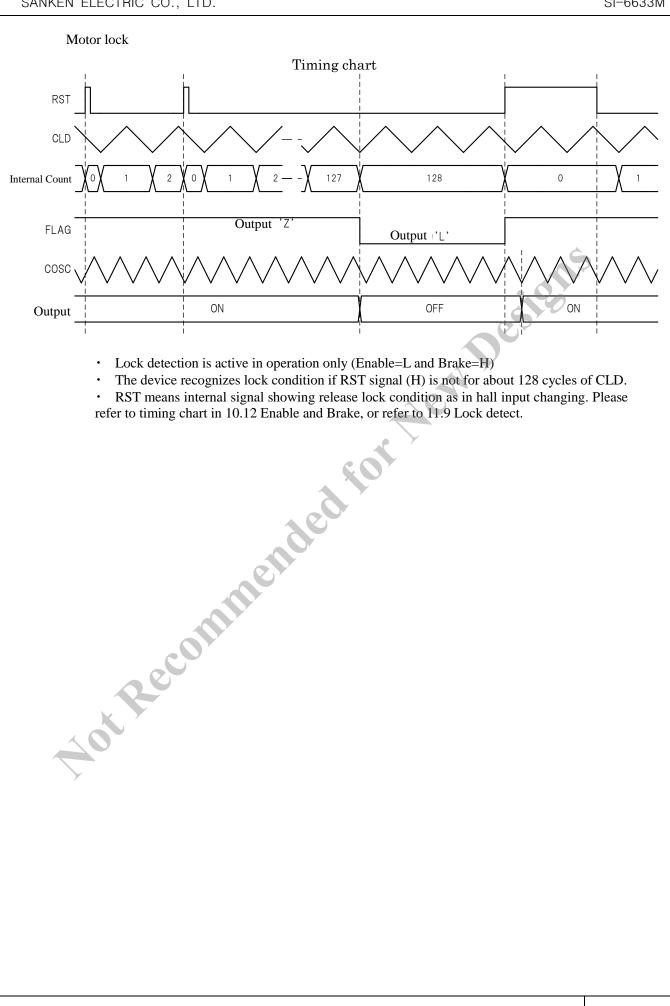
SRMI	D='L' (pas	sive mode)								
			1	Timin	g chart			1	I		
	PWM c	hopping	ON	OFF	ON	OFF		ON	<u>×</u>	OFF	0
	(H/S ON	L/S ON	H/S ON	L/S ON	OFF	H/S ON	L/S	OFF	ү н∕s
	A phase	State		L/ 3 0N		L/ 3 0N	A			GIT	
	H/S on	OUT pin Voltage					 				
		-40m ^v						J 		S	
	B phase L/S on		L/S ON	H/S ON	L/S ON	H/S ON	OFF	L/S ON	H/S ON	OFF	L/S
Decay='H' ast Decay)	A phase	$e \rightarrow B$ phase .					<u> </u>		R		
	B phas	e→A phase					Á			i	
	B phase L/S on	– State				L/S ON		 			
Decay='L' low Decay)		– →B phase									
	B phase	e→A phase						 			
	C		I	3		The va	i alue is	typical	in th	e timing o	hart)
,	where low	side is ON	V, is over	-40mV (typ,	, room ten	ıp).					
		200	Y								
	K, Y										
4	S. Y										
4											
Ż	5										
Ż	5	side is ON									
Ż	5										
	5										

11/27

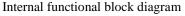

• Synchronous rectification is active in PWM OFF (current recirculation) without monitor on OUT pin.

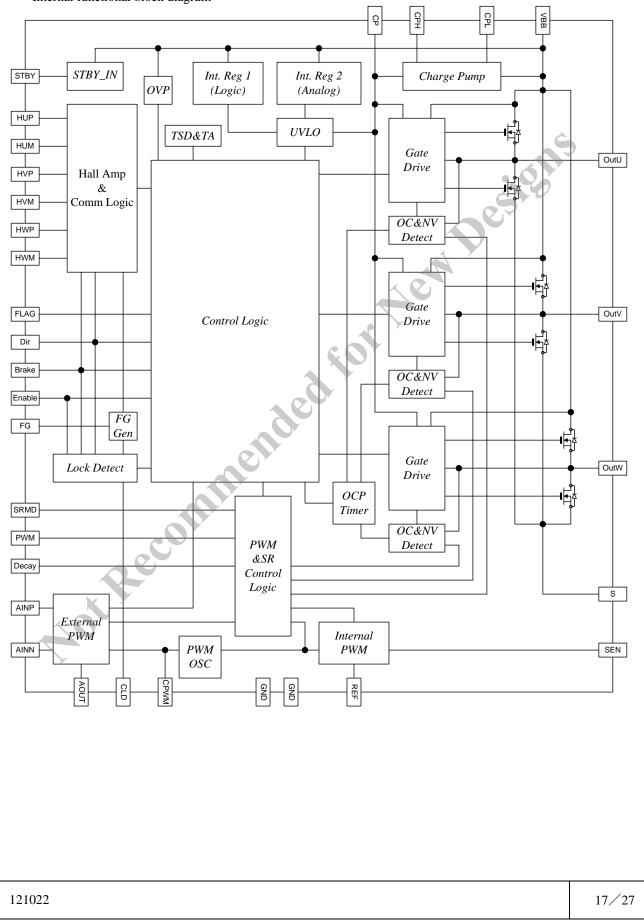

• In this mode, since the excitation mode is not changed even if current recirculation is finished, the condition of the device is below.

Slow Decay: Same as short brake

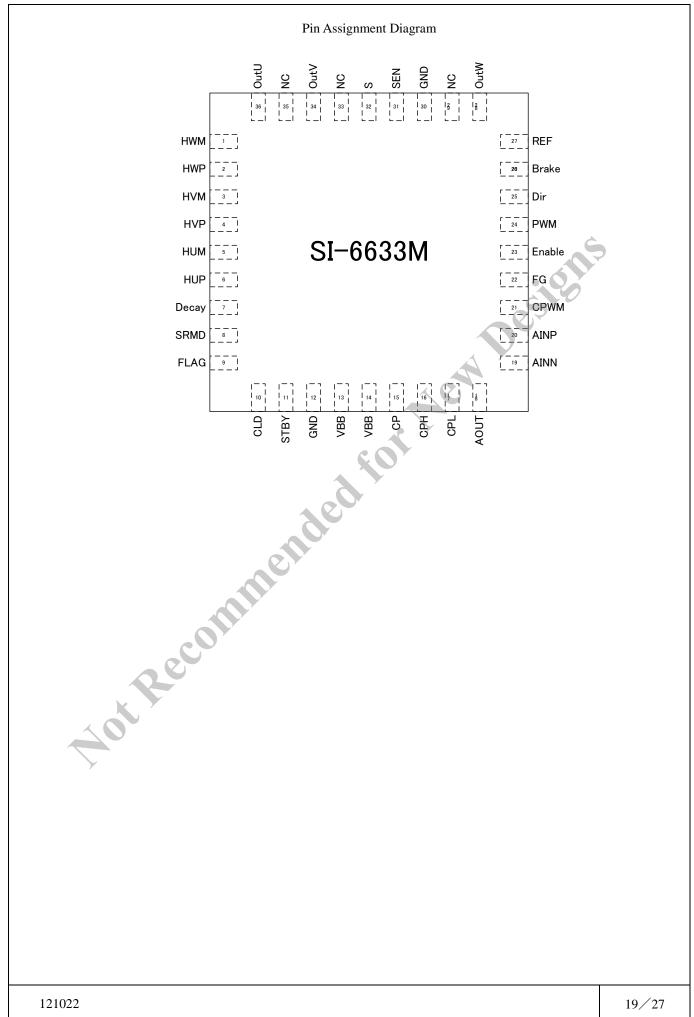

➢ Fast Decay: Reverse current starts to flow.

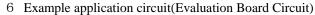
• In the application where not using internal PWM with fast decay, the device gets OCP protection with long term of synchronous rectification due to the reverse current get large.

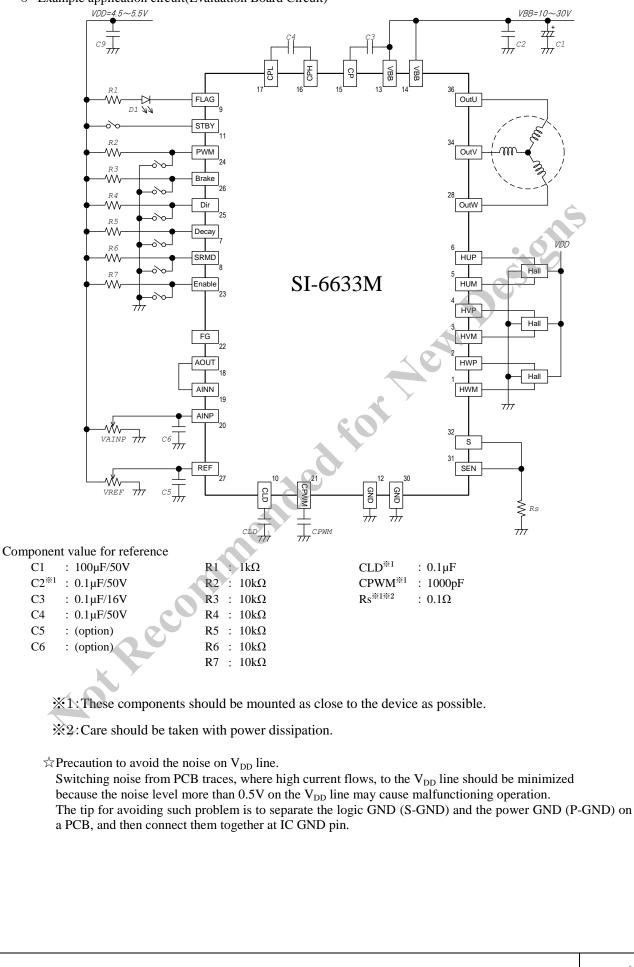



14/27

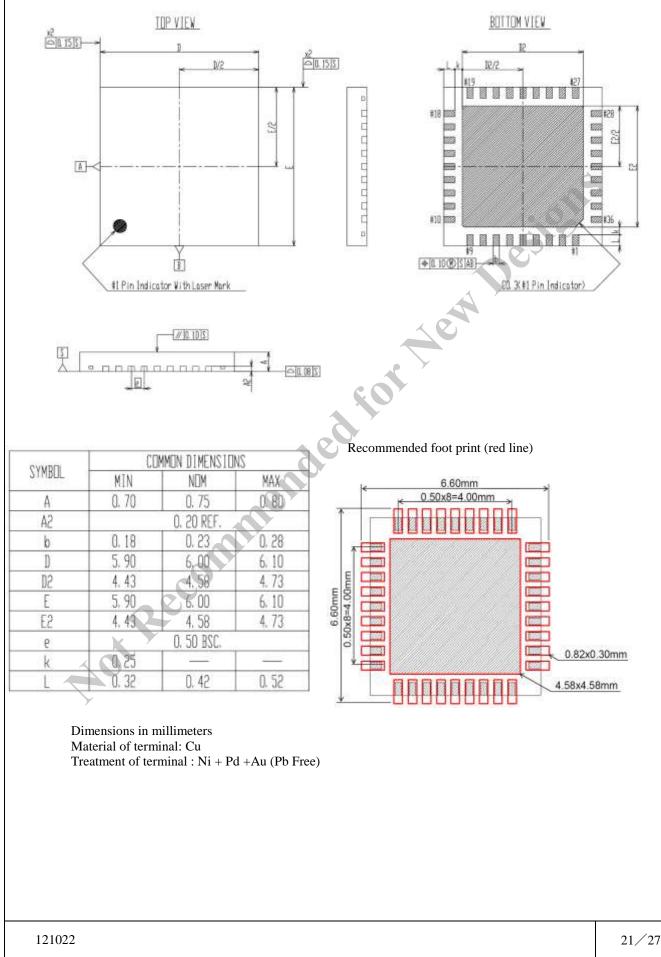
5 Block diagram (Connection diagram)






Din Assignment	(Tarminal	Eurotions)
Pin Assignment	(I CI IIIII ai	runctions)

N⁰	Pin name	Function				
1	HWM	Hall input W-				
2	HWP	Hall input W+				
3	HVM	Hall input V-				
4	HVP	Hall input V+				
5	HUM	Hall input U-				
6	HUP	Hall input U+				
7	Decay	Select for decay mode				
8	SRMD	Select for synchronous rectification				
9	FLAG	Output for protection detected				
10	CLD	Setting for lock detection timer				
11	STBY	Stand-by input				
12	GND	Ground				
13	VBB	Motor power supply				
14	VBB	Motor power supply				
15	СР	Reservoir pin for charge pump				
16	СРН	Pumping for charge pump - High				
17	CPL	Pumping for charge pump - Low				
18	AOUT	Amplifier output and 100% ON input				
19	AINN	Minus pin for amplifier input				
20	AINP	Plus pin for amplifier input				
21	CPWM	Setting pin for PWM frequency				
22	FG	Output for FG signal				
23	Enable	Reset for lock counter and Enable input				
24	PWM	External PWM control input				
25	Dir	Direction input				
26	Brake	Brake input				
27	REF	Analog input for internal PWM current control				
28	OutW	Output for W phase				
29	N.C.	No Connection				
30	GND	Ground				
31	SEN	Current sensing input				
32	S	Source pin				
33	N.C.	No Connection				
34	OutV	Output for V phase				
35	N.C.	No Connection				
36	OutU	Output for U phase				


XTwo GND pins should be connected together to ground line on PCB, two VBB pins should be connected together to VBB line.

- 7 Package information
- 7-1 Package type, physical dimensions and recommendation foot print

• 7-2 Appearance

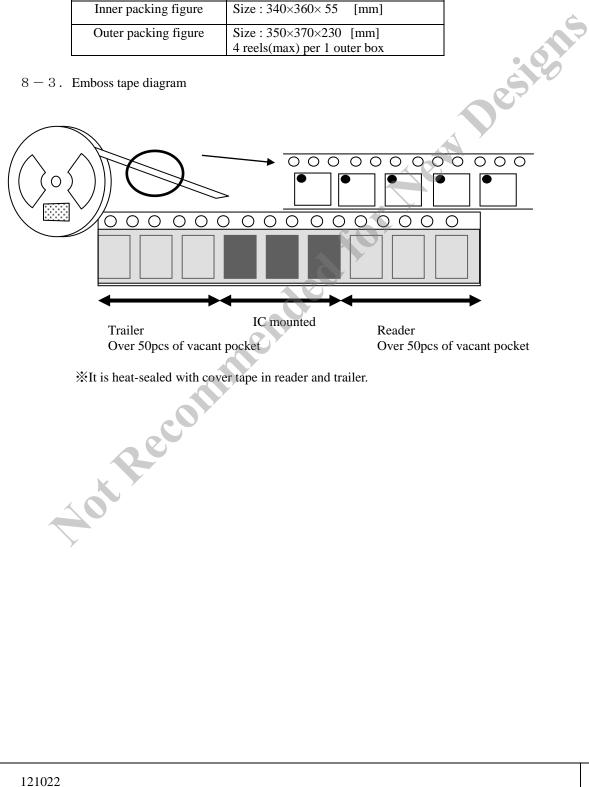
The body shall be clean and shall not bear any stain, rust or flaw.

7-3 Marking

•

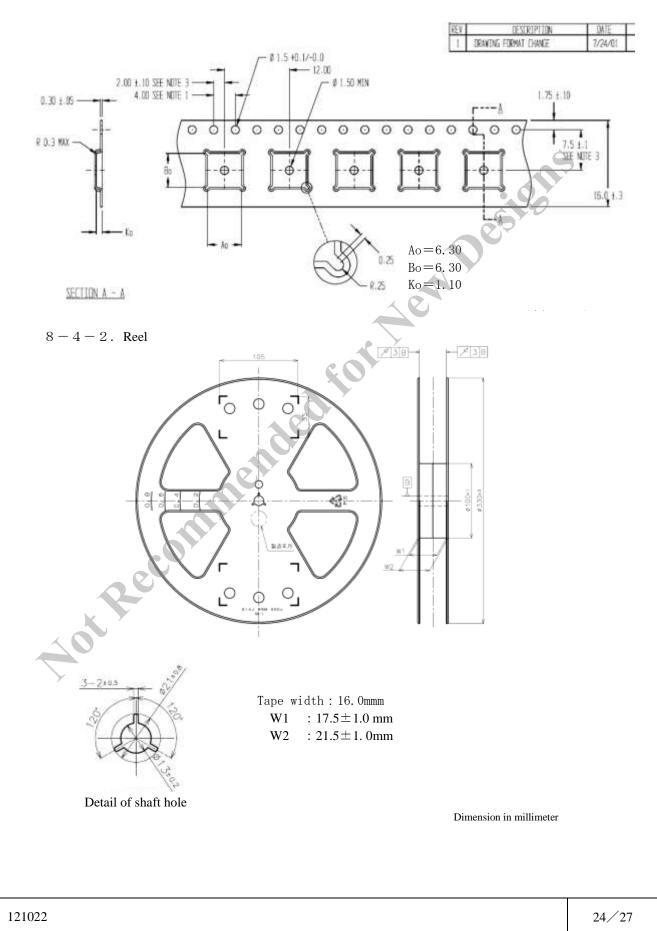
•

- The type number and lot number shall be clearly marked by laser so that cannot be erased easily.
- 7-4 Blanding


- 8 Packing specifications
- 8-1. Container/Material/The number of parts per reel

Container is taping. the number of parts is 2500pcs per reel. Remainder is packed with combination with next lot.

8-2. The material of taping


Material	
Emboss tape	The width of tape : 16mm
Reel	φ330 [mm]
laminate bag	Size : 0.075×380× 450 [mm]
Inner packing figure	Size : 340×360× 55 [mm]
Outer packing figure	Size : 350×370×230 [mm]
	4 reels(max) per 1 outer box

8-3. Emboss tape diagram

8-4. Dimension, material and diagram

8-4-1. Emboss tape

61426-01

 $\cdot 8 - 5$ Storage condition

Storage environment is below.
 Temperature: 5 degrees-30 degrees
 Humidity: 90% or below
 Storage limitation is within 12month from packing date

2. If the above storage condition (8-5.1) is expired, the device is needed to have baking with 125 dgerees for 20 hours. Also, Tape and reel are not guaranteed with the temperature and time condition. voit If the device should be baked, it is needed to use container with "heatproof" or temperture to cover baking condition. And the container is needed to have static electricity control.

9 Cautions and warnings

Logic inputs/output (PWM, Dir, Decay, SRMD, FG, FL, Break, Enable, STBY)

- Be sure to prevent the logic inputs(PWM, Dir, Decay, SRMD, Break, Enable, STBY) from being "OPEN". If some of the logic inputs are not used, be sure to connect them to VDD or GND.
 ※In case some of the logic inputs stay "OPEN", a malfunction may occur due to external noises.
- When the logic output(FG, FL) is not used, be sure to keep it "OPEN" or Gnd. %In case it is connected to VDD, it may cause the device's deterioration or/and breakdown.

About the protection circuit operation

This product has Two protection circuits (motor coil short-circuit and overheating). These protection circuits work with detecting the thing that excessive energy joins the driver. Therefore, it is not possible to protect it when the energy caused by the motor coil short-circuit is outside the tolerance of the driver.

Notice

This driver has MOS inputs. Please notice as following contents.

- When static electricity is a problem, care should be taken to properly control the room humidity. This is particularly true in the winter when static electricity is most troublesome.
- Care should be taken with device leads and with assembly sequencing to avoid applying static charges to IC leads. PC board pins should be shorted together to keep them at the same potential to avoid this kind of trouble.

10. other

- Application and operation examples described in this document are quoted for the sole purpose of reference for the use of the products herein and Sanken can assume no responsibility for any infringement of industrial property rights, intellectual property rights or any other rights of Sanken or any third party which may result from its use.
- Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of
 semiconductor products at a certain rate is inevitable. Users of Sanken products are requested to take, at their own risk,
 preventative measures including safety design of the equipment or systems against any possible injury, death, fires or damages to
 the society due to device failure or malfunction.
- Sanken products listed in this document are designed and intended for the use as components in general purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Please return to us this document with your signature(s) or seal(s) prior to the use of the products herein. When considering the use of Sanken products in the applications where higher reliability is required (transportation equipment and its control systems, traffic signal control systems or equipment, fire/crime alarm systems, various safety devices, etc.), please contact your nearest Sanken sales representative to discuss, and then return to us this document with your signature(s) or seal(s) prior to the use of the products herein.

The use of Sanken products without the written consent of Sanken in the applications where extremely high reliability is required (aerospace equipment, nuclear power control systems, life support systems, etc.) is strictly prohibited.

• In the case that you use our semiconductor devices or design your products by using our semiconductor devices, the reliability largely depends on the degree of derating to be made to the rated values. Derating may be interpreted as a case that an operation range is set by derating the load from each rated value or surge voltage or noise is considered for derating in order to assure or improve the reliability. In general, derating factors include electric stresses such as electric voltage, electric current, electric power etc., environmental stresses such as ambient temperature, humidity etc. and thermal stress caused due to self-heating of semiconductor devices. For these stresses, instantaneous values, maximum values and minimum values must be taken into consideration.

In addition, it should be noted that since power devices or IC's including power devices have large self-heating value, the degree of derating of junction temperature (Tj) affects the reliability significantly.

- When using the products specified herein by either (i) combining other products or materials therewith or (ii) physically, chemically or otherwise processing or treating the products, please duly consider all possible risks that may result from all such uses in advance and proceed therewith at your own responsibility.
- Anti radioactive ray design is not considered for the products listed herein.
- Sanken assumes no responsibility for any troubles, such as dropping products caused during transportation out of Sanken's distribution network.

27/27