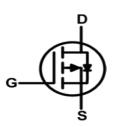


- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Description

The 15P06 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The 15P06 meet the RoHS and Green Product, requirement 100% EAS guaranteed with full function reliability approved.


Product Summary

BVDSS	RDSON	ID
-60V	70mΩ	-15A

TO252 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	-60	V	
Vgs	Gate-Source Voltage	±20	V	
lp@Tc=25°C	Continuous Drain Current, Vgs@-10V1	-15	Α	
lp@Tc=100°C	Continuous Drain Current, Vgs@-10V1	-8.3	Α	
ID@TA=25°C	Continuous Drain Current, VGS @ -10V1	-3.3	Α	
ID@TA=70°C	Continuous Drain Current, V _{GS} @ -10V ¹			
I _{DM}	Pulsed Drain Current ²			
EAS	EAS Single Pulse Avalanche Energy ³			
las	Avalanche Current	-13	Α	
P p@T c= 25 °C	Total Power Dissipation⁴	31.3	W	
PD@TA=25°C	Total Power Dissipation ⁴		W	
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}$ C	
Tu	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$	

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
RөJA	Thermal Resistance Junction-Ambient ¹		62	°C/W
Rелс	Thermal Resistance Junction-Case ¹		4	°C/W

Electrical Characteristics (T_J =25 °C unless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVpss	Drain-Source Breakdown Voltage	Vgs=0V, lp=-250uA	-60			V
△BVoss/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , lo=-		-0.023		V/°C
	0 5 . 0 . 0 . 5 2	Vgs=-10V, lp=-10A		70	90	mΩ
Rds(on)	Static Drain-Source On-Resistance ²	Vgs=-4.5V, ID=-5A		85	115	
V _G S(th)	Gate Threshold Voltage	V - V 1 - 050··A	-1		-2.5	V
△ VGS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vbs , lb =-250uA		4.65		mV/°C
		Vbs=-48V, Vgs=0V, TJ=25°C			-1	
loss	Drain-Source Leakage Current	eakage Current V _{DS} =-48V, V _{GS} =0V, T _J =55°C			-5	uA
lgss	Gate-Source Leakage Current	V _G S=±20V, V _D S=0V			±100	nA
gfs	Forward Transconductance	V _D s=-5V , I _D =-4A		8.7		S
Rg	Gate Resistance	V _D s=0V, V _G s=0V, f=1MHz		15		Ω
Qg	Total Gate Charge (-4.5V)			11.8		
Qgs	Gate-Source Charge	VDS=-12V, VGS=-4.5V, ID=-6A		1.9		nC
Qgd	Gate-Drain Charge			6.5		
T _{d(on)}	Turn-On Delay Time			8.8		
Tr	Rise Time	VDD=-15V, VGS=-10V,		19.6		
T _{d(off)}	Turn-Off Delay Time	R _G =3.3Ω, I _D =-1A		47.2		ns
Tf	Fall Time			9.6		
Ciss	Input Capacitance			1080		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		73		pF
Crss	Reverse Transfer Capacitance			50		

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
I s	Continuous Source Current ^{1,5}	Vg=Vp=0V . Force Current			-15	Α
Isм	Pulsed Source Current ^{2,5}	VG-VD-0V, Force Current			-26	Α
Vsd	Diode Forward Voltage ²	Vgs=0V, Is=-1A, TJ=25°C			-1	V

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating. The test condition is VDD=-10V,VGS=-10V,L=0.1mH,IAS=-24.4A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

P-Channel Typical Characteristics

Figure 1: Output Characteristics

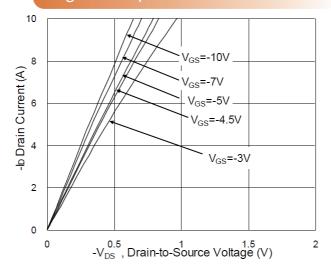


Figure 3:Forward Characteristics Of Rev

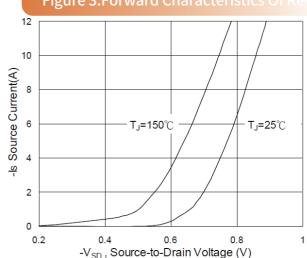


Figure 5: Normalized VGS(th) vs. TJ

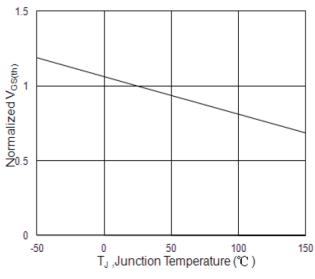


Figure 2: On-Resistance vs. G-S Voltage

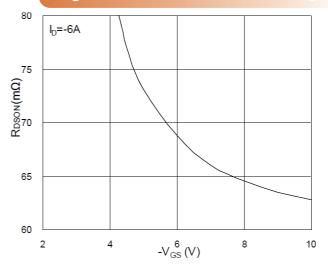
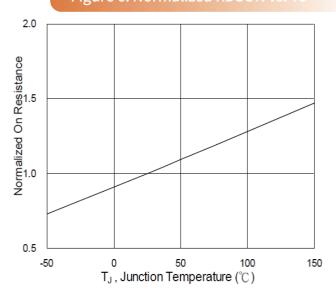



Figure 4: Gate-Charge Characteristics

Figure 6: Normalized RDSON vs. TJ

Typical Performance Characteristics

Figure 7: Capacitance

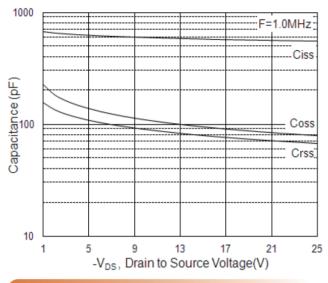


Figure 8: Safe Operating Area

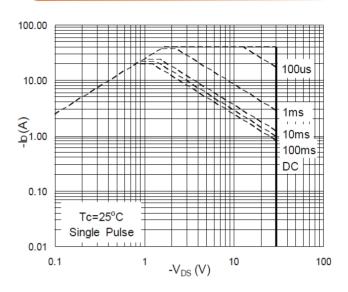
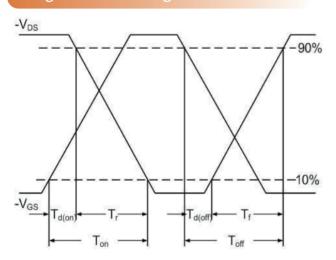
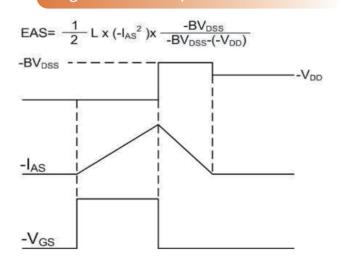
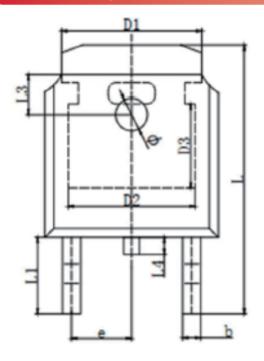
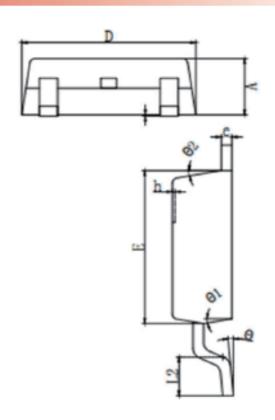


Figure 9: Normalized Maximum Transier

Figure 11: Switching Time Waveform


Figure 10: Unclamped Inductive Switchin

TO-252 Package outline

2000	MILLIMETER		to over	MILLIMETER		
SYMBOL	MIN	MAX	SYMBOL	MIN	MAX	
Ä	2. 200	2. 400	h	0.000	0.200	
A1	0.000	0. 127	L	9. 900	10. 30	
ь	0.640	0.740	L1	2.888 REF		
c	0.460	0.580	L2	1.400	1.700	
D	6. 500	6. 700	L3	1. 600 REF 0. 600 1. 000		
D1	5. 334	REF	L4			
D2	4.826	REF	ф	1. 100 1. 300 0° 8° 9° TYP2 9° TYP		
D3	3, 166	REF	θ			
E	6. 000	6. 200	θ1			
e	2, 286	TYP	θ2			