

MP1923 100V, 8A, High-Frequency, Half-Bridge Gate Driver

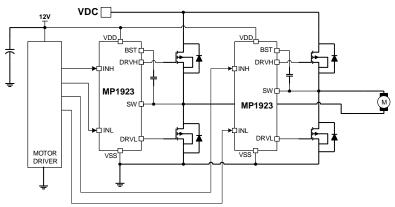
DESCRIPTION

The MP1923 is a high-frequency, N-channel MOSFET, half-bridge gate driver. The device's low-side MOSFET (LS-FET) and high-side MOSFET (HS-FET) driver channels are controlled independently, and are matched with <5ns in time delay.

In the case of an insufficient supply, the device's HS-FET and LS-FET under-voltage lockout (UVLO) protection forces the outputs low. The MP1923 also features an integrated bootstrap (BST) diode to reduce the external component count.

The MP1923 is available in QFN-10 (4mmx4mm), QFN-8 (4mmx4mm), and SOIC-8 packages.

FEATURES


- Drives an N-Channel MOSFET Half-Bridge
- Low Dropout with 4.5V Under-Voltage Lockout (UVLO) Falling Threshold
- 120V Bootstrap Voltage (V_{BST}) Range
- On-Chip Bootstrap Diode
- 20ns Typical Propagation Delay
- 8A Sink Current, 7A Source Current at 12V V_{DD}
- <5ns Gate Driver Matching Time Delay
- Drives a 1nF Load with 7.2ns Rise Time (t_{RISE}) and 5.5ns Fall Time (t_{FALL}) at 12V V_{DD}
- TTL-Compatible Input
- <300µA Quiescent Current (I_Q)
- UVLO Protection for the HS-FET and LS-FET Gate Drivers
- Available in QFN-10 (4mmx4mm), QFN-8 (4mmx4mm), and SOIC-8 Packages

APPLICATIONS

- Motor Drivers
- Telecom Half-Bridge Power Supplies
- Avionics DC/DC Converters
- Two-Switch Forward Converters
- Active-Clamp Forward Converters

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

MP1923 Rev. 1.1 7/14/2023

Part Number*	Package	Top Marking	MSL Rating					
MP1923GRE	QFN-10 (4mmx4mm)	See Below	1					
MP1923GR	QFN-8 (4mmx4mm)	See Below	1					
MP1923GS	SOIC-8	See Below	2					

ORDERING INFORMATION

* For Tape & Reel, add suffix -Z (e.g. MP1923GRE-Z).

TOP MARKING (MP1923GRE) <u>MPSYWW</u> MP1923 LLLLLL

Е

MPS: MPS prefix Y: Year code WW: Week code MP1923: Part number LLLLLL: Lot number E: MP1923GRE

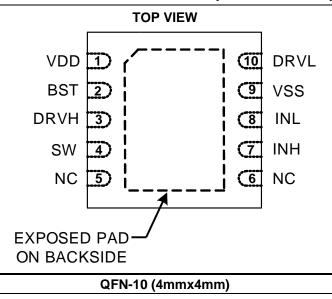
TOP MARKING (MP1923GR)

MPSYWW MP1923

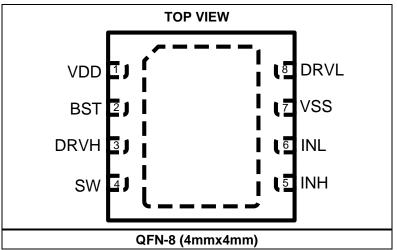
LLLLLL

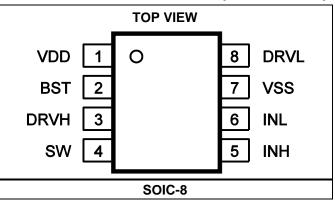
MPS: MPS prefix Y: Year code WW: Week code MP1923: Part number LLLLLL: Lot number

TOP MARKING (MP1923GS)


MP1923 LLLLLLLL MPSYWW

MP1923: Part number LLLLLLL: Lot number MPS: MPS prefix Y: Year code WW: Week code


MP1923 Rev. 1.1 7/14/2023


PACKAGE REFERENCE (MP1923GRE)

PACKAGE REFERENCE (MP1923GR)

PACKAGE REFERENCE (MP1923GS)

PIN FUNCTIONS

	Pin #		Nomo	Description		
QFN-10	QFN-8	SOIC-8	Name			
1	1	1	VDD	Supply voltage. The VDD pin supplies power to the internal circuitry. Connect a decoupling capacitor between VDD and ground to ensure a stable and clean supply.		
2	2	2	BST	Bootstrap. The BST pin is the positive power supply for the internal floating high-side MOSFET (HS-FET) driver. Connect a bypass capacitor between the BST and SW pins.		
3	3	3	DRVH	Floating HS-FET driver output.		
4	4	4	SW	Switching node.		
5, 6			NC	Not connected.		
7	5	5	INH	Control signal input for the floating HS-FET driver.		
8	6	6	INL	Control signal input for the LS-FET driver.		
9	7	7	VSS	Chip ground.		
10	8	8	DRVL	LS-FET driver output.		
Pad	Pad		Exposed pad	Exposed pad. Connect the exposed pad to the VSS pin to improve thermal operation.		

ABSOLUTE MAXIMUM RATINGS (1)

DRVH voltage (V _{DRVH})
$eq:spectral_$

ESD Ratings

Human body model (HBM)	±2000V
Charged device model (CDM)	±500V

Recommended Operating Conditions ⁽³⁾

Supply voltage (V _{DD})	5V to 17V
SW voltage (V _{sw})	1V to +100V
SW slew rate	<<50V/ns
Operating junction temp (T _J)	40°C to +125°C

Thermal Resistance (4)	θја	θις
QFN-10 (4mmx4mm)	47	7°C/W
QFN-8 (4mmx4mm)	47	7°C/W
SOIC-8	96	45°C/W

Notes:

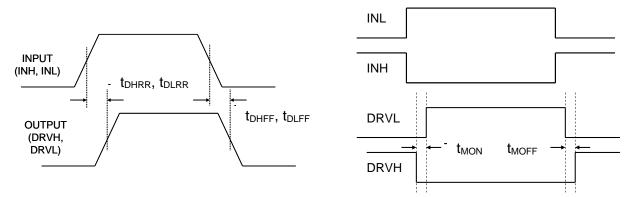
- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_D(MAX) = (T_J (MAX) - T_A) / \theta_{JA}$. Exceeding the maximum allowable power dissipation can produce an excessive die temperature, which may cause the device to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 $V_{DD} = V_{BST} - V_{SW} = 12V$, $V_{SS} = V_{SW} = 0V$, no load at DRVH and DRVL, $T_A = -40^{\circ}C$ to 125°C, unless otherwise noted.

arameter Symbol Condition				Тур	Max	Units
Supply Currents						
VDD quiescent current	IDD_Q	$V_{INL} = V_{INH} = 0V$		130	300	μA
VDD operating current	I _{DD_OP}	$f_{SW} = 500 \text{kHz}, C_{LOAD} = 0 \text{nF}$		2.6	6	mA
Floating driver quiescent		$V_{INL} = V_{INH} = 0V$		60	150	μA
current	IBST_Q	VINL = VINH = 0V		00	150	μΑ
Floating driver operating current	IBST_OP	$fsw = 500kHz, C_{LOAD} = 0nF$		2.6	6	mA
BST to VSS quiescent current	IBST-SS_Q	$V_{BST} = V_{SW} = 115V$		0.05	1	μA
BST to VSS operating current	IBST-SS_OP	$f_{SW} = 500 kHz, C_{LOAD} = 0 nF$		2.3	5.5	mA
Leakage current	I _{LKG}	$V_{BST} = V_{SW} = 100V$		0.05	1	μA
Inputs						
INL and INH high voltage				2	2.4	V
INL and INH low voltage			0.8	1.2		V
Input voltage hysteresis				600		mV
INL and INH internal pull-down	RINL			155		kΩ
resistance	RINH			155		kΩ
Under-Voltage Protection (UV	LO) Protecti	on	-		-	
VDD rising threshold	V _{DD_RISING}		4.6	5	5.4	V
VDD falling threshold	VDD_FALLING		4.1	4.5	4.9	V
(BST - SW) rising threshold	VBST_RISING		1.6	3.7	4.9	V
(BST - SW) falling threshold	$V_{\text{BST}_\text{FALLING}}$		1.4	3.2	4.6	V
Bootstrap Diode						
Bootstrap diode VF at 100µA	V _{F1}			0.5	0.9	V
Bootstrap diode VF at 100mA	V _{F2}			1	1.2	V
Bootstrap diode dynamic R	R⊳	IVDD-BST = 100mA and 80mA		3.1	6.5	Ω
Low-Side MOSFET (LS-FET) G	ate Driver					
Low-level output voltage	Voll	Iout = 100mA	0.02	0.07	0.2	V
High-level output voltage to rail	Vohl	Iout = -100mA	0.02	0.07	0.3	V
Source current ⁽⁵⁾	I _{OHL}	$V_{DRVL} = 0V, V_{DD} = 12V$		7		A
	IOHE	$V_{DRVL} = 0V, V_{DD} = 16V$		9		A
Sink current ⁽⁵⁾	IOLL	$V_{DRVL} = V_{DD} = 12V$		8		A
		$V_{DRVL} = V_{DD} = 16V$		10		A
Floating High-Side MOSFET (I	,		r	1	r	1
Low level output voltage	Volh	Iout = 100mA	0.02	0.07	0.2	V
High level output voltage to rail	Vонн	Iout = -100mA	0.02	0.07	0.3	V
Source current ⁽⁵⁾	I _{ОНН}	$V_{DRVH} = 0V, V_{DD} = 12V$ $V_{DRVH} = 0V, V_{DD} = 16V$		7 9		A A
Sink current ⁽⁵⁾	Іогн	$V_{DRVH} = V_{DD} = 12V$		8		А
Quaitaking Quasifications (I.Q.		$V_{DRVH} = V_{DD} = 16V$		10		A
Switching Specifications (LS-		*	-		50	
Turn-off propagation delay	t _{DLFF}	$C_{LOAD} = 0$ nF, INL falling to DRVL falling	5	20	50	ns
Turn-on propagation delay	t DLRR	$C_{LOAD} = 0$ nF, INL rising to DRVL rising	5	20	50	ns
DRVL rise time	trise_ls	$C_{LOAD} = 1nF$, from 10% to 90%		7.2	0.0	ns
		$C_{LOAD} = 0.1 \mu F$, from 3V to 9V		0.2	0.6	μs

ELECTRICAL CHARACTERISTICS (continued)

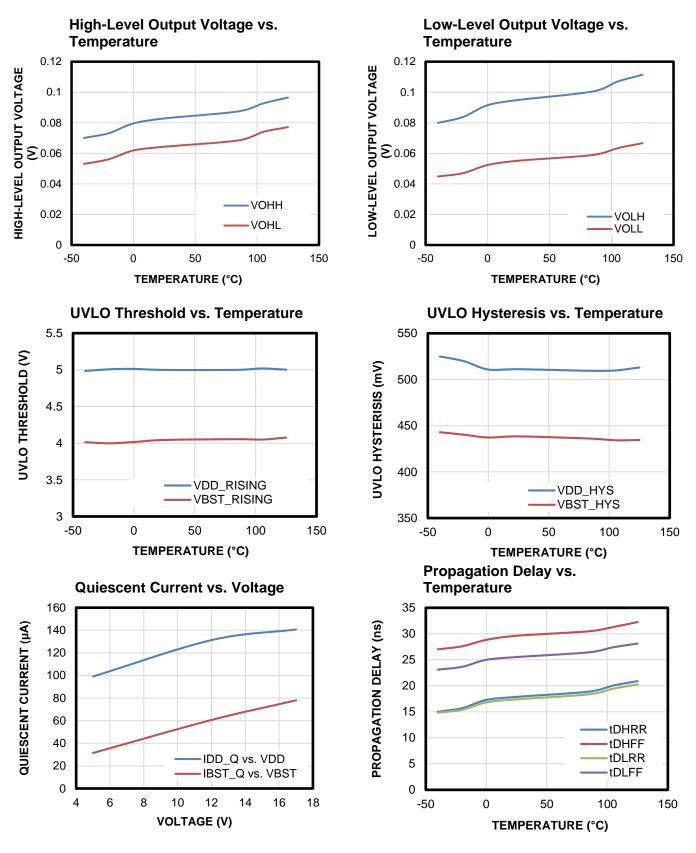

 $V_{DD} = V_{BST} - V_{SW} = 12V$, $V_{SS} = V_{SW} = 0V$, no load at DRVH and DRVL, $T_A = -40^{\circ}C$ to 125°C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
DRVL fall time	1	C _{LOAD} = 1nF, from 90% to 10%		5.5		ns
	tFALL_LS	$C_{LOAD} = 0.1 \mu F$, from 9V to 3V		0.15	0.4	μs
Switching Specifications (Floa	ating HS-FE	T Gate Driver)				
Turn-off propagation delay	t DHFF	$C_{LOAD} = 0nF$, INH falling to DRVH falling	5	20	50	ns
Turn-on propagation delay	t dhrr	C _{LOAD} = 0nF, INH rising to DRVH rising	5	20	50	ns
DRVH rise time	tavaa	C _{LOAD} = 1nF, from 10% to 90%		7.2		ns
DRVH lise lime	trise_hs	$C_{LOAD} = 0.1 \mu F$, (3V to 9V)		0.2	0.6	μs
DRVH fall time	tfall_hs	C _{LOAD} = 1nF, from 90% to 10%		5.5		ns
		$C_{LOAD} = 0.1 \mu F$, (9V to 3V)		0.15	0.4	μs
Switching Specifications (Mat	ching)					
HS-FET driver turn-off to LS- FET driver turn-on time ⁽⁵⁾	t _{MON}			1	5	ns
LS-FET driver turn-off to HS- FET driver turn-on time ⁽⁵⁾	tMOFF			1	5	ns
Minimum input pulse width to change the output ⁽⁵⁾	t _{PW}				50	ns
Bootstrap (BST) diode turn-on or turn-off time ⁽⁵⁾	t BST			10		ns
Thermal shutdown				165		°C
Thermal shutdown hysteresis				25		°C

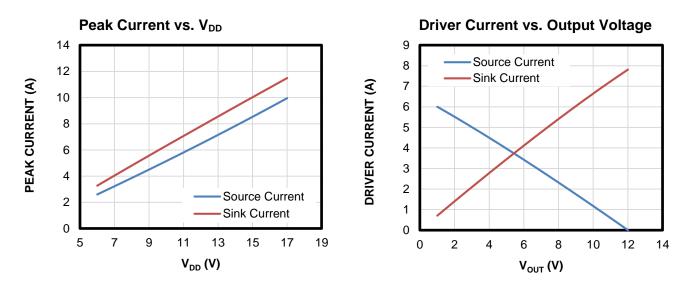
Note:

5) Guaranteed by design.

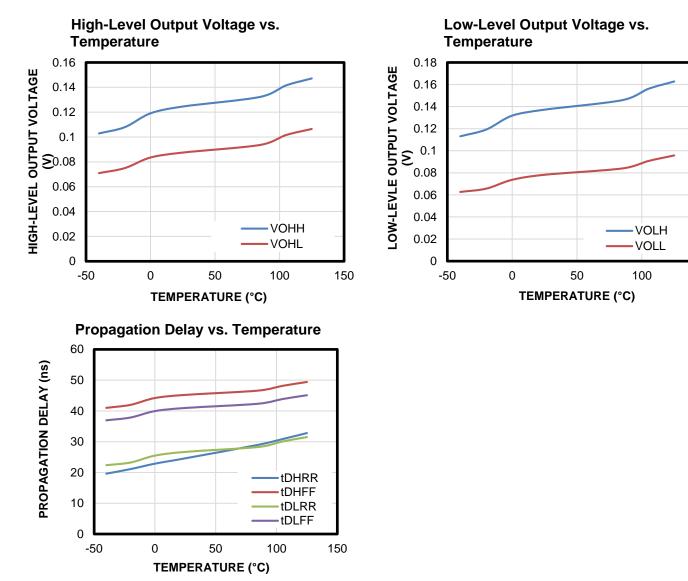
TIMING DIAGRAM



TYPICAL CHARACTERISTICS

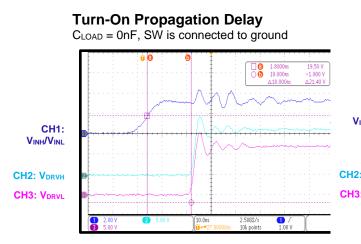

 V_{DD} = 12V, V_{SS} = V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

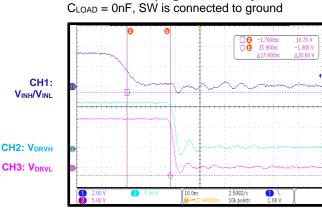
TYPICAL CHARACTERISTICS (continued)


 V_{DD} = 12V, V_{SS} = V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

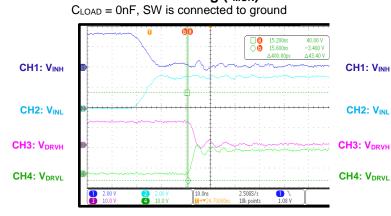
TYPICAL CHARACTERISTICS (continued)

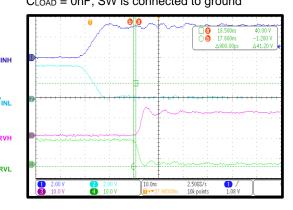
 V_{DD} = 5V, V_{SS} = V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

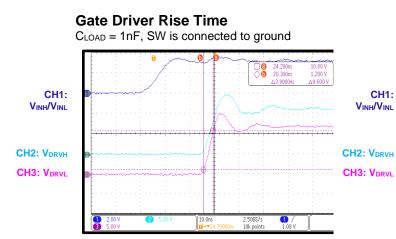



150

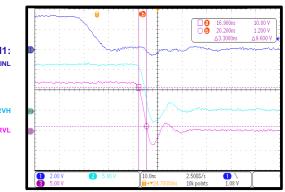
TYPICAL PERFORMANCE CHARACTERISTICS


 V_{DD} = 12V, V_{SS} = V_{SW} = 0V, T_{A} = 25°C, unless otherwise noted.

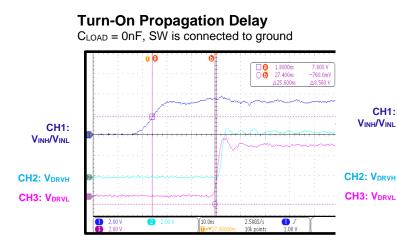


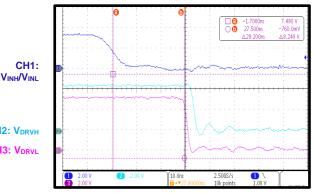

Turn-Off Propagation Delay

Gate Driver Matching (t_{MON})

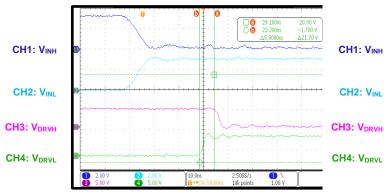


Gate Driver Matching (t_{MOFF}) C_{LOAD} = 0nF, SW is connected to ground

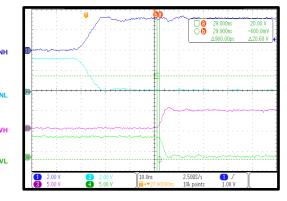


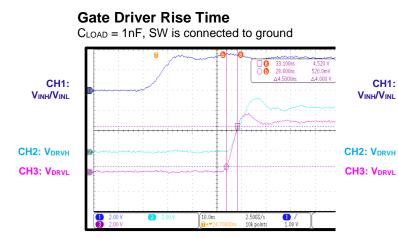


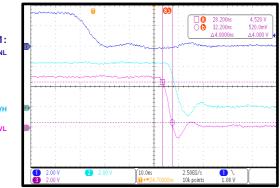
TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 V_{DD} = 5V, V_{SS} = V_{SW} = 0V, T_A = 25°C, unless otherwise noted.

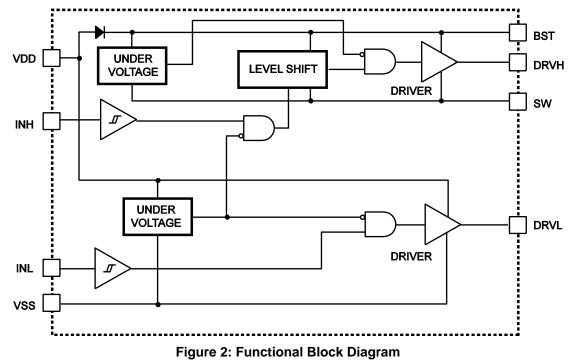
Turn-Off Propagation Delay CLOAD = OnF, SW is connected to ground




Gate Driver Matching (t_{MON}) C_{LOAD} = 0nF, SW is connected to ground


Gate Driver Matching (t_{MOFF})

 $C_{LOAD} = OnF$, SW is connected to ground



FUNCTIONAL BLOCK DIAGRAM

REFERENCE DESIGN CIRCUITS

Half-Bridge Converter

In a half-bridge converter topology, the high-side MOSFET (HS-FET) and low-side MOSFET (LS-FET) are driven alternately with a dead time (DT) inserted between their respective on periods. INT and INL are driven with alternating signals via the pulse-width modulation (PWM) controller. The input voltage (V_{IN}) can rise up to 100V when in a half-bridge topology (see Figure 5 in the Typical Application Circuits section on page 17).

Two-Switch Forward Converter

In a two-switch forward converter topology, the HS-FET and LS-FET start up and shutdown simultaneously. During current-mode control, the INH and INL input signals sense the output voltage (V_{OUT}) and output current (I_{OUT}) via a

PWM controller. The Schottky diodes clamp the power transformer's reverse swing, and should be rated for V_{IN} , which can rise up to 100V (see Figure 6 in the Typical Application Circuits section on page 17).

Active-Clamp Forward Converter

In an active-clamp forward converter topology, the HS-FET and LS-FET are driven alternately. The HS-FET and the reset capacitor (C_{RESET}) reset the power transformer without loss.

Active-clamp forward converter topologies are optimal for duty cycles exceeding 50%. The MP1923 may not be able to operate at 100V in an active-clamp forward topology (see Figure 7 in the Typical Application Circuits section on page 17).

APPLICATION INFORMATION

The INH and INL input signals can be controlled independently. If both INH and INL control the HS-FET and LS-FET of the same bridge, set a sufficient DT between the low INH and INL signals (and vice versa) to avoid shoot-through. DT is the time interval between low INH and low INL. Figure 3 shows the shoot-through timing diagram.

PCB Mounting

To comply with IPC-2221 or IPC-9592 standards, conformal coating is required after mounting the device on the PCB.

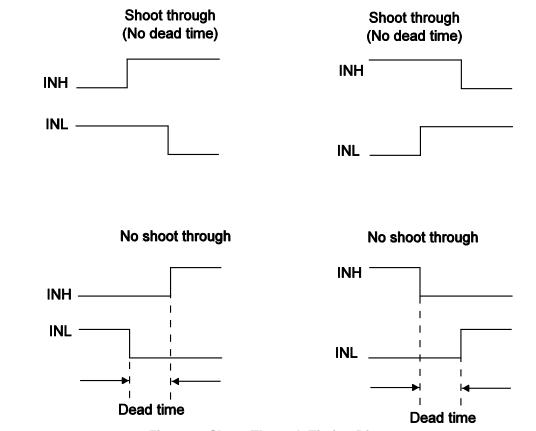


Figure 3: Shoot-Through Timing Diagram

PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. The MP1923 is designed to accommodate negative undershoot; however, excessive undershoot can lead to unpredictable operation or damage to the IC. For the best results, refer to Figure 4 and follow the guidelines below:

- 1. Connect the HS-FET source and the LS-FET drain using a short and direct trace to avoid negative undershoot on the phase node due to parasitic inductance.
- 2. Use surface-mount N-channel MOSFETs that allow for a very short connection between the HS-FETs and LS-FETs.
- 3. Place the bootstrap capacitor (C3) and the supply bypass capacitor (C2) as close to the IC as possible.
- 4. Connect the ground side of C3 and C2 to both the GND pin and the exposed pad using multiple vias. The ground side of the capacitors are connected to a solid ground plane.

5. Route the high-current ground path between the input supply, the input bulk capacitor (C6), and the MOSFETs. Route this path away from the IC.

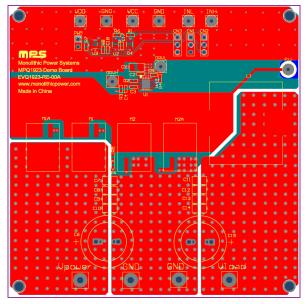


Figure 4: Recommended PCB Layout

TYPICAL APPLICATION CIRCUITS

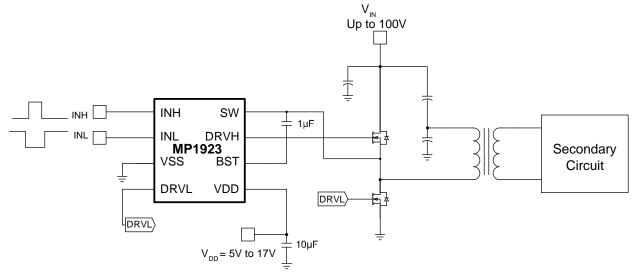


Figure 5: Typical Application Circuit (Half-Bridge Converter Topology)

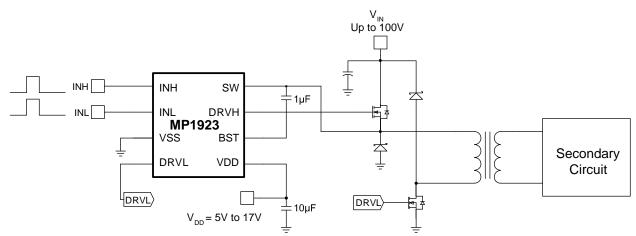
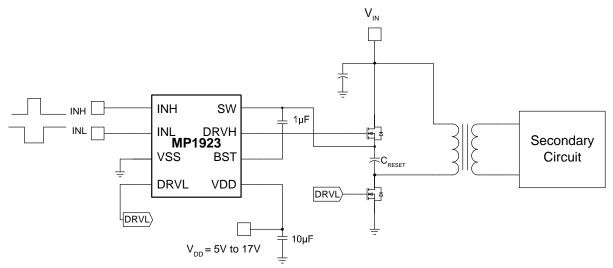
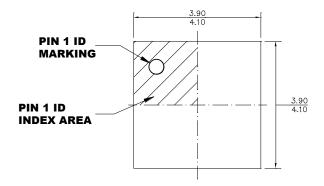
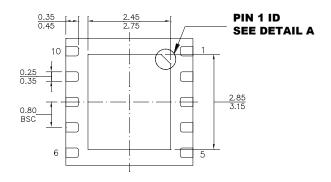
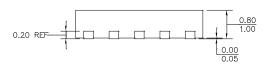



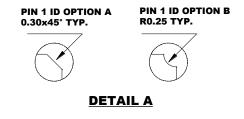
Figure 6: Typical Application Circuit (Two-Switch Forward Converter Topology)

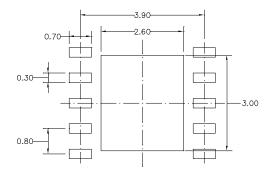




PACKAGE INFORMATION


QFN-10 (4mmx4mm)

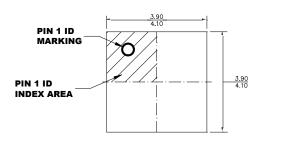

TOP VIEW

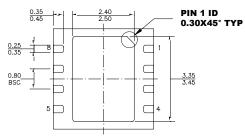


BOTTOM VIEW

SIDE VIEW

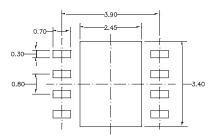
RECOMMENDED LAND PATTERN


NOTE:


 ALL DIMENSIONS ARE IN MILLIMETERS.
EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
JEDEC REFERENCE IS MO-220.
DRAWING IS NOT TO SCALE.

PACKAGE INFORMATION (continued)

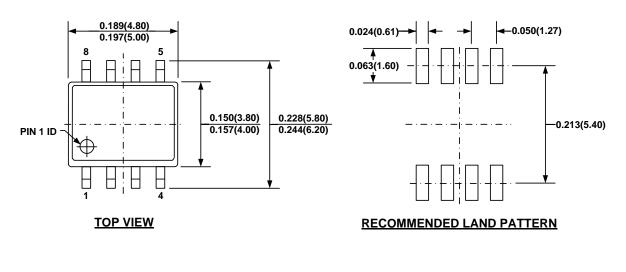
QFN-8 (4mmx4mm)

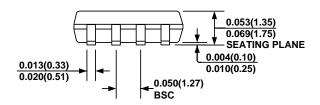


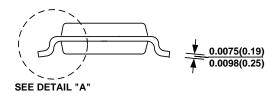
TOP VIEW

SIDE VIEW

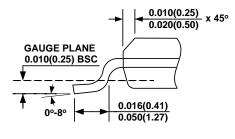
RECOMMENDED LAND PATTERN


NOTE:


 ALL DIMENSIONS ARE IN MILLIMETERS.
EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
JEDEC REFERENCE IS MO-220.
DRAWING IS NOT TO SCALE.

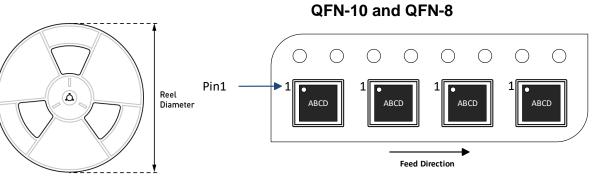

PACKAGE INFORMATION (continued)

SOIC-8

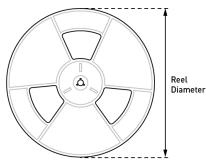


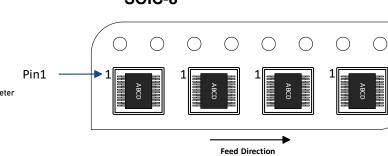
FRONT VIEW

SIDE VIEW


DETAIL "A"

NOTE:


- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH,
- PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.



CARRIER INFORMATION

SOIC-8

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MP1923GRE-Z	QFN-10 (4mmx4mm)	5000	N/A	13in	12mm	8mm
MP1923GR-Z	QFN-8 (4mmx4mm)	5000	N/A	13in	12mm	8mm
MP1923GS-Z	SOIC-8	2500	100	13in	12mm	8mm

MP1923 Rev. 1.1 7/14/2023 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2023 MPS. All Rights Reserved.

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	7/22/2022	Initial Release	-
1.1	7/14/2023	Updated the Top Marking section	2

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.