AO320-CC Ultra Stable, Low Noise OCXO

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com

Description:

Connor-Winfield's Series AO320-CC is a high precision Enhanced Oven Compensated Crystal Oscillator (OCXO) housed

in a small 22x25.4mm surface mount package. The AO320-CC Series provides thermal stability of less than ± 1 ppb, excellent short term stability and very low phase noise. This oscillator is designed for synchronizing high end audio equipment that demands the highest precision available.

Features:

- Output Frequency: 25.0MHz
- 3.3 Vdc Operation
- 22 x 25.4 mm SMT Package
- Frequency Stabilities: ±1ppb
- Temperature Range: -40 to 85°C
- LVCMOS Output Levels
- Grounded Metal Cover
- Adapter board for 26x36mm pinned version available

Absolute Maximum Ratings

Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	105	°C	
Supply Voltage (Vcc)	-0.5	-	3.6	Vdc	
Operating Supply Voltage 3.3V	3.135	3.30	3.465	Vdc	

Absolute Ratings: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only. The functional operation of the device at those or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to conditions outside the "recommended operating conditions" for any extended period of time may adversely impact device reliability and result in failures not covered by warranty.

Operating Specifications

- p	,			
Minimum	Nominal	Maximum	Units	Notes
	25.0		MHz	
-40	-	85	°C	
-200	-	200	ppb	
re				
-1.0	-	1.0	ppb	1
-2.0	-	2.0	ppb	Vcc±1%
-2.0	-	2.0	ppb	Vcc±1%
-0.5	-	0.5	ppb/day	2
-50	-	50	ppb	
-400	-	400	ppb	3
3.135	3.30	3.465	Vdc	4
-	-	1.5	W	5
-	-	3.6	W	5
z) -	-	0.2	ps rms	
-	5.0E-12	-	·	
-	-	500	ms	
-	-	5	minutes	6
	Minimum -40 -200 re -1.0 -2.0 -2.0 -0.5 -50 -400 3.135 - -	Minimum Nominal 25.0 -40 -200 -0.5 -50 -300 - - -	Minimum Nominal Maximum 25.0 -40 - 85 -200 - 200 re - 1.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -2.0 - 2.0 -0.5 - 0.5 -50 - 50 -400 - 400 3.135 3.30 3.465 $-$ - 1.5 $-$ - 0.2 $ 5.0E-12$ - $ 500$	Minimum Nominal Maximum Units 25.0 MHz -40 - 85 °C -200 - 200 ppb re - 1.0 ppb -2.0 - 2.0 ppb -0.5 - 0.5 ppb/day -50 - 50 ppb -400 - 400 ppb 3.135 3.30 3.465 Vdc - - 1.5 W - - 0.2 ps rms - $5.0E-12$ - - - 500 ms

 Bulletin
 Cx315

 Page
 1 of 5

 Revision
 00

 Date
 31 Aug 2021

Notes:

1. Frequency stability is based on (Fmax-Fmin)/2.

2. At time of shipment after 48 hours of operation.

3. Inclusive of Calibration, Operating Temperature, Supply Voltage change, Load change, and 10 Year Aging.

4. Supply voltage must reach Vcc levels monotonically within a ramp-up time of <12 ms.

5. Measured with Vcc = Nominal in calm air.

6 Measured @ 25°C, within ±100 ppb, referenced one hour after turn-on.

www.conwin.com

Phase Noise

Parameter	Minimum	Nominal	Maximum	Units	Notes
SSB Phase Noise at 1Hz offset	-	-87	-	dBc/Hz	
SSB Phase Noise at 10Hz offset	-	-115	-	dBc/Hz	
SSB Phase Noise at 100Hz offset	-	-136	-	dBc/Hz	
SSB Phase Noise at 1KHz offset	-	-145	-	dBc/Hz	
SSB Phase Noise at 10KHz offset	-	-151	-	dBc/Hz	
SSB Phase Noise at 100KHz offset	-	-155	-	dBc/Hz	

CMOS Output Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	15	-	pF	
Output Voltage: High (Voh)	3.0	-	-	V	
Low (Vol)	-	-	0.4	V	
Output Current: High (Ioh)	-0.4	-	-	mA	
Low (lol)	-	-	0.4	mA	
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time: 10% to 90%	-	-	6	ns	
Spurious Output	-	-	-80	dBc	

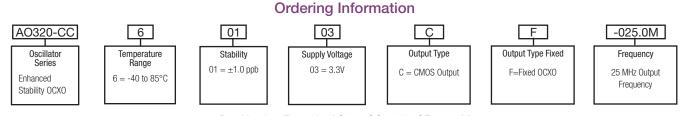
Re-Stabilization Time

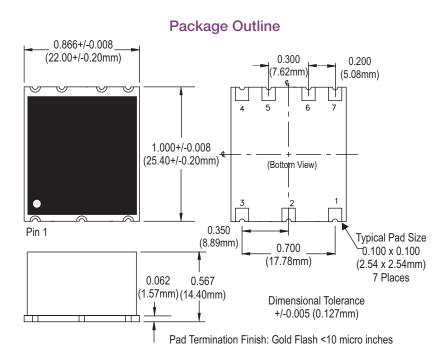
Off Time	Re stabilization Time
<1 Hour	<2 Hours *
<6 Hour	<12 Hours *
<24 Hour	<48 Hours *
1 to 16 Days	48 Hours + 1/4 Off Time *
>16 Days	<6 Days *

* For a given off time, the time required to meet daily aging, short term stability requirements.

Environmental Characteristics

Shock	500 G's 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
Sinusoidal Vibration	0.06" D.A. or 10G's Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
Random Vibration	5.35 G's rms. 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
Moisture	10 cycles, 95% RH, Per MIL-STD-202G, Method 112.
Marking Permanency	Per MIL-STD-202G, Method 215J.
Solder Process Recommendations:	RoHS compliant, lead free. See solder profile on page 5.
In-line reflow:	Refer to recommended reflow pre-heat and reflow temperatures on page 5. Package material
	consists of metal cover with FR4 substrate. Component solder is Pb-free high temperature
	eutectic alloy with melting point of 221°C.
In-line oven profile:	We recommend using KIC profiler or similar device placing one of the thermocouples on the
	device to insure that the internal package temperature does not exceed 221°C.
Removal of device:	If for any reason the device needs to be removed from the board, use a temperature controlled
	repair station with profile monitoring capabilities. Following a monitored profile will insure the
	device is properly pre-heated prior to relow. Refer to IPC 610E for inspection guidelines.
Recommended Cleaning Process:	(If required)
	Device is non-hermetic, water resistance with four weep holes, one in each corner to allow
	moisture to be removed during the drying cycle. We recommend in-line warm water wash
	with air knife and drying capabilities. If cleaner does not have drying capability, then use hot air
	circulated oven. Boards should be placed in the oven vertically for good water runoff
	Device must be dried properly prior to use!
Note: If saponifier is used make sure	the device is rinsed properly to insure all residues are removed. PH of saponifier should not exceed 10.
Drying Temperature:	Between 85 to 100°C.
Drying Time:	Time will vary depending on the board size.
Caution: Do not submerge the o	device!

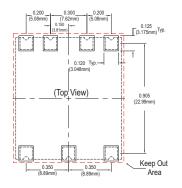

		Bulletin	Cx315
Attention: System Designers please review Application Note AN2093	t i i i i i i i i i i i i i i i i i i i	Page	2 of 5
Printed Circuit Board Layout Guidelines for OCXO Oscillators		Revision	00
www.conwin.com/support.html		Date	31 Aug 2021


Package Characteristics

AO320 Package

Package consists of a hermetic metal package OCXO mounted to an FR4 substrate surrounded by a non-hermetic metal cover (airflow shield)

Part Number Example: AO320-CC-60103CF-025.0M



Marking Information

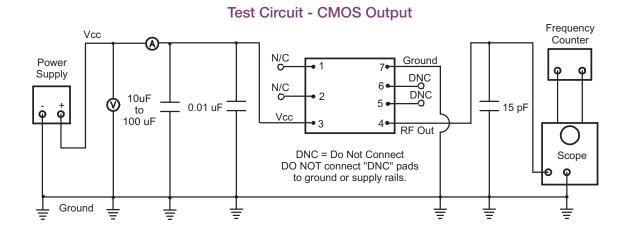
Date Code (YYWW) Model Number Output Frequency Serial # Barcode Serial Number

Suggested Pad Layout

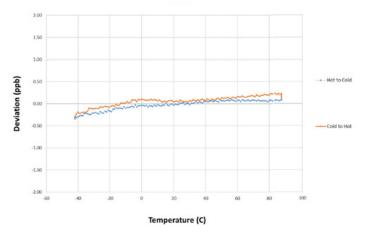
* Do not route any traces in the keep out area. It is recommended the next layer under the keep out area is to be ground plane.

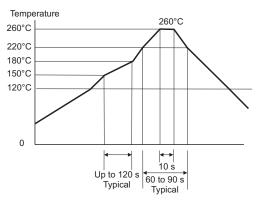
Pad Connections

Pad	Connection
1:	N/C
2:	Do not Connect
3:	Supply Voltage (Vcc)
4:	RF Output
5:	Do Not Connect
6:	Do Not Connect
7:	Ground


DO NOT connect "DNC" pads to ground or supply rails.

BulletinCx315Page3 of 5Revision00Date31 Aug 2021


Attention: System Designers please review Application Note AN2093: Printed Circuit Board Layout Guidelines for OCXO Oscillators www.conwin.com/support.html


2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com

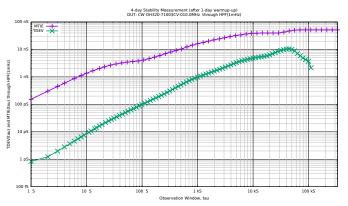
Frequency Stability Plot over Temperature

Solder Profile

Meets IPC/JEDEC J-STD-020C

The state	

Attention: System Designers please review Application Note AN2093: Printed Circuit Board Layout Guidelines for OCXO Oscillators www.conwin.com/support.html


Cx315
4 of 5
00
31 Aug 2021

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com

TDEV & MTIE 4-Day Stability Measurement Through HPF (1MHz)

Revision History

RevisionDateChanges0008/31/21Initial Release

Attention: System Designers please review Application Note AN2093: Printed Circuit Board Layout Guidelines for OCXO Oscillators www.conwin.com/support.html

Bulletin	Cx315
Page	5 of 5
Revision	00
Date	31 Aug 2021
	0