# MP6604A



## Simple, Dual H-Bridge Motor Driver with Separate Input and Enable Pins

## DESCRIPTION

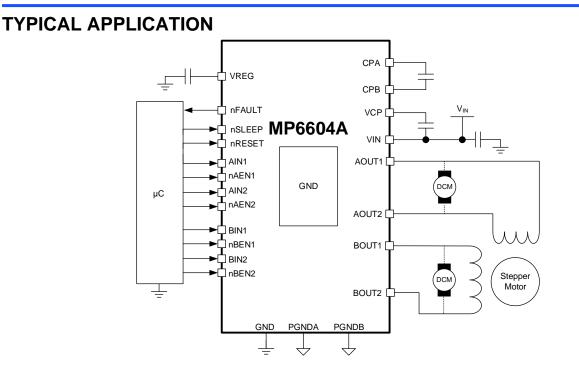
The MP6604A is a dual H-bridge motor driver IC that can drive stepper motors, brushed DC motors, and other loads.

The device operates across a 4.5V to 45V input voltage ( $V_{IN}$ ) range, and can deliver up to 2.5A of output current ( $I_{OUT}$ ) per phase.

Internal safety and diagnostic features include over-current protection (OCP), input overvoltage protection (OVP), and input undervoltage lockout (UVLO) protection, and thermal shutdown.

The MP6604A has separate IN and EN pins for each output pin.

The MP6604A is available in QFN-28 (4mmx5mm) and TSSOP-28EP packages.


## FEATURES

- 4.5V to 45V Operating Input Voltage (V<sub>IN</sub>) Range
- 2.5A Maximum Output Current (I<sub>OUT</sub>)
- Dual H-Bridge or Quad Half-Bridge Driver
- 150mΩ Low On Resistance (per MOSFET)
- Protection Functions:
  - o Over-Current Protection (OCP)
  - Over-Voltage Protection (OVP)
  - Under-Voltage Lockout Protection (UVLO)
  - o Thermal Shutdown
  - Fault Indication Output
- Available in QFN-28 (4mmx5mm) and TSSOP-28EP Packages

## APPLICATIONS

- Bipolar Stepper Motors
- Stage Lighting
- 3D Printers
- Laser Printers and Copiers
- Textile Machines

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.





| Part Number* | Package          | Top Marking | MSL Rating |  |  |  |  |
|--------------|------------------|-------------|------------|--|--|--|--|
| MP6604AGV    | QFN-28 (4mmx5mm) | See Below   | 2          |  |  |  |  |
| MP6604AGF    | TSSOP-28EP       | See Below   | 2a         |  |  |  |  |

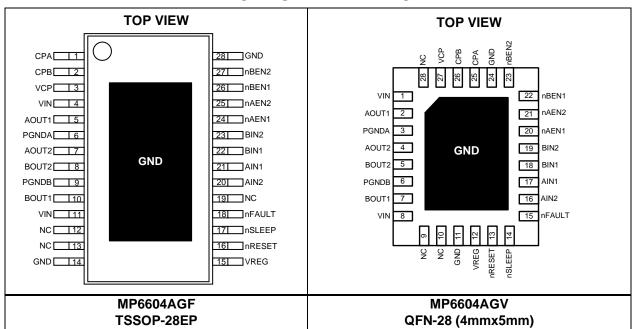
## **ORDERING INFORMATION**

\* For Tape & Reel, add suffix -Z (e.g. MP6604AGV-Z).

## **TOP MARKING (MP6604AGV)**

## MPSYWW M6604A LLLLLL

MPS: MPS prefix Y: Year code WW: Week code M6604A: Part number LLLLLL: Lot number


## TOP MARKING (MP6604AGF)

# MPSYYWW MP6604A

## LLLLLLLL

MPS: MPS prefix YY: Year code WW: Week code MP6604A: Part number LLLLLLLL: Lot number





## **PACKAGE REFERENCE**



## **PIN FUNCTIONS**

| Pin #                   |                |        |                                                                                                                                                                    |  |  |  |  |
|-------------------------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| QFN-28<br>(4mmx<br>5mm) | TSSOP-<br>28EP | Name   | Description                                                                                                                                                        |  |  |  |  |
| 1, 8                    | 4, 11          | VIN    | <b>Input supply voltage.</b> Decouple the VIN pin to ground using a ≥100nF ceramic capacitor. Additional bulk capacitance may be required.                         |  |  |  |  |
| 2                       | 5              | AOUT1  | Bridge A output terminal 1.                                                                                                                                        |  |  |  |  |
| 3                       | 6              | PGNDA  | Power ground for H-bridge A outputs.                                                                                                                               |  |  |  |  |
| 4                       | 7              | AOUT2  | Bridge A output terminal 2.                                                                                                                                        |  |  |  |  |
| 5                       | 8              | BOUT2  | Bridge B output terminal 2.                                                                                                                                        |  |  |  |  |
| 6                       | 9              | PGNDB  | Power ground for H-bridge B outputs.                                                                                                                               |  |  |  |  |
| 7                       | 10             | BOUT1  | Bridge B output terminal 1.                                                                                                                                        |  |  |  |  |
| 11, 24                  | 14, 28         | GND    | Signal ground.                                                                                                                                                     |  |  |  |  |
| 12                      | 15             | VREG   | <b>Internal regulator.</b> Connect a $1\mu$ F ceramic capacitor with X7R dielectrics between the VREG and GND pins. This capacitor should be rated for $\geq$ 16V. |  |  |  |  |
| 13                      | 16             | nRESET | <b>Reset input.</b> Pull the nRESET pin low to reset the protection circuits and disable the outputs. nRESET has an internal pull-down resistor.                   |  |  |  |  |
| 14                      | 17             | nSLEEP | <b>Sleep mode input.</b> Pull the nSLEEP pin low to enter low-power sleep mode. nSLEEP has an internal pull-down resistor.                                         |  |  |  |  |
| 15                      | 18             | nFAULT | <b>Fault indication.</b> The nFAULT pin is an open-drain output. nFAULT requires an external pull-up resistor if used. If a fault occurs, nFAULT is pulled low.    |  |  |  |  |
| 16                      | 20             | AIN2   | Control input of AOUT2. The AIN2 pin has an internal pull-down resistor.                                                                                           |  |  |  |  |
| 17                      | 21             | AIN1   | Control input of AOUT1. The AIN1 pin has an internal pull-down resistor.                                                                                           |  |  |  |  |
| 18                      | 22             | BIN1   | Control input of BOUT1. The BIN1 pin has an internal pull-down resistor.                                                                                           |  |  |  |  |
| 19                      | 23             | BIN2   | Control input of BOUT2. The BIN2 pin has an internal pull-down resistor.                                                                                           |  |  |  |  |
| 20                      | 24             | nAEN1  | <b>AOUT1 enable.</b> Pull nAEN1 low to enable the corresponding output (AOUT1). nAEN1 has an internal pull-down resistor.                                          |  |  |  |  |
| 21                      | 25             | nAEN2  | <b>AOUT2 enable.</b> Pull nAEN2 low to enable the corresponding output (AOUT2). nAEN2 has an internal pull-down resistor.                                          |  |  |  |  |
| 22                      | 26             | nBEN1  | <b>BOUT1 enable.</b> Pull nBEN1 low to enable the corresponding output (BOUT1). nBEN1 has an internal pull-down resistor.                                          |  |  |  |  |
| 23                      | 27             | nBEN2  | <b>BOUT2 enable.</b> Pull nBEN2 low to enable the corresponding output (BOUT2). nBEN1 has an internal pull-down resistor.                                          |  |  |  |  |
| 25                      | 1              | СРА    | <b>Charge pump capacitor terminal A.</b> Connect a 100nF ceramic capacitor rated for the input voltage ( $V_{IN}$ ) between the CPA and CPB pins.                  |  |  |  |  |
| 26                      | 2              | СРВ    | <b>Charge pump capacitor terminal B.</b> Connect a 100nF ceramic capacitor rated for V <sub>IN</sub> between the CPA and CPB pins.                                 |  |  |  |  |
| 27                      | 3              | VCP    | <b>Charge pump output.</b> Connect a $1\mu$ F ceramic capacitor between the VCP and VIN pins. This capacitor should be rated for $\geq 16$ V.                      |  |  |  |  |

## ABSOLUTE MAXIMUM RATINGS (1)

| Supply voltage (V <sub>IN</sub> )<br>V <sub>AOUT1</sub> , V <sub>AOUT2</sub> , V <sub>BOUT1</sub> , V <sub>BOUT2</sub><br>V <sub>CP</sub> , V <sub>CPB</sub> | 0.7V to +48V                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| PGNDx to GND                                                                                                                                                 | 0.3V to +0.3V                       |
| All other pins to GND                                                                                                                                        | 0.3V to +6.5V                       |
| Continuous power dissipation (T                                                                                                                              | <sub>A</sub> = 25°C) <sup>(2)</sup> |
| QFN-28 (4mmx5mm)                                                                                                                                             | 3.125W                              |
| TSSOP-28EP                                                                                                                                                   | 3.9W                                |
| Storage temperature                                                                                                                                          | -55°C to +150°C                     |
| Junction temperature (T <sub>J</sub> )                                                                                                                       | 150°C                               |
| Lead temperature (solder)                                                                                                                                    |                                     |

#### ESD Ratings

| Human body model (HBM)     | ±2kV |
|----------------------------|------|
| Charged device model (CDM) | ±2kV |

#### **Recommended Operating Conditions (3)**

| Supply voltage (VIN)                       | 4.5V to 45V    |
|--------------------------------------------|----------------|
| PGNDx to GND                               | 0.2V to +0.2V  |
| Operating junction temp (T <sub>J</sub> ). | 40°C to +125°C |

#### Thermal Resistance <sup>(4)</sup> $\theta_{JA}$ $\theta_{JC}$

| QFN-28 (4mmx5mm) | 40 | 9 | °C/W |
|------------------|----|---|------|
| TSSOP-28EP       |    |   |      |

#### Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T<sub>J</sub> (MAX), the junction-toambient thermal resistance  $\theta_{JA}$ , and the ambient temperature T<sub>A</sub>. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P<sub>D</sub> (MAX) = (T<sub>J</sub> (MAX) - T<sub>A</sub>) /  $\theta_{JA}$ . Exceeding the maximum allowable power dissipation can produce an excessive die temperature, which may cause the device to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

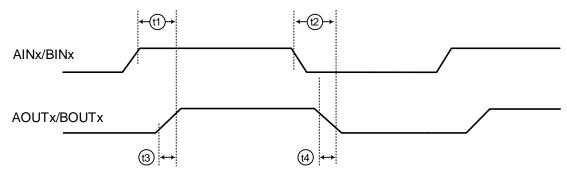
## **ELECTRICAL CHARACTERISTICS**

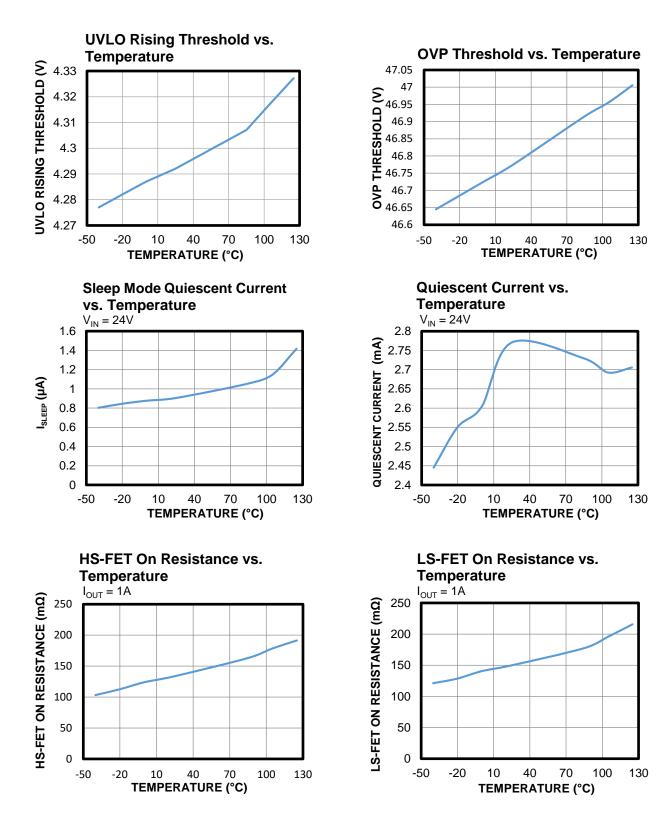
#### $V_{IN}$ = 24V, $T_A$ = 25°C, unless otherwise noted.

| Parameter                                                        | Symbol                   | Condition                                    | Min  | Тур | Max  | Units |
|------------------------------------------------------------------|--------------------------|----------------------------------------------|------|-----|------|-------|
| Power Supply                                                     |                          |                                              |      |     |      |       |
| Input voltage                                                    | VIN                      |                                              | 4.5  |     | 45   | V     |
| Quiescent current                                                | la                       | nSLEEP is high, no load                      |      | 2.8 |      | mA    |
| Sleep mode I <sub>Q</sub>                                        | I <sub>SLEEP</sub>       | nSLEEP is low                                |      | 0.9 | 10   | μA    |
| Internal MOSFETs                                                 | 1                        |                                              |      |     |      | I     |
| High-side MOSFET (HS-FET) on resistance                          | RDS(ON)_HS               | Ι <sub>ΟUT</sub> = 1Α, Τ <sub>J</sub> = 25°C |      | 135 | 170  | mΩ    |
| Low-side MOSFET (LS-FET) on resistance                           | Rds(on)_ls               | Ι <sub>ΟUT</sub> = 1Α, Τ <sub>J</sub> = 25°C |      | 150 | 185  | mΩ    |
| Body diode forward voltage                                       | VF                       | Іоυт = 1А                                    |      |     | 1.1  | V     |
| Control Logic Inputs                                             |                          |                                              |      |     |      |       |
| Input logic low voltage                                          | VIL                      |                                              |      |     | 0.8  | V     |
| Input logic high voltage                                         | Vih                      |                                              | 2    |     |      | V     |
| Input logic high current                                         | I <sub>IN_H</sub>        | $V_{IN} = 5V$                                | -100 |     | +100 | μA    |
| Input logic low current                                          | I <sub>IN_L</sub>        | $V_{IN} = 0V$                                | -20  |     | +20  | μA    |
| Internal pull-down resistance                                    | Rpd                      | Pulled down to GND                           |      | 100 |      | kΩ    |
| nFAULT Output (Open-Drain O                                      | utput)                   |                                              | •    |     | •    |       |
| Output low voltage                                               | Vol                      | louт = 5mA                                   |      |     | 0.5  | V     |
| Output high leakage current                                      | I <sub>OH</sub>          | V <sub>OUT</sub> = 5V                        |      |     | 1    | μA    |
| Protection Circuits                                              |                          |                                              | •    |     | •    |       |
| V <sub>IN</sub> under-voltage lockout<br>(UVLO) rising threshold | Vuvlo                    |                                              |      |     | 4.5  | V     |
| V <sub>IN</sub> UVLO hysteresis                                  | $\Delta V_{\text{UVLO}}$ |                                              |      | 300 |      | mV    |
| V <sub>IN</sub> over-voltage protection<br>(OVP) threshold       | Vovp                     |                                              | 45   |     | 48   | V     |
| Over-current protection (OCP) threshold                          | IOCP1                    | Sink                                         | 3    | 4.5 |      | А     |
|                                                                  | IOCP2                    | Source                                       | 3    | 4.5 |      | А     |
| OCP deglitch time                                                | tocp                     |                                              |      | 1   |      | μs    |
| Thermal shutdown threshold                                       | T <sub>TSD</sub>         |                                              |      | 165 |      | °C    |
| Thermal shutdown hysteresis                                      | $\Delta T_{TSD}$         |                                              |      | 15  |      | °C    |
| Timing                                                           |                          |                                              |      |     |      |       |
| AINx/BINx high to AOUTx/<br>BOUTx high delay time                | t1                       |                                              | 40   |     | 360  | ns    |
| AINx/BINx low to AOUTx/<br>BOUTx low delay time                  | t2                       |                                              | 40   |     | 360  | ns    |
| Output rise time                                                 | t3                       |                                              | 1    |     | 55   | ns    |
| Output fall time                                                 | t4                       |                                              | 1    |     | 165  | ns    |
| Dead time (DT)                                                   |                          |                                              |      |     | 80   | ns    |

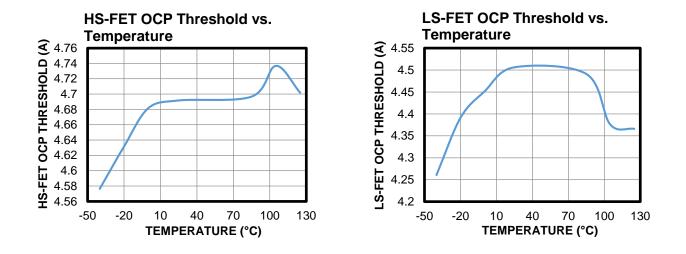


## TIMIMG DIAGRAM (5)





Figure 1: Timing Diagram

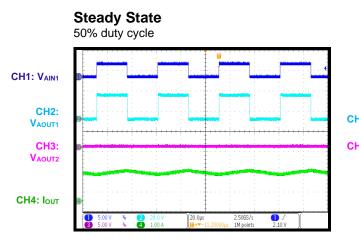
#### Note:

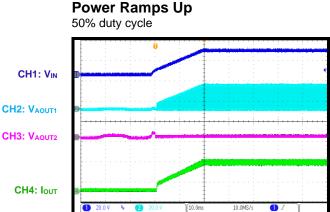

5)  $V_{IN} = 24V$ ,  $T_A = 25^{\circ}C$ , unless otherwise noted.

## **TYPICAL CHARACTERISTICS**

Ρ.



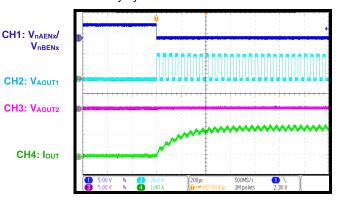

## **TYPICAL CHARACTERISTICS** (continued)

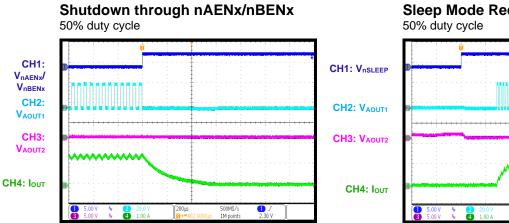





## TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{IN}$  = 24V, AOUT1 is enabled,  $f_{SW}$  = 20kHz, AOUT2's LS-FET is on,  $T_A$  = 25°C, resistor + inductance =  $8\Omega$  + 1.5mH between AOUT1 and AOUT2, unless otherwise noted.




## **Power Ramps Down**

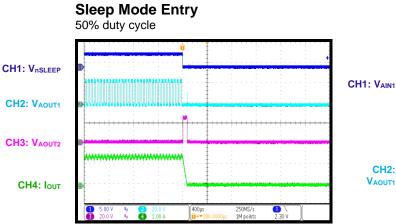


#### Start Up through nAENx/nBENx 50% duty cycle

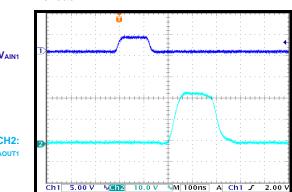




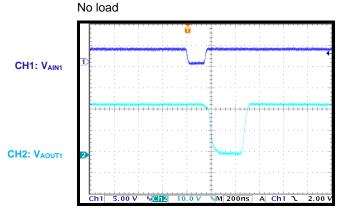
# **Sleep Mode Recovery**


\*\*\*\*

250MS/




## **TYPICAL PERFORMANCE CHARACTERISTICS** (continued)


 $V_{IN}$  = 24V, AOUT1 is enabled,  $f_{SW}$  = 20kHz, AOUT2's LS-FET is on,  $T_A$  = 25°C, resistor + inductance = 8 $\Omega$  + 1.5mH between AOUT1 and AOUT2, unless otherwise noted.



HS-FET Minimum On Time No load



**LS-FET Minimum On Time** 





FUNCTIONAL BLOCK DIAGRAM

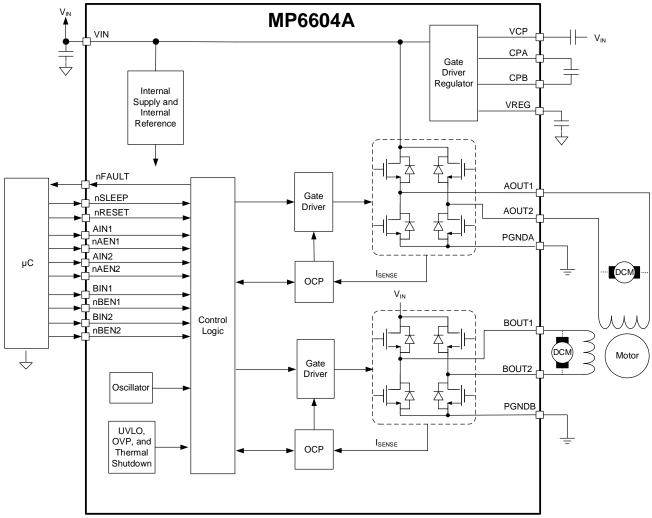



Figure 2: Functional Block Diagram



## **OPERATION**

The MP6604A is a general-purpose dual Hbridge motor driver that integrates eight Nchannel power MOSFETs connected as four half H-bridges, with a 2.5A current capability. It operates across a wide 4.5V to 45V input voltage ( $V_{IN}$ ) range.

The MP6604A is designed to drive bipolar stepper motors, brushed DC motors, solenoids, or other loads.

#### nSLEEP and nRESET Operation

Pull nSLEEP low to have the device enter lowpower sleep mode. In sleep mode, the gate driver charge pump turns off, and all of the internal circuitry and H-bridge outputs are disabled. All of the inputs are ignored while nSLEEP is pulled low.

There is a delay time (600µs) between when the part exits sleep mode and when the part starts driving the motor to allow the internal circuitry to stabilize. The nSLEEP pin has an internal pull-down resistor.

Pull nRESET low to reset a latched protection [e.g. over-current protection (OCP) or overvoltage protection (OVP)] and to have the outputs enter a high-impedance (Hi-Z) state.

#### Input Interface

The MP6604A integrates four half H-bridges that operate independently from one another.

Each output has its own input (AINx/BINx) and enable (AENx/BENx) pins for each output pin (AOUTx/BOUTx). Table 2 shows the MP6604A's pin logic.

| Table 2. MF0004A FIII LOUIC |                  |                 |  |  |  |  |  |
|-----------------------------|------------------|-----------------|--|--|--|--|--|
| AENx/<br>BENx               | AINx/<br>BINx    | AOUTx/<br>BOUTx |  |  |  |  |  |
| High                        | X <sup>(6)</sup> | Hi-Z            |  |  |  |  |  |
| Low                         | Low              | Low             |  |  |  |  |  |
| Low                         | High             | High            |  |  |  |  |  |

Table 2: MP6604A Pin Logic

All of the logic inputs have internal pull-down resistors.

#### Note:

6) "x" denotes high or low.

#### Automatic Synchronous Rectification

If both the high-side MOSFET (HS-FET) and low-side MOSFET (LS-FET) are off, recirculation current should continue to flow while driving current through an inductive load. This current passes through the MOSFET body diodes. The MP6604A employs automatic synchronous rectification to reduce excess power dissipation in the body diodes.

If both the HS-FET and LS-FET are off, and the voltage on an AOUTx/BOUTx ( $V_{AOUTx}/V_{BOUTx}$ ) pin is pulled below GND, then the LS-FET turns on until its current reaches 0A, or until the HS-FET is commanded to turn on. Similarly, if  $V_{AOUTx}/V_{BOUTx}$  exceeds  $V_{IN}$ , then the HS-FET turns on until its current reaches 0A, or until the LS-FET turns on until its current reaches 0A, or until the LS-FET is commanded to turn on.

#### Internal Supplies (VREG and VCP)

The internal regulator (VREG) provides a 5V supply for the low-side (LS) gate driver. The other internal regulator (VCP) provides a supply 5V above  $V_{IN}$  for the high-side (HS) gate driver. VREG and VCP require external capacitors.

Connect a 1µF capacitor between the VREG pin and GND. Connect a 1µF capacitor between the VCP and VIN pins. Both capacitors should have X7R dielectrics, and should be rated for  $\geq$ 16V.

The charge pump's flying capacitor (connected between the CPA and CPB pins) should be a 100nF ceramic capacitor with X7R dielectrics, and should be rated for at least the maximum  $V_{\text{IN}}$ .

#### Fault Reporting

The MP6604A's nFAULT pin reports whether an over-current (OC), over-temperature (OT), or over-voltage (OV) fault has occurred. nFAULT is an open-drain output that is pulled low if a fault occurs. If used, nFAULT should be pulled high via an external pull-up resistor.

#### **Over-Current Protection (OCP)**

OCP circuitry disables the gate driver to limit the current flowing through the MOSFETs. If the current exceeds the OCP threshold for longer



than the OCP deglitch time  $(t_{OCP})$ , then all of the MOSFETs in the H-bridge are disabled, and nFAULT is pulled low. The driver turns on again once the device is reset by pulling the nRESET pin low, or by cycling the power on VIN. An OC fault on either the HS-FET or LS-FET (e.g. an excessive current to ground, to the supply, or across the motor winding) can cause an OC shutdown.

#### **Over-Voltage Protection (OVP)**

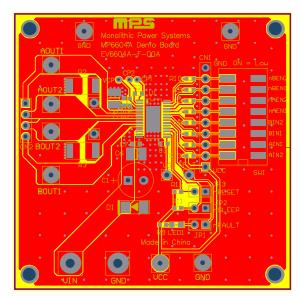
If  $V_{IN}$  exceeds the OVP threshold, then the Hbridge output is disabled, and nFAULT is pulled low. The driver turns on again once the device is reset by pulling the nRESET pin low, or by cycling the power on VIN.

#### V<sub>IN</sub> Under-Voltage Lockout (UVLO) Protection

If  $V_{IN}$  drops below the under-voltage lockout (UVLO) threshold, then all of the IC's circuitry is disabled, and the internal logic is reset. Once  $V_{IN}$  exceeds the UVLO threshold, the part resumes normal operation.

#### **Thermal Shutdown**

If the die temperature the thermal shutdown threshold (165°C), then all of the MOSFETs in the H-bridge are disabled, and nFAULT is pulled low. Once the die temperature drops to 150°C, the part resumes normal operation.

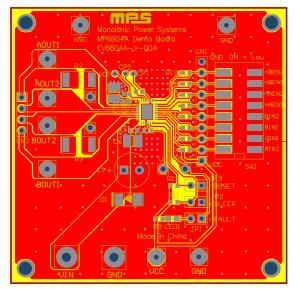

## **APPLICATION INFORMATION**

#### **External Component Selection**

Bypass the VIN pins to GND using a  $\geq 100$ nF ceramic capacitor with X7R dielectrics. Place this capacitor as close to the IC as possible. Place an additional 1µF to 10µF ceramic capacitor near the  $\geq 100$ nF capacitor. Depending on the supply impedance and distance to other large capacitors, an additional electrolytic bulk capacitor may be required to stabilize V<sub>IN</sub>.

Connect a 100nF ceramic capacitor rated for  $V_{IN}$  between the CPA and CPB pins. Connect a 1µF ceramic capacitor between the VIN and VCP pins. This capacitor should be rated for  $\geq$ 16V.

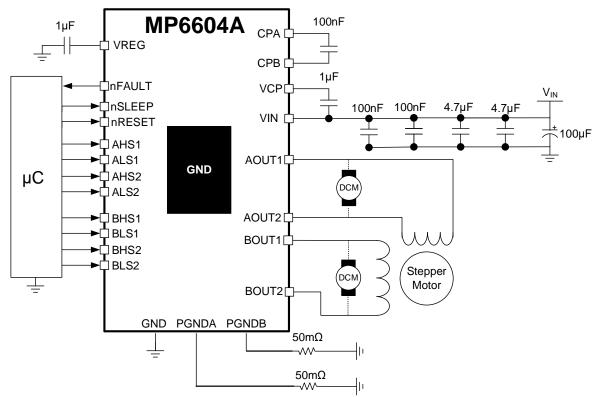
Connect a  $1\mu$ F ceramic capacitor with X7R dielectrics between the VREG and GND pins. This capacitor should be rated for  $\geq$ 16V.




Recommended PCB Layout for the MP6604AGF

#### **PCB Layout Guidelines**

Efficient PCB layout is critical for stable operation. For the best results, refer to Figure 3 and follow the guidelines below:

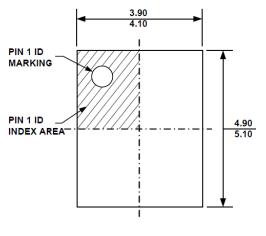

- 1. Place the VIN bypass capacitor and charge pump capacitor as close to the IC as possible. Place these capacitors adjacent to the pins on the same PCB layer. Each VIN pin should have a bypass capacitor.
- 2. Place as much copper as possible on the long pads.
- 3. Place large copper areas on the pads, on the same outer copper layer as the device.
- 4. Solder the thermal pad directly to the copper on the PCB.
- 5. Add multiple thermal vias to improve thermal dissipation.



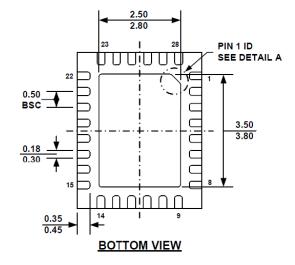
he MP6604AGF Recommended PCB Layout for the MP6604AGV Figure 3: Recommended PCB Layout

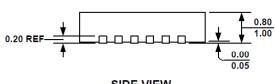


## **TYPICAL APPLICATION CIRCUIT**



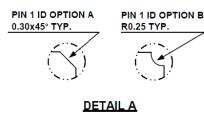

**Figure 4: Typical Application Circuit** 



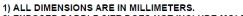


QFN-28 (4mmx5mm)

## **PACKAGE INFORMATION**




TOP VIEW

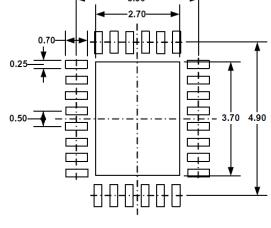





SIDE VIEW

ar

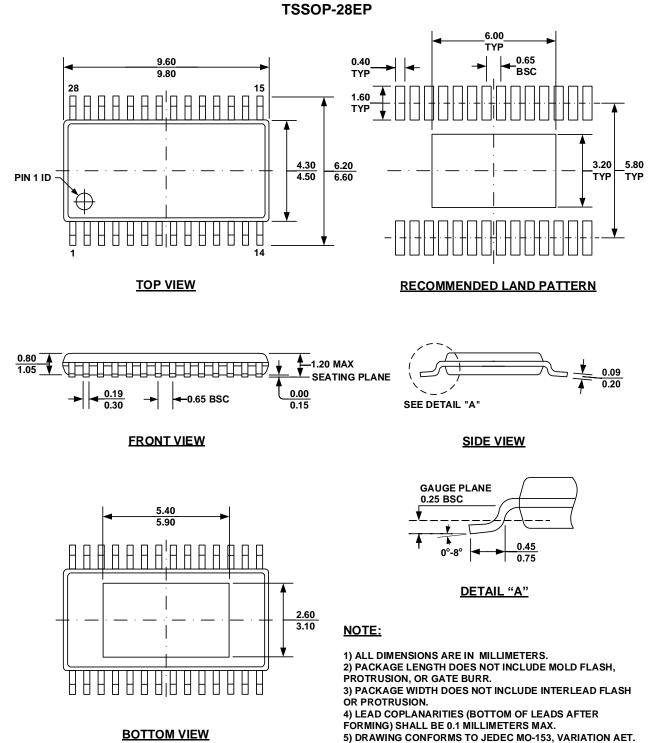



NOTE: 1) ALL DIMEN 2) EXPOSED F 3) LEAD COPL 4 DRAWING (



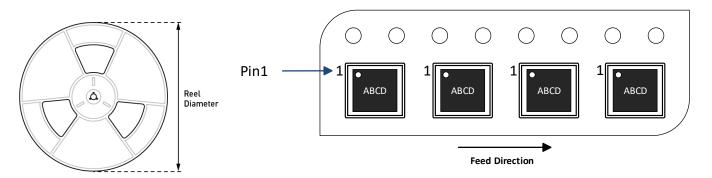
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.

3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX. 4) DRAWING CONFORMS TO JEDEC MO-220, VARIATION VHGD-3.

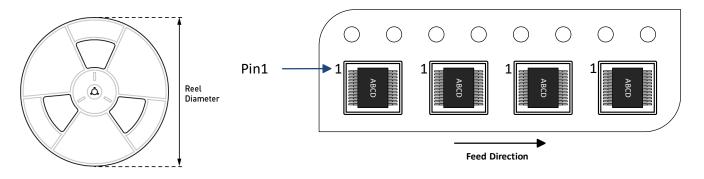

5) DRAWING IS NOT TO SCALE.



RECOMMENDED LAND PATTERN




## PACKAGE INFORMATION (continued)




6) DRAWING IS NOT TO SCALE.

## **CARRIER INFORMATION**



| Part Number | Package             | Quantity/ | Quantity/ | Quantity/ | Reel     | Carrier    | Carrier    |
|-------------|---------------------|-----------|-----------|-----------|----------|------------|------------|
|             | Description         | Reel      | Tube      | Tray      | Diameter | Tape Width | Tape Pitch |
| MP6604AGV-Z | QFN-28<br>(4mmx5mm) | 5000      | N/A       | N/A       | 13in     | 12mm       | 8mm        |



| Part Number | Package     | Quantity/ | Quantity/ | Quantity/ | Reel     | Carrier    | Carrier    |
|-------------|-------------|-----------|-----------|-----------|----------|------------|------------|
|             | Description | Reel      | Tube      | Tray      | Diameter | Tape Width | Tape Pitch |
| MP6604AGF-Z | TSSOP-28EP  | 2500      | 50        | N/A       | 13in     | 16mm       | 8mm        |



## **REVISION HISTORY**

| R | Revision # | <b>Revision Date</b> | Description                                                                         | Pages Updated |
|---|------------|----------------------|-------------------------------------------------------------------------------------|---------------|
|   | 1.0        | 10/20/2022           | Initial Release                                                                     | -             |
|   | 1.1        | 5/12/2023            | Updated the MSL rating for the MP6604AGV to "2" in the Ordering Information section | 2             |

**Notice:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.