93S46 # HIGH SPEED 6-BIT IDENTITY COMPARATOR **DESCRIPTION** — The '46 is a very high speed 6-bit identity comparator. The device compares two words of up to six bits and indicates identity in less than 12 ns. It is easily expandable to any word length by using either serial or parallel expansion techniques. When the Enable input (E) is LOW, it forces the output LOW. - COMPARES TWO 6-BIT WORDS IN 12 ns - EASILY EXPANDABLE TO ANY WORD SIZE - ACTIVE HIGH ENABLE FOR FAST RIPPLE EXPANSION ORDERING CODE: See Section 9 | | PIN
OUT | COMMERCIAL GRADE | MILITARY GRADE | PKG
TYPE | | |--------------------|------------|--|---|-------------|--| | PKGS | | $V_{CC} = +5.0 \text{ V } \pm 5\%,$
$T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ | $V_{CC} = +5.0 \text{ V} \pm 10\%,$
$T_A = -55^{\circ}\text{ C} \text{ to } +125^{\circ}\text{ C}$ | | | | Plastic
DIP (P) | Α | 93S46PC | | 9B | | | Ceramic
DIP (D) | А | 93S46DC | 93S46DM | 6B | | | Flatpak
(F) | Α | 93S46FC | 93S46FM | 4L | | ### **CONNECTION DIAGRAM** PINOUT A INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions | PIN NAMES | DESCRIPTION | 93S (U.L.)
HIGH/LOW | |--|--|--| | A ₀ — A ₅
B ₀ — B ₅
E
A = B | Word A Inputs Word B Inputs Enable Input (Active HIGH) A Equal to B Output | 1.25/1.25
1.25/1.25
1.25/1.25
25/12.5 | #### LOGIC SYMBOL B-11 1598 6-106 S ---- 09346-1X 46 FUNCTIONAL DESCRIPTION — The '46 is a very high speed 6-bit identity comparator. The A = B output is HIGH when the Enable (E) is HIGH and the two 6-bit words are equal. Equality is determined by Exclusive-NOR circuits which individually compare the equivalent bits from each word. When any two of the equivalent bits from each word have different logic levels, the A = B output is LOW. $$(\mathsf{A}=\mathsf{B})=(\overline{\mathsf{A}_0\ \oplus\ \mathsf{B}_0})\bullet(\overline{\mathsf{A}_1\ \oplus\ \mathsf{B}_1})\bullet(\overline{\mathsf{A}_2\ \oplus\ \mathsf{B}_2})\bullet(\overline{\mathsf{A}_3\ \oplus\ \mathsf{B}_3})\bullet(\overline{\mathsf{A}_4\ \oplus\ \mathsf{B}_4})\bullet(\overline{\mathsf{A}_5\ \oplus\ \mathsf{B}_5})\bullet\mathsf{E}$$ An active HIGH Enable (E) provides a means of fast ripple expansion. By connecting the A = B output of the first stage of the comparator to the enable of the next stage, the comparator can be expanded in 6-bit increments at an additional 4.5 ns per stage. An even faster expansion technique is achieved by connecting the A = B outputs to a Schottky NAND gate. This method compares two words of up to 78 bits each in 15 ns (typical) using the '133 13-input Schottky NAND gate. **TRUTH TABLE** | | INPUTS | OUTPUT | | | |----------|---|--------|--|--| | E An, Bn | | A = B | | | | LLH | $A_n = B_n$ $A_n \neq B_n$ $A_n \neq B_n$ $A_n = B_n$ | LLT | | | H = HIGH Voltage Level L = LOW Voltage Level #### RIPPLE EXPANSION NOTE: This simple method of expansion adds 4.5 ns for each additional '46 used. #### **PARALLEL EXPANSION** NOTE: This method of expansion adds one gate delay (=3 ns) to the '46, independent of the word length that is compared. 1599 B-12 6-107 S---- 09346-2x T. 45-17 ### LOGIC DIAGRAM ## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) | SYMBOL | PARAMETER | 938 | | UNITS | CONDITIONS | |--------|----------------------|-----|-----|-------|-----------------------| | | FARABLIEN | Min | Max | | | | lcc | Power Supply Current | | 70 | mA | V _{CC} = Max | AC CHARACTERISTICS: Vcc = +5.0 V, T_A = +25°C (See Section 3 for waveforms and load configurations) | SYMBOL | | 9 | 93S
C _L = 15 pF | | CONDITIONS | |--------------|--|------------------|-------------------------------|----|---| | | PARAMETER | C _L = | | | | | | | Min | Max | | | | tplH
tpHL | Propagation Delay
A _n or B _n to A = B | 3.0
3.0 | 17
17 | ns | E = 4.5 V, Other Inputs
= 4.5 V, Test each input
individually, Figs. 3-1, 3-5 | | tplH
tpHL | Propagation Delay
A _n or B _n to A = B | 3.0
3.0 | 14
15 | ns | E = 4.5 V, Other Inputs
= Gnd, Test each input
individually, Figs. 3-1, 3-4 | | tplH
tpHL | Propagation Delay
E to A = B | 2.0
2.0 | 10
10 | ns | A _n = B _n
Figs. 3-1, 3-5 |