OptiMOS ${ }^{\text {TM }}$-T Power-Transistor

Product Summary

V_{DS}	120	V
$R_{\mathrm{DS} \text { (on), max }}$	31	$\mathrm{~m} \Omega$
I_{D}	30	A

Features

- OptiMOS ${ }^{\text {TM }}$ - power MOSFET for automotive applications
- N -channel - Enhancement mode
- Automotive AEC Q101 qualified
- MSL1 up to $260^{\circ} \mathrm{C}$ peak reflow
- $175^{\circ} \mathrm{C}$ operating temperature

PG-TO252-3-11

- RoHS compliant
- 100\% Avalanche tested

Type	Package	Marking
IPD30N12S3L-31	PG-TO252-3-11	3N12L31

Maximum ratings, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I_{D}	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}, V_{\mathrm{GS}}=10 \mathrm{~V}$	30	A
		$T_{\mathrm{C}}=100^{\circ} \mathrm{C}, V_{\mathrm{GS}}=10 \mathrm{~V}^{1)}$	20	
Pulsed drain current ${ }^{1)}$		$I_{\mathrm{D}, \text { pulse }}$	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	120
Avalanche energy, single pulse ${ }^{1)}$	E_{AS}	$I_{\mathrm{D}}=15 \mathrm{~A}$	138	mJ
Avalanche current, single pulse	$I_{\text {AS }}$	-	30	A
Gate source voltage ${ }^{3)}$	V_{GS}	-	± 20	V
Power dissipation	$P_{\text {tot }}$	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	57	W
Operating and storage temperature	$T_{\mathrm{j}}, T_{\text {stg }}$	-	$-55 \ldots+175$	${ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions			Values			Unit
			min.	typ.	max.			

Thermal characteristics ${ }^{1)}$

Thermal resistance, junction - case	$R_{\text {thJc }}$	-	-	-	2.6
SMD version, device on PCB	$R_{\text {thJA }}$	minimal footprint	-	-	62
			$6 \mathrm{~cm}^{2}$ cooling area $\left.^{2}\right)$	-	-

Electrical characteristics, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(\mathrm{Br}) \mathrm{DSS}}$	$V_{G S}=0 \mathrm{~V}, I_{\mathrm{D}}=1 \mathrm{~mA}$	120	-	-	V
Gate threshold voltage	$V_{\text {GS(th) }}$	$V_{\text {DS }}=V_{\text {GS }}, I_{\text {D }}=29 \mu \mathrm{~A}$	1.2	1.7	2.4	
Zero gate voltage drain current	$I_{\text {Dss }}$	$\begin{aligned} & V_{\mathrm{DS}}=120 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.01	0.1	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\mathrm{DS}}=120 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=125^{\circ} \mathrm{C}^{1)} \end{aligned}$	-	1	10	
Gate-source leakage current	$I_{\text {GSS }}$	$V_{\text {GS }}=20 \mathrm{~V}, V_{\text {DS }}=0 \mathrm{~V}$	-	-	100	nA
Drain-source on-state resistance	$R_{\text {DS(on) }}$	$V_{G S}=4.5 \mathrm{~V}, I_{\text {D }}=30 \mathrm{~A}$	-	32	42	$\mathrm{m} \Omega$
		$V_{G S}=10 \mathrm{~V}, I_{\mathrm{D}}=30 \mathrm{~A}$	-	26	31	

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	

Dynamic characteristics ${ }^{1)}$

Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=25 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1520	1976	pF
Output capacitance	$C_{\text {oss }}$		-	380	494	
Reverse transfer capacitance	$\mathrm{C}_{\text {rss }}$		-	45	68	
Turn-on delay time	$t_{\text {d(on) }}$	$\begin{aligned} & V_{\mathrm{DD}}=20 \mathrm{~V}, V_{\mathrm{GS}}=10 \mathrm{~V}, \\ & I_{\mathrm{D}}=30 \mathrm{~A}, R_{\mathrm{G}}=3.5 \Omega \end{aligned}$	-	6	-	ns
Rise time	t_{r}		-	4	-	
Turn-off delay time	$t_{\text {d(off) }}$		-	18	-	
Fall time	$t_{\text {f }}$		-	3	-	

Gate Charge Characteristics ${ }^{1)}$

Gate to source charge	$Q_{\text {gs }}$	$\begin{aligned} & V_{\mathrm{DD}}=96 \mathrm{~V}, I_{\mathrm{D}}=30 \mathrm{~A}, \\ & V_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$	-	5	7	nc
Gate to drain charge	Q_{gd}		-	4	6	
Gate charge total	Q_{g}		-	24	31	
Gate plateau voltage	$V_{\text {plateau }}$		-	3.7	-	V

Reverse Diode

Diode continous forward current ${ }^{11}$	1 s	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	30	A
Diode pulse current ${ }^{1)}$	$I_{\text {s,pulse }}$		-	-	120	
Diode forward voltage	$V_{\text {SD }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{F}}=30 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	0.6	1	1.2	V
Reverse recovery time ${ }^{1)}$	$t_{\text {rr }}$	$\begin{aligned} & V_{\mathrm{R}}=60 \mathrm{~V}, I_{\mathrm{F}}=I_{\mathrm{S}}, \\ & \mathrm{~d} i_{\mathrm{F}} / \mathrm{d} t=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	72	-	ns
Reverse recovery charge ${ }^{1)}$	$Q_{\text {Ir }}$		-	150	-	nC

${ }^{1)}$ Defined by design. Not subject to production test.
${ }^{\text {2) }}$ Device on $40 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ epoxy PCB FR4 with 6 cm 2 (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB is vertical in still air.
${ }^{3)}-5 \mathrm{~V}$ to -20V for max. 168 non-consecutive hours

1 Power dissipation
$P_{\text {tot }}=\mathrm{f}\left(T_{\mathrm{C}}\right) ; V_{\mathrm{GS}}=10 \mathrm{~V}$

3 Safe operating area
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{C}}=25^{\circ} \mathrm{C} ; D=0$
parameter: t_{p}

2 Drain current

$I_{\mathrm{D}}=\mathrm{f}\left(T_{\mathrm{C}}\right) ; V_{\mathrm{GS}}=10 \mathrm{~V}$

4 Max. transient thermal impedance
$Z_{\text {thJC }}=\mathrm{f}\left(t_{\mathrm{p}}\right)$
parameter: $D=t_{\mathrm{p}} / T$

5 Typ. output characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

7 Typ. transfer characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{GS}}\right) ; V_{\mathrm{DS}}=6 \mathrm{~V}$
parameter: T_{j}

6 Typ. drain-source on-state resistance
$R_{\text {DS(on) }}=\mathrm{f}\left(I_{\mathrm{D}}\right) ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

8 Typ. drain-source on-state resistance
$R_{\mathrm{DS}(\text { on })}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=30 \mathrm{~A} ; V_{\mathrm{GS}}=10 \mathrm{~V}$
$\alpha=0.4$

9 Typ. gate threshold voltage
$V_{\mathrm{GS}(\mathrm{th})}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; V_{\mathrm{GS}}=V_{\mathrm{DS}}$
parameter: I_{D}

10 Typ. capacitances
$C=\mathrm{f}\left(\mathrm{V}_{\mathrm{DS}}\right) ; V_{\mathrm{GS}}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

11 Typical forward diode characteristics
$I_{F}=f\left(V_{S D}\right)$
parameter: T_{j}

12 Typ. avalanche characteristics
$I_{\mathrm{AS}}=\mathrm{f}\left(t_{\mathrm{AV}}\right)$
parameter: $T_{\mathrm{j} \text { (start) }}$

13 Typical avalanche energy
$E_{\text {AS }}=f\left(T_{\mathrm{j}}\right)$
parameter: I_{D}

15 Typ. gate charge
$V_{G S}=f\left(Q_{\text {gate }}\right) ; I_{D}=30$ A pulsed
parameter: $V_{D D}$

14 Typ. drain-source breakdown voltage
$V_{(\text {Br } D \text { Ds }}=f\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=1 \mathrm{~mA}$

16 Gate charge waveforms

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-06-15

Published by

Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies

 AGAll Rights Reserved.

Do you have any questions about any aspect of this document?

Email:
erratum@infineon.com

Document reference

IPD30N12S3L-31-Data-Sheet-

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Revision History

Version	Date	Changes
Revision 1.0	$2016-06-20$	Final Data Sheet
Revision 1.1	$2023-06-15$	Diagram 8 Typ. drain-source on- state resistance: used α value clarified
Revision 1.1	Ratings of $V_{\text {Gs }}$ refined in footnote ${ }^{3)}$	
Revision 1.1	$2023-06-15$	Corrected diagram 10 typical capacitances

