

HA-5101, HA-5111

Low Noise, High Performance Operational Amplifiers

April 1993

Applications

- High Quality Audio Preamplifiers
- . High Q Active Filters
- Low Noise Function Generators
- · Low Distortion Oscillators
- Low Noise Comparators
- For Further Design Ideas, See Application Note 554

Description

The HA-5101/5111 are dielectrically isolated operational amplifiers featuring low noise and high performance. Both amplifiers have an excellent noise voltage density of 3.0nV/Hz at 1kHz. The uncompensated HA-5111 is stable at a minimum gain of 10 and has the same DC specifications as the unity gain stable HA-5101. The difference in compensation yields a 100MHz gain-bandwidth product and a 50V/µs slew rate for the HA-5111 versus a 10MHz unity gain bandwidth and a 10V/µs slew rate for the HA-5101.

DC characteristics of the HA-5101/5111 assure accurate performance. The 0.5mV offset voltage is externally adjustable and offset voltage drift is just $3\mu V/^{\circ}C$. An offset current of only 30nA reduces input current errors and an open loop voltage gain of 1 x $10^6 V/V$ increases loop gain for low distortion amplification.

The HA-5101/5111 are ideal for audio applications, especially low-level signal amplifiers such as microphone, tape head and phono cartridge preamplifiers. Additionally, it is well suited for low distortion oscillators, low noise function generators and high Q filters.

Pinouts (See Ordering Information on Next Page)

HA-5101, HA-5111

*HA-5101 No Connect HA-5111 Compensation

HA-5101

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5101-2	-55°C to +125°C	8 Pin Can
HA2-5101-5	0°C to +75°C	8 Pin Can
HA3-5101-5	0°C to +75°C	8 Lead Plastic DIP
HA4P5101-5	0°C to +75°C	20 Lead PLCC
HA7-5101-2	-55°C to +125°C	8 Lead Ceramic DIP
HA7-5101-5	0°C to +75°C	8 Lead Ceramic DIP
HA9P5101-5	0°C to +75°C	8 Lead SOIC
HA9P5101-9	-40°C to +85°C	8 Lead SOIC

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HA2-5111-2	-55°C to +125°C	8 Pin Can
HA2-5111-5	0°C to +75°C	8 Pin Can
HA3-5111-5	0°C to +75°C	8 Lead Plastic DIP
HA7-5111-2	-55°C to +125°C	8 Lead Ceramic DIP
HA7-5111-5	0°C to +75°C	8 Lead Ceramic DIP
HA9P5111-5	0°C to +75°C	8 Lead SOIC
HA9P5111-9	-40°C to +85°C	8 Lead SOIC
1		l

Specifications HA-5101, HA-5111

Absolute Maximum Ratings (Note 1)

Operating Conditions

T _A = +25°C Unless Otherwise Specified
Voltage Between V+ and V- Terminals
Differential Input Voltage7V
Voltage (at Any Lead)±V _{SUPPLY}
Output Current Full Short Circuit Protection
Junction Temperature (Note 8) +175°C
Junction Temperature (Plastic Packages)+150°C
Lead Temperature (Soldering 10 Sec.) +300°C

	Operating remperature har
55°C to +125°C	HA-5101/5111-2
0°C to +75°C	HA-5101/5111-5
40°C to +85°C	
ge65°C to +150°C	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications V+ = +15V, V- = -15V, R_S = 100Ω , R_L = $2k\Omega$, C_L = 50pF, Unless Otherwise Specified.

		HA-5101-2, -5 HA-5111-2, -5		HA-5101-9 HA-5111-9				
PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS				•				
Offset Voltage	+25°C	-	0.5	3	· -	0.5	3	mV
	Full	•	•	4	- -	-	4	m∨
Offset Voltage Drift	Full	•	3		-	3	-	μV/°C
Bias Current	+25°C	-	100	200	-	100	200	nA
	Full	-	-	325	-	-	325	nA
Offset Current	+25°C	-	30	75		30	75	nA
	Full	-	-	125	-	-	125	nA
Input Resistance	+25°C	-	500	-	-	500	-	kΩ
Common Mode Range	Full	±12	-	-	±12		-	٧
TRANSFER CHARACTERISTICS		<u> </u>	•	·	<u> </u>			
Large Signal Voltage Gain (Note 2)	+25°C	-	1000		-	1000	-	kV/V
	Fuil	100	250	-	100	250	-	kV/V
Common Mode Rejection Ratio (Note 3)	Full	80	100	-	80	100	-	dB
Small Signal Bandwidth HA-5101 (A _V = 1)	+25°C	•	10	-	-	10	-	MHz
Minimum Stable Gain						·		
HA-5101	Full	1			1		-	V/V
HA-5111	Full	10	-	-	10	-	-	V/V
Gain Bandwidth Product HA-5111 (A _V = 10)	+25°C	-	100		-	100	-	MHz
OUTPUT CHARACTERISTICS						· · · · · · · · · · · · · · · · · · ·	•	•
Output Voltage Swing								
$R_L = 10k\Omega$	Full	±12	±13	١.	±12	±13	-	٧
$R_L = 2k\Omega$	Full	±12	±13		±12	±13	-	٧
$(V_{PS} = \pm 18, R_L = 600)$	+25°C	±15	-	-	±15		-	V
Output Current (Note 4)	+25°C	25	30	-	25	30	-	mA
Full Power Bandwidth (Note 5)								
HA-5101	+25°C	95	160	-	95	160	-	kHz
HA-5111	+25°C	630	790	-	630	790		kHz
Output Resistance	+25°C	-	110	-	-	110	-	Ω
Maximum Load Capacitance	+25°C	-	800		-	800	-	pF

mΑ

dΒ

	TEMP	HA-5101-2, -5 HA-5111-2, -5		HA-5101-9 HA-5111-9			!	
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
TRANSIENT RESPONSE (Note 6)								
Rise Time								
HA-5101	+25°C	-	50	100	-	50	100	ns
HA-5111	+25°C	-	30	60	-	30	60	ns
Overshoot								
HA-5101	+25°C	-	20	35		20	35	%
HA-5111	+25°C	-	20	40	-	20	40	%
Slew Rate		_				1		
HA-5101	+25°C	6	10	-	6	10	_	V/µs
HA-5111	+25°C	40	50	-	40	50	-	V/μs
Settling Time (Note 7)							-	
HA-5101 0.01%	-	-	2.6	-	-	2.6	-	μs
HA-5111 0.01%	-	-	0.5	-	-	0.5	-	μs
NOISE CHARACTERISTICS (Note 10)					•		·	
Input Noise Voltage								
f = 10Hz	+25°C	-	5	7	-	5	7	nV/√Hz
f = 1kHz	+25°C	-	3.0	4.0		3.0	4.0	nV/√Ĥz
Input Noise Current								
f = 10Hz	+25°C	-	4.0	9	-	4.0	9	pA∕√Hz
f = 1kHz		-	0.6	2.5	-	0.6	2.5	pA∕√Hz
Broadband Noise Voltage f = DC to 30kHz	+25°C		0.870			0.870		uVrms

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.

4

100

6

80

4

100

2. $V_{OUT} = \pm 10V$, $R_L = 2K$.

POWER SUPPLY CHARACTERISTICS Supply Current HA-5101/5111

Power Supply Rejection Ratio (Note 9)

- 3. $V_{CM} = \pm 10V$.
- 4. Output current is measured with $V_{OUT} = \pm 15V$ with $V_{SUPPLY} = \pm 18V$.
- $\frac{\text{Slew Rate}}{2\pi V_{\text{Peak}}}, V_{\text{Peak}} = 10V$ 5. Full power bandwidth is guaranteed by equation: Full power bandwidth =

80

- 6. Refer to Test Circuits section of the data sheet.
- 7. Settling time is measured to 0.01% of final value for a 10V output step, and $A_V = -10$ for HA-5111 and 0.01% of final value for a 10V output step, $A_V = -1$ for HA-5101.
- 8. See Thermal Constants in "Die Characteristics" text. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below +175°C for hermetic packages, and below +150°C for the plastic packages.
- 9. Delta V_{SUPPLY} = ±5V.
- 10. The limits for these parameters are guaranteed based on lab characterization, and reflect lot-to-lot variation.

Full

Full

Die Characteristics

Transistor Count	Thermal Constants (°C/W)	θ_{JA}	θ_{JC}
Die Dimensions 69 x 69 x	HA2-5101/5111 (Can)	114	35
(1800 x 1800 x 480μm)	HA3-5101/5111 (PDIP)	94	32
Substrate Potential*V- or Float	HA4P5101 (PLCC)	74	33
Process Bipolar DI	HA7-5101/5111 (CDIP)	115	35
 The Substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V- potential. 	HA9P5101/5111 (SOIC)	157	43

Test Circuits

FIGURE 2. HA-5101 SMALL SIGNAL RESPONSE CIRCUIT

Ch. 1 = 2.5V/Div.
Timebase = 200ns/Div.
FIGURE 3. HA-5111 LARGE SIGNAL TRANSIENT RESPONSE

Ch. 1 = 100mV/Div. Timebase = 100ns/Div. FIGURE 4. HA-5111 SMALL SIGNAL TRANSIENT RESPONSE

Ch. 1 = 2.5V/Div.
Timebase = 1.00µs/Div.
FIGURE 5. HA-5101 LARGE SIGNAL TRANSIENT RESPONSE

Ch. 1 = 50mV/Div.
Timebase = 100ns/Div.
FIGURE 6. HA-5101 SMALL SIGNAL TRANSIENT RESPONSE

Test Circuits (Continued)

FIGURE 7. HA-5111 LARGE AND SMALL SIGNAL RESPONSE CIRCUIT

FIGURE 8. SETTLING TIME CIRCUIT

- $A_V = -1$ (HA-5101), ${}^*A_V = -10$ (HA-5111)
- Feedback and summing resistors should be 0.1% matched.
- Clipping diodes are optional, HP5082-2810 recommended.

Typical Performance Curves

FIGURE 9. HA-5101/11 NOISE SPECTRUM

FIGURE 10. OFFSET VOLTAGE VS TEMPERATURE

PEAK-TO-PEAK NOISE 0.1Hz TO 10Hz $A_V \approx 25000 \ V_{CC} = \pm 15V \ (2.25 \mu Vp-p \ RTO)$

PEAK-TO-PEAK TOTAL NOISE 0.1Hz TO 1MHz $A_V = 25000$, $V_{CC} = \pm 15V$ (12.89mVp-p RTO)

Applications Information

Operation At ±5V Supply

The HA-5101/11 performs well at V_{CC} = $\pm 5V$ exhibiting typical characteristics as listed below:

I _{CC}	3.7	m A
V _{IO}	0.5	mV
BIAS	56	nA
A_{VOL} ($V_O = \pm 3V$)	106	kV/V
V _{OUT}	3.7	٧
l _{OUT}	13	mA
CMRR (ΔV _{CM} = ±2.5V)	90	dB
PSRR (ΔV _{CC} = 0.5V)	90	dB
Unity Bandwidth (5101)	10	MHz
GBW (5111)	100	MHz
Slew Rate (5101)	7	V/μs
Slew Rate (5111)	40	V/µs

Offset Adjustment

* The following is the recommended $V_{\mbox{\scriptsize IO}}$ adjust configuration:

Proper decoupling is always recommended, 0.1µF high quality capacitor should be at or very near the device's supply pins.

Compensation

An external compensation capacitor can be used with the HA-5111 connected between pin 8 and ground (or V-, V+ not Recommended). A plot of gain bandwidth product vs compensation capacitor has been included as a design aid. The capacitor should be a high frequency type mounted near the device leads to minimize parasitics.

Input Protection

The HA-5101/11 has built-in back-to-back protection diodes which will limit the differential input voltage to approximately 7V. If the 5101/11 will be used in conditions where that voltage may be exceeded, then current limiting resistors must be used. No more than 25mA should be allowed to flow in the HA-5101/11's input.

Comparator Circuit

Choose R_{LIM} Such That: $\frac{\left(\Delta V_{\text{INMAX}} - 7V\right)}{25\text{mA}} \le 2R_{\text{LIM}}$

Output Saturation

When an op amp is overdriven, output devices can saturate and sometimes take a long time to recover. Saturation can be avoided (sometimes) by using circuits such as:

If saturation cannot be avoided the HA-5101/11 recovers from a 25% overdrive in about 6.5 μs (see photos).

Top: Input Bottom: Output, 5V/Div., 2μs/Div.

Output is overdriven negative and recovers in 6µs.