LVR Series

Low-TCR Current Sense Chips

The resistors are constructed using out-

standing TCR level material, which makes

LVR resistors excellent for current sensing

converter. The composition of the resistive material is adjusted to give the LVR series

resistors more resistive stability than the

competition in very small package sizes.

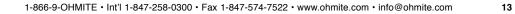
application in battery charger circuit & DC-DC

RoHS

APPLICATIONS

- Consumer goods
- Computer
- Telecom / Datacom
- Industrial / Power supply
- Alternative Energy
- Car electronics
- Battery

	S	ERIES	SPECIFIC/	TIONS	
Series	Size	Power Rating	Resistance Range	TCR (ppm/°C)	Tolerance
LVR02	0201	0.1W	3mΩ - 50mΩ	150ppm/°C	1%, 5%
LVR04	0402	0.125W	1mΩ - 2.9mΩ 3mΩ - 50mΩ	±350 ppm/°C ±150 ppm/°C	1%, 5%

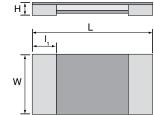

CHARACTERISTICS

Operating Temp. Range	-55°C to +125°C	Derating
Power Rating	Standard rated power at 70°C; see chart above	
Rated Voltage	The DC or AC (rms) continuous working voltage cor- responding to the rated power is determined by the following formula: $V = \sqrt{(PxR)}$ or max. working voltage whichever is less, where: V = Cont. rated DC or AC (rms) working voltage (V) P = Rated power (W) $R = Resistance$ value (Ω)	Be down on the first of the second se
Temperature Coeff. of Resistance	Size Resistance range TCR 0201 $3m\Omega - 50m\Omega$ $\pm 150 \text{ ppm/°C}$ 0402 $1m\Omega - 2.9m\Omega$ $\pm 350 \text{ ppm/°C}$ $3m\Omega - 50m\Omega$ $\pm 150 \text{ ppm/°C}$	Reflow Soldering Conditions
Terminations	Cu, Ni, matte Tin	2 200 ending 150 100 100 100 100 150 200 250 Time (sec.)

LVR Series

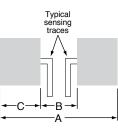
Low-TCR Current Sense Chips

		PERFORMANCE DATA	
Test	Method	Procedure	Requirements
Short time	IEC60115-1 4.13	2.5 times of rated power for 5 seconds at room temperature	±(1%+0.0005Ω)
overload			No visible damage
High	MIL-STD-202-Method	1,000 hours at maximum operating temperature depending on speci-	±(1.0%+0.0005Ω)
Temperature	108	fication, unpowered. No direct impingement of forced air to the parts	
Exposure		Tolerances: 125±5°C	
Moisture		Each temperature / humidity cycle is defined at 8 hours (method 106F),	±(0.5%+0.0005Ω)
Resistance	106	3 cycles / 24 hours for 10d with 25°C / 65°C 95% R.H, without steps 7a	
		& 7b, unpowered	
•	MIL-STD-202 Method	1,000 hours at 70±2°C applied RCWV. 1.5 hours on, 0.5 hour off, still air	±(1.0%+0.0005Ω)
Life/	108	required	
Endurance	IEC 60115-1 4.25.1		
	J-STD-002 test B	Electrical Test not required. Magnification 50X. SMD conditions: 1st step	Well tinned (>95% covered)
Wetting		: method B, aging 4 hours at 155° C dry heat; 2nd step: leadfree solder bath at 245±3°C; Dipping time: 3 ± 0.5 seconds	No visible damage
Moisture	MIL-STD-202 Method	Each temperature / humidity cycle is defined at 8 hours (Method 106G),	±(0.5% + 0.0005Ω)
Resistance	106	3 cycles / 24 hours for 10d. with 25°C / 65°C 95% R.H, without steps 7a	No visible damage
		& 7b, un-powered Parts mounted on test board, without condensation on parts. Measurement at 24±2 hours after test conclusion.	-
Thermal Shock		-55/+125°C. Number of cycles required is 300. Parts mounted on test board. Maximum transfer time is 20 seconds. Dwell time is 15 minutes.	±(1.0% + 0.0005Ω)
Board Flex/	IEC 60115-1 4.33	Device mounted on PCB test board as described, only 1 board bend-	±(1.0 % + 0.0005Ω)
Bending		ing required. 2 mm bending. Bending time: 60±1 seconds. Ohmic value checked during bending	. , , ,
Resistance	MIL-STD-202 Method	Condition B, no pre-heat of samples. Leadfree solder, 260±5°C,	±(0.5% + 0.0005Ω)
to Soldering	210	10±1seconds immersion time. Procedure 2 for SMD: devices fluxed and	No visible damage
Heat	IEC 60115-1 4.18	cleaned with isopropanol	

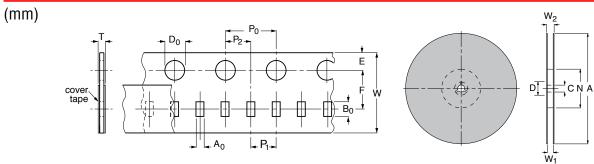


LVR Series

Low-TCR Current Sense Chips


DIMENSIONS

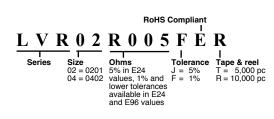
(mm)



Size	Res. Range	L	W	Н	11
0201	3mΩ - 50mΩ	0.60 ±0.03	0.31 ±0.04	0.30 ±0.05	0.15 ±0.06
0402	1mΩ - 2.9mΩ 3mΩ - 10mΩ 12mΩ - 50mΩ	1.00 ±0.10 1.00 ±0.10 1.00 ±0.10	0.55 ±0.10 0.55 ±0.10 0.55 ±0.10	0.30 ±0.10 Max. 0.30 Max. 0.40	0.25 ±0.10 0.25 ±0.10 0.25 ±0.10

Reflo	w So	lderi	ng fo	otprint
Size	Α	В	C	D
0201	1.0	0.3	0.35	0.4
0402	2.0	0.4	0.8	0.6

TAPE AND REEL


Paper/PE tape

Size	AO	BO	w	E	F	PO	P1	P2	ØDO	т	Qty. per reel (178mm)	
0201	0.35 ±0.10	0.65 ±0.10	8.0 ±0.20	1.75 ±0.10	3.5 ±0.05	4.0 ±0.10	2.0 ±0.05	2.0 ±0.05	1.5 +0.1/-0	0.35 ±0.10*	10,000	
0402	0.59 ±0.10	1.10 ±0.10	8.00 ±0.10	1.75 ±0.10	3.50 ±0.10	4.00 ±0.10	4.00 ±0.10	2.00 ±0.10	1.55 ±0.05	0.48 ±0.03	10,000	

Reel dimensions

Qty./reel	8mm tape	Α	Ν	C	D	W1	W2 max.
10,000	7" (Ø178mm)	178.0 ±1.0	60.0 +1/-0	13.50 ±0.5	21.0 ±0.8	9.0 ±0.5	12.0 ±0.2

ORDERING INFORMATION

