


# **Specification**

| Part No.     | : | PC29.09.0100A                               |  |
|--------------|---|---------------------------------------------|--|
|              |   |                                             |  |
| Product Name | : | TheStripe™                                  |  |
|              |   | Penta-band Cellular 850 / 900 / 1800 / 1900 |  |
|              |   | UMTS / WCDMA (3G) 2100 MHz PCB Antenna      |  |
| Feature      |   | 100mm long, 1.13 mm diameter                |  |
|              | • | Miniature Co-axial Cable MMCX(M)RA          |  |
|              |   | Average Efficiency 62%                      |  |
|              |   | Tested in Free space                        |  |
|              |   | Dims: 80*30mm                               |  |
|              |   | RoHS Compliant                              |  |

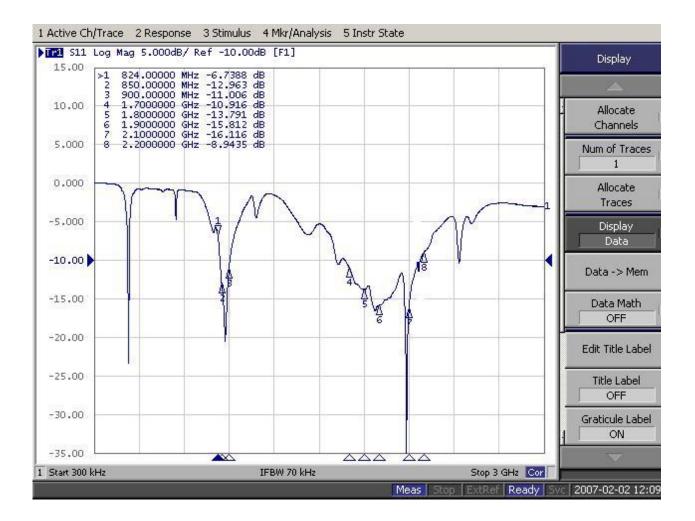




### **1. Introduction**

This high performance, low profile, PCB antenna is based on smart TheStripe<sup>™</sup> antenna technology. It consists of a PCB antenna and mini coaxial cable. The product is a high gain Penta-band 850/900/1800/1900/2100 antenna suitable for worldwide GSM, UMTS and WCDMA applications. Its high efficiency (62% average) makes it an ideal choice to pass telecom operator's testing approvals. The product should be tested in free space conditions connected to the client's cellular device.

Further optimization can be done upon receipt of the client's device at a local Taoglas facility.


| CELLULAR              |                                                                |          |          |         |            |
|-----------------------|----------------------------------------------------------------|----------|----------|---------|------------|
| Communication system  | AMPS                                                           | GSM      | DCS      | PCS     | UMTS/WCDMA |
| Frequency Band        | 850MHz                                                         | 900MHz   | 1800MHz  | 1900MHz | 2100MHz    |
| VSWR                  | 1.58                                                           | 1.78     | 1.51     | 1.38    | 1.37       |
| Return Loss           | -12.96                                                         | -11.00   | -13.79   | -15.81  | -16.11     |
| Efficiency            | 56.84%                                                         | 72.98%   | 63.52%   | 55.79%  | 63.25%     |
| Peak Gain             | 0.01dBi                                                        | 1.2dBi   | 2.66dBi  | 1.25dBi | 1.43dBi    |
| Average Gain          | -2.45dB                                                        | - 1.37dB | - 1.97dB | -2.53dB | -1.99dB    |
| Impedance             | 50 Ohm                                                         |          |          |         |            |
| Radiation Pattern     | Omnidirectional                                                |          |          |         |            |
| Polarization          | Horizontal                                                     |          |          |         |            |
| MECHANCIAL            |                                                                |          |          |         |            |
| Dimensions            | 80 * 30mm                                                      |          |          |         |            |
| RF Cable              | RF Coaxial Cable $\psi$ 1.13 ± 0.1mm, L = 100 mm<br>Gray Color |          |          |         |            |
| RF Connector          | MMCX(M)RA                                                      |          |          |         |            |
| ENVIRONMENTAL         |                                                                |          |          |         |            |
| Operation Temperature | -40°C to + 85°C                                                |          |          |         |            |
| Storage Temperature   | -40°C to + 95°C                                                |          |          |         |            |
| Relative Humidity     | 40% to 95%                                                     |          |          |         |            |

## 2. Specifications



### **3. Antenna Characteristics**

#### 3.1. Return loss





### 4. Reliability

| Test Items                          | Procedure                                                                                                                                                              | Requirement                                                                                                                                                         |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal Shock                       | Starting at -40 for 30minutes and<br>then cycled to +85 to remain<br>30minutes (a complete cycle). To<br>repeat 5 complete cycles. (Refer to<br>IEC 68-2-14 Method Na) | <ol> <li>The value of return loss<br/>must be within product<br/>specifications after this test.</li> <li>No physical deformation<br/>should be evident.</li> </ol> |
| Storage Temperature<br>(Cold)       | Samples must be put into -30°C<br>chamber for 72 hours and samples<br>shall be powered during test.<br>(Refer to IEC 68-2-1 Method Aa)                                 | <ol> <li>The value of return loss must<br/>be within product<br/>specifications after this test.</li> <li>No physical deformation<br/>should be evident.</li> </ol> |
| Storage Temperature<br>(Dry Heat)   | Samples must be put into +75°C<br>chamber for 72 hours and samples<br>shall be powered during test.<br>(Refer to IEC 68-2-1 Method Ba)                                 | <ol> <li>The value of return loss must<br/>be within product<br/>specifications after this test.</li> <li>No physical deformation<br/>should be evident.</li> </ol> |
| Operating Temperature<br>(Cold)     | Samples must be put into -20°C<br>chamber for 2 hours and samples<br>shall be powered during test.<br>(Refer to IEC 68-2-1 Method Aa)                                  | <ol> <li>The value of return loss must<br/>met specification during<br/>test/after test</li> <li>No mechanical defects after<br/>test.</li> </ol>                   |
| Operating Temperature<br>(Dry Heat) | Samples must be put into +65°C<br>chamber for 72 hours and samples<br>shall be powered during test.<br>(Refer to IEC 68-2-1 Method Ba)                                 | <ol> <li>The value of return loss must<br/>met specification during<br/>test/after test</li> <li>No mechanical defects after<br/>test.</li> </ol>                   |

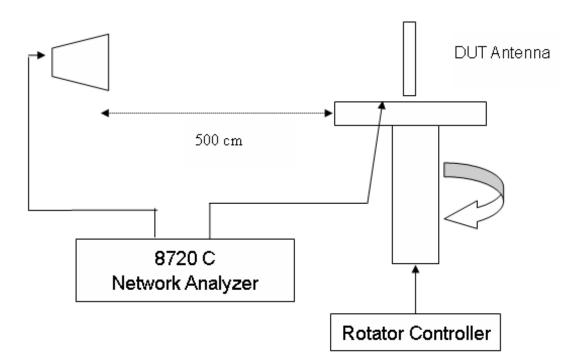


### 5. Antenna Test Procedures and Setup

#### **5.1. Test Procedure for VSWR/Return Loss**

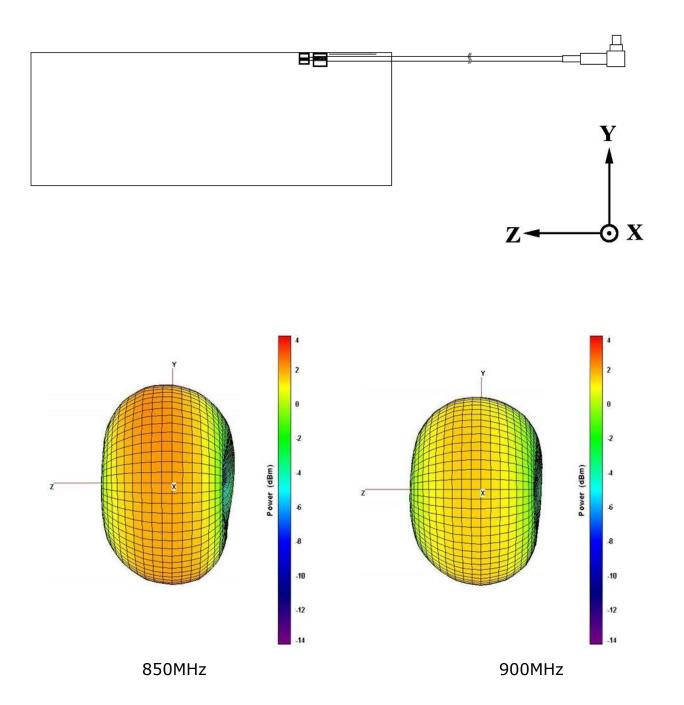
5.1.1. STEP 1 Route Cable in Correct Position

5.1.2. STEP 2 Connect Antenna to Module

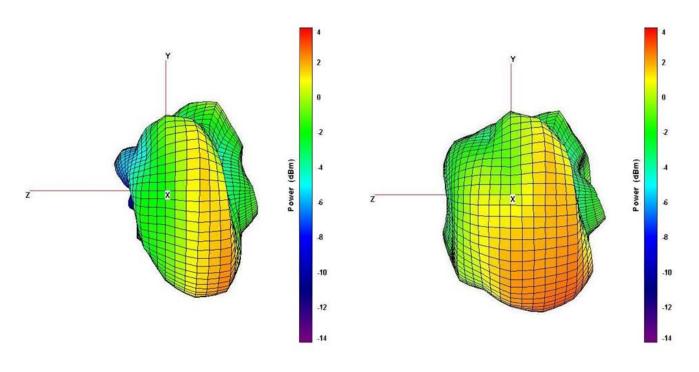

Connect feed-line to network analyze

- 5.1.3. STEP 3 Assemble Antenna in Correct Position
- 5.1.4. STEP 4 Assemble Housing

#### 5.2. 3D Radiation Pattern Testing

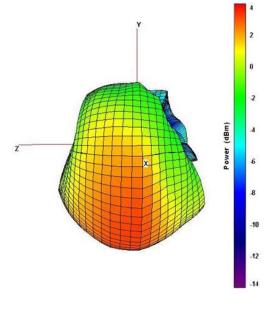

Test Setup Diagram

#### **Radiation Pattern Testing - Anechoic Chamber**






### 5.3. 3D Radiation Pattern Testing







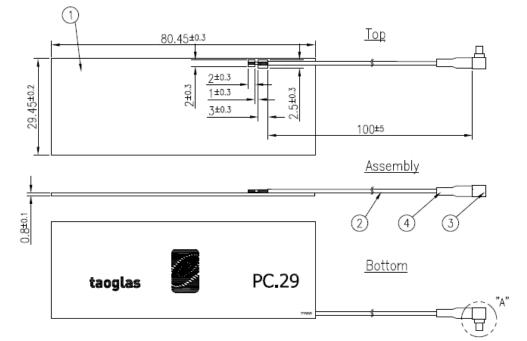

1800MHz

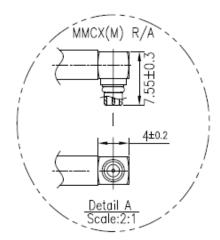









#### 5.4. 3D Chamber Testing – Tabular Results


| Channel                                         | 850                  | 900                  | 1800                 | 1900                | 2100                 |
|-------------------------------------------------|----------------------|----------------------|----------------------|---------------------|----------------------|
| Note                                            |                      |                      |                      |                     |                      |
| Ant. Port Input Pwr. (dBm)                      | 0                    | 0                    | 0                    | 0                   | 0                    |
| Tot. Rad. Pwr. (dBm)                            | -2.45333             | -1.36794             | -1.97033             | -2.53429            | -1.98915             |
| Peak EIRP (dBm)                                 | 0.015689             | 1.20176              | 2.66193              | 1.24876             | 1.43211              |
| Directivity (dBi)                               | 2.46902              | 2.5697               | 4.63226              | 3.78305             | 3.42126              |
| Efficiency (dB)                                 | -2.45333             | -1.36794             | -1.97033             | -2.53429            | -1.98915             |
| Efficiency (%)                                  | 56.8417              | 72.9803              | 63.5283              | 55.7919             | 63.2536              |
| Gain (dBi)                                      | 0.015689             | 1.20176              | 2.66193              | 1.24876             | 1.43211              |
| NHPRP ±Pi/4 (dBm)                               | -3.02704             | -1.92238             | -2.97144             | -3.45498            | -2.82882             |
| NHPRP ±Pi/6 (dBm)                               | -4.06616             | -2.96253             | -4.30533             | -4.76442            | -4.0912              |
| NHPRP ±Pi/8 (dBm)                               | -5.02906             | -3.92452             | -5.46289             | -5.86661            | -5.13854             |
| Upper Hem. PRP (dBm)                            | -5.26654             | -4.1779              | -8.15472             | -6.78538            | -4.25527             |
| Lower Hem. PRP (dBm)<br>NHPRP4 / TRP Ratio (dB) | -5.67008<br>-0.57372 | -4.58827<br>-0.55444 | -3.16646<br>-1.00111 | -4.58066            | -5.89806<br>-0.83967 |
| NHPRP4 / TRP Ratio (0B)                         | 87.6251              | 88.0149              | 79.4126              | 80.8967             | 82.4201              |
| NHPRP6 / TRP Ratio (dB)                         | -1.61284             | -1.59459             | -2.335               | -2.23013            | -2.10205             |
| NHPRP6 / TRP Ratio (%)                          | 68.9789              | 69.2693              | 58.4117              | 59.8394             | 61.6304              |
| NHPRP8 / TRP Ratio (dB)                         | -2.57573             | -2.55658             | -3.49256             | -3.33232            | -3.14939             |
| NHPRP8 / TRP Ratio (%)                          | 55.2621              | 55,5062              | 44.7449              | 46.4268             | 48.424               |
| UHPRP / TRP Ratio (dB)                          | -2.81321             | -2.80996             | -6.18439             | -4.25109            | -2.26612             |
| UHPRP / TRP Ratio (%)                           | 52.3213              | 52.3605              | 24.0747              | 37.5743             | 59.3455              |
| LHPRP / TRP Ratio (dB)                          | -3.21676             | -3.22033             | -1.19613             | -2.04636            | -3.90891             |
| LHPRP / TRP Ratio (%)                           | 47.6787              | 47.6395              | 75.9253              | 62.4257             | 40.6545              |
| Front/Back Ratio (dB)                           | 0.845463             | 1.05517              | 9.54643              | 6.84502             | 5.08847              |
| Phi BW (°)                                      | 360                  | 360                  | 178                  | 201                 | 222                  |
| + Phi BW (°)                                    | 360                  | 360                  | 88                   | 125                 | 65                   |
| - Phi BW (°)                                    | 0                    | 0                    | 90                   | 76                  | 157                  |
| Theta BW (°)                                    | 81                   | 80                   | 46                   | 66                  | 105                  |
| + Th. BW (°)                                    | 38                   | 38                   | 19                   | 41                  | 46                   |
| - Th. BW (°)                                    | 43                   | 42                   | 27                   | 25                  | 59                   |
| Boresight Phi (°)                               | 255                  | 255                  | 300                  | 240                 | 315                  |
| Boresight Th. (°)                               | 90                   | 90                   | 120                  | 105                 | 90                   |
| Maximum Power (dBm)                             | 0.015689             | 1.20176              | 2.66193              | 1.24876             | 1.43211              |
| Minimum Power (dBm)                             | -19.5093             | -20.8812             |                      | -14.9471            |                      |
| Average Power (dBm)<br>Max/Min Ratio (dB)       | -3.93427<br>19.525   | -2.8818<br>22.083    | -2.73192<br>16.4401  | -3.54007<br>16.1959 | -3.05829<br>14.8936  |
| Max/Avg Ratio (dB)                              | 3.94996              | 4.08357              | 5.39385              | 4.78883             | 4.4904               |
| Min/Avg Ratio (dB)                              | -15.575              | -17.9994             | -11.0462             | -11.4071            | -10.4032             |
| Average Gain (dB)                               | -2.45333             | -1.36794             | -1.97033             | -2.53429            | -1.98915             |
| E-Plane BW (°)                                  | 360                  | 360                  | 168                  | 194                 | 214                  |
| + E-Plane BW (°)                                | 360                  | 360                  | 98                   | 125                 | 158                  |
| - E-Plane BW (°)                                | 0                    | 0                    | 70                   | 69                  | 56                   |
| H-Plane BW (°)                                  | 81                   | 80                   | 48                   | 72                  | 104                  |
| + H-Plane BW (°)                                | 42                   | 41                   | 27                   | 26                  | 48                   |
| - H-Plane BW (°)                                | 39                   | 39                   | 21                   | 46                  | 56                   |

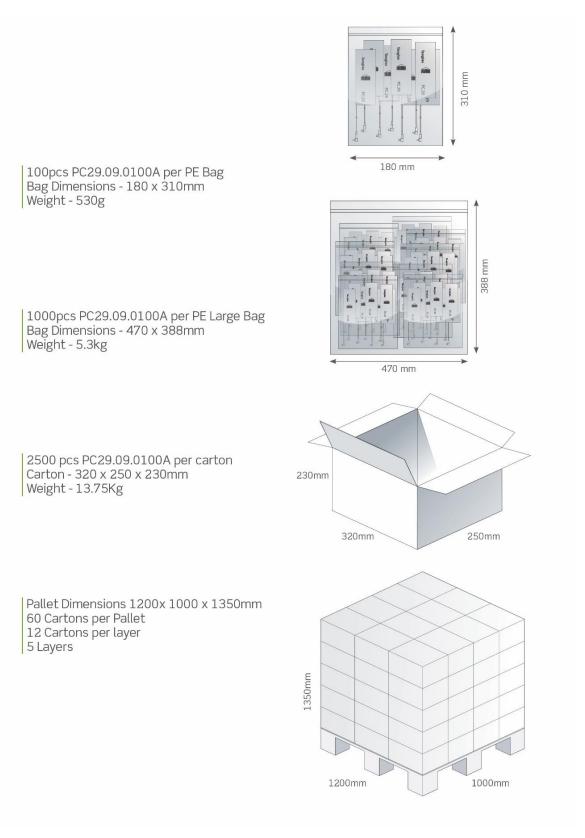


### 6. Mechanical Drawings (Unit: mm)

#### 6.1. Dimensions and Drawing






|   | Name                    | P/N            | Material | Finish    | QTY |
|---|-------------------------|----------------|----------|-----------|-----|
| 1 | PC29 PCB                | 100211C050005A | FR4 0.8t | Black     | 1   |
| 2 | 1.13 Mini-Coaxial Cable | 300215C020000A | FEP      | Black     | 1   |
| 3 | MMCX(M) R/A             | 202812B000013A | Brass    | Au Plated | 1   |
| 4 | Heat Shrink Tube        | 001315C000000A | PE       | Black     | 1   |

#### 6.2. Antenna Placement

Antenna designed to for testing when connected outside the client's device and placed in frees pace conditions, for example on plastic foam block. Final product can use preapplied double sided adhesive tape, slot or screw mount.



### 7. Packaging (Unit: mm)





Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.

Taoglas reserves the rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

Copyright © Taoglas Ltd.