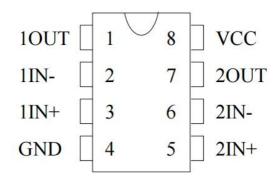


General Description

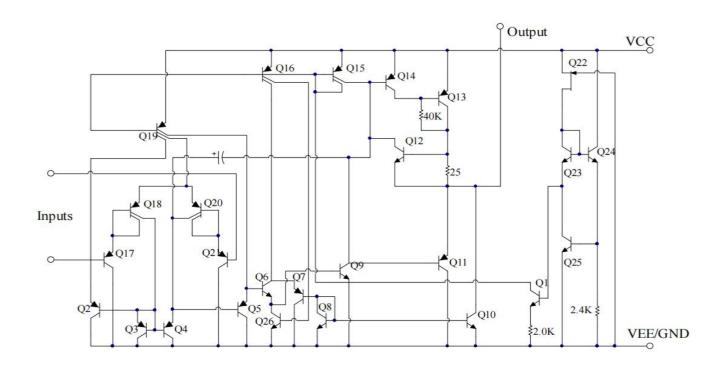
The LM358 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.


Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM358 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15V$ power supplies.

Features

- Wide power supply range:
 - Single supply: 4V to 32V
 - or dual supplies: $\pm 2V$ to $\pm 16V$
- Very low supply current drain (500 µA)—essentially independent of supply voltage
- Wide bandwidth (unity gain): 1 MHz
- Low Input Bias Currents
- Common Mode Range Extends to Negative Supply

PIN CONNECTIONS


Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW LM358DR2G	SOP-8	LM358	Tape	2500Pcs/Reel

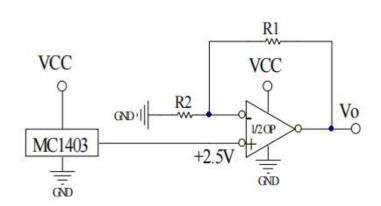
Schematic Diagram (One-Half of Circuit Shown)

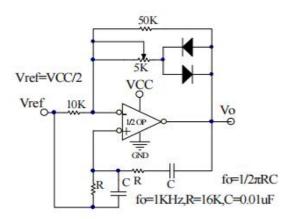
MAXIMUM RATINGS(TA = $+25^{\circ}$ C, unless otherwise noted.)

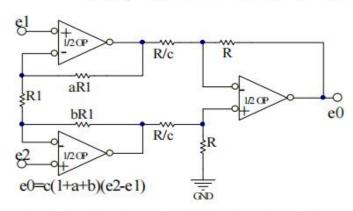
	Rating	Value	Unit	
Power Supply Vo	oltages	32 or ±16	V	
Input Differential	Voltage Range	32	V	
Input Common M	lode Voltage Range	-0.3 ~ VCC	V	
Power	DIP8	830		
Dissipation (Note1)	SOP8	530	mW	
Output Short Circuit Duration (One Amplifier) (V≤15V,Ta=25℃)		Continuous		
Input Current (V	(IN<-0.3V)	50	mA	
Junction Tempera	ature	150	$^{\circ}$ C	
Operating Tempe	erature Range	0 ~ 70	$^{\circ}$	
Storage Tempera	ature Range	-65 ~ 150	$^{\circ}$	

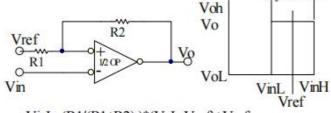
Note1: LM358 must be derated based on a ± 150 °C maximum junction temperature.

ELECTRICAL CHARACTERISTICS


(Vcc=5.0V, TA = +25 $^{\circ}$ C, unless otherwise noted.)

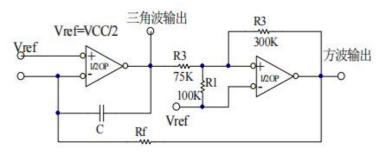

Parameter		Conditions			LM358			
					Min	Тур	Max	Units
Input Offset Voltage	t	Ta=25℃	Ta=25℃,VCC = 5.0 V to 30 V, VO =1.4 V,				5	mV
Input Bias (Current	Ta=25℃ ,	IIN(+)或 IIN(-),VCM=0V			45	250	nA
Input Offse Current	t	Ta=25 ℃	Ta=25°C IIN(+) - IIN (-), VCM=0V			3	50	nA
Input Common M Voltage Ra		Ta=25℃ ,	Ta=25℃ V+=30V ,				Vcc -1.5	V
Power Supply Current			Vcc =30V			1	2	mA
		RL=∞,T otal Device	Vcc =5V			0.5	1.2	mA
Large Signal Open Loop Voltage Gain		Vcc =15V,Ta=25℃, RL≥2kΩ(for Vo=1~11V)			25	100		V/mV
Common Mode Rejection		DC , Ta=25℃, VCM=0~Vcc-1.5V			65	90		dB
Power Supply Rejection		DC , Ta=25℃, Vcc=5~30V			65	100		dB
Output Source Current		VIN(+)=1V,VIN(-)=0V,Vcc=15V,Vo=2V,Ta=25°C			20	40		mA
Output Sink Current		VIN(-)=1V,VIN(+)=0V,Vcc=15V,Vo=2V,Ta=25°C			10	15		mA
		VIN(-)=1V,VIN(+)=0V,Vcc=15V,Vo=200mV, Ta=25°C			12	50		μA
Output Short Circuit to Ground		Vcc=15V, Ta=25℃				40	60	mA
Output Voltage Swing	VOH	Vcc=30\	/	RL=2kΩ	26			V
		Vcc=30\	/	RL=10kΩ	27	28		V
	VOL	Vcc=5V,RL=10kΩ				5	20	mV

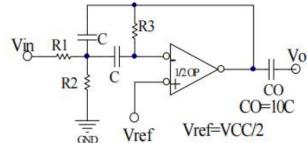

Typical Applications



Voltage Reference, Vo=2.5V (1+R1/R2)

Wien Bridge Oscillator





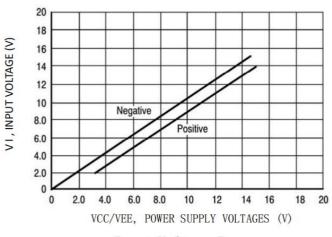
VinL=(R1/(R1+R2))*(VoL-Vref)+Vref VinH=(R1/(R1+R2))*(VoH-Vref)+Vref H=(R1/(R1+R2))*(VoH-VoL)

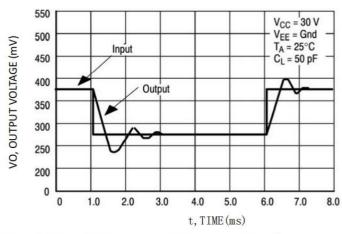
High Impedance Differential Amplifier

Comparator with Hysteresis

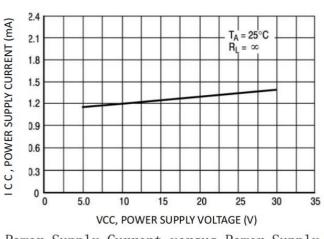
Function Generator

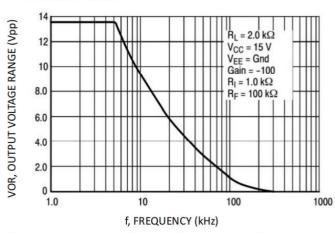
fo = center frequency


Multiple Feedback Bandpass Filter


Hysteresis

Typical Performance Characteristics





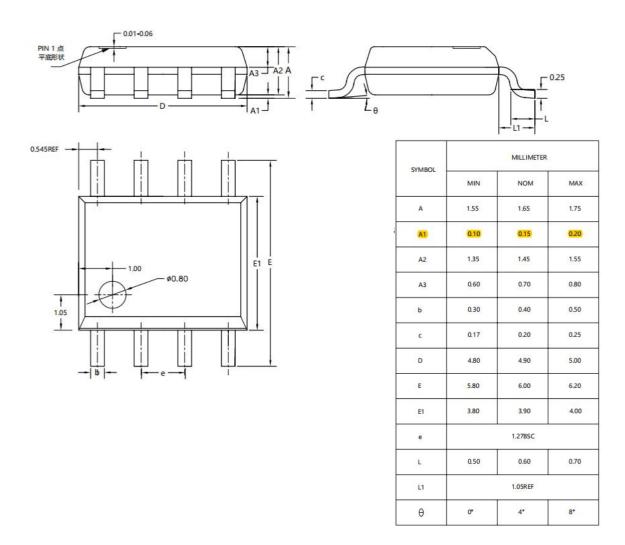
Input Voltage Range

Small Signal Voltage Follower Pulse Response

(Noninverting)

Power Supply Current versus Power Supply Voltage

Large-Signal Frequency Response



Package Information

SOP8

Statement:

- ♦ Shenzhen xinbole electronics co., ltd. reserves the right to change the product specifications, without notice! Before placing an order, the customer needs to confirm whether the information obtained is the latest version, and verify the integrity of the relevant information.
- ♦ Any semiconductor product is liable to fail or malfunction under certain conditions, and the buyer shall be responsible for complying with safety standards in the system design and whole machine manufacturing using Shenzhen xinbole electronics co., ltd products, and take appropriate security measures to avoid the potential risk of failure may result in personal injury or property losses of the situation occurred!
- ♦ This document is for referenceonly, and the actual use should be based on the application test results.
- ♦ Product performance is never ending, Shenzhen xinbole electronics co., ltd will be dedicated to provide customers with better performance, better quality of integrated circuit products.