
 H11Lx-L series

Spec No. :DS70-2016-0020
Effective Date: 04/08/2023
Revision: B

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

H11Lx-L series 6-Pin Schmitt trigger Output Photocoupler with Ultra Low Power

1. Description

1.1 Features

- Ultra-low IDD current: $1.3 \mathrm{~mA} /$ channel maximum
- High data rate, 2 MHz typical (NRZ)
- Free from latch up and oscilliation throughout voltage and temperature ranges.
- Microprocessor compatible drive
- Logic compatible output sinks 16 mA at 0.4 V maximum
- Guaranteed on/off threshold hysteresis
- Wide operating range
- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}$.
- $10 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode transient immunity (CMTI) at $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$.

■ MSL Level 1

- Safety approval:

UL 1577 recognized with $5000 \mathrm{~V}_{\text {RMS }}$ for 1 minute VDE DIN EN60747-5-5, V ${ }_{\text {IORM }}=630$ Vpeak

1.2 Applications

- Logic to logic isolator
- Programmable current level sensor
- Line receiver—eliminate noise and transient problems
- A.C. to TTL conversion-square wave shaping
- Digital programming of power supplies
- Interfaces computers with peripherals

Functional Diagram

Truth Table

Input	Output
H	L
L	H

Data Sheet

Photocoupler H11Lx-L series

2. PACKAGE DIMENSIONS

2.1 H11Lx-L

2.3 H11LxS-L

2.2 H11LxM-L

Notes:

1. Year date code.
2. 2-digit work week.
3. Factory identification mark (W: China-CZ, Y: Thailand)
4. VDE option.
5. Part number: H11L1 / H11L2 / H11L3

* Dimensions are in Millimeters and (Inches).

3. TAPING DIMENSIONS

3.1 H11LxS-TA-L

3.2 H11LxS-TA1-L

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$16 \pm 0.3(0.63)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$7.5 \pm 0.1(0.295)$
	P_{2}	$2 \pm 0.1(0.079)$
Distance of compartment to compartment	P_{1}	$12 \pm 0.1(0.472)$

3.3 Quantities Per Reel

Package Type	TA / TA1
Quantities (pcs)	1000

Photocoupler

 H11Lx-L series
4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$

	Parameter	Symbol	Rating	Unit
Input	Forward Current	$\mathrm{I}_{\text {F }}$	20	mA
	Reverse Voltage	$V_{\text {R }}$	6	V
	Power Dissipation	P	120	mW
Output	V_{45} Allowed Range	Vo	$0 \sim 16$	V
	V_{65} Allowed Range	V_{cc}	$3 \sim 16$	V
	I_{4} Output Current	10	50	mA
	Power Dissipation	P	150	mW
	Total Power Dissipation	$\mathrm{P}_{\text {tot }}$	250	mW
1.	Isolation Voltage	$\mathrm{V}_{\text {iso }}$	5000	$\mathrm{V}_{\text {rms }}$
	Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-40 \sim+100$	${ }^{\circ} \mathrm{C}$
	Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
2.	Soldering Temperature	$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$

1. $A C$ For 1 Minute, R.H. $=40 \sim 60 \%$

Isolation voltage shall be measured using the following method.
(1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
(2) The isolation voltage tester with zero-cross circuit shall be used.
(3) The waveform of applied voltage shall be a sine wave.
2. For 10 Seconds

Photocoupler
 H11Lx-L series

4.2 ELECTRICAL OPTICAL CHARACTERISTICS

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=3$ to 16 V , unless otherwise specified

	Parameter		Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note	
Input	Input Forward Voltage		$V_{\text {F }}$	1.2	1.4	1.6	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	6		
			0.75			$\mathrm{I}_{\mathrm{F}}=0.3 \mathrm{~mA}$					
	Reverse Current			I_{R}			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$		
	Input Capacitance		$\mathrm{C}_{\text {IN }}$			100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$			
Output	Operating Voltage Range		$\mathrm{V}_{\text {cc }}$	3		15	V		5		
	Supply Current		$\mathrm{I}_{\mathrm{CC} \text { (ffi) }}$		0.7	1.3	mA	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}$			
	Output Current, High		$\mathrm{IOH}^{\text {O}}$			100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0, \mathrm{~V}_{C C}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$			
	Supply Current		$\mathrm{I}_{\mathrm{CC}(\text { On) }}$		0.7	1.3	mA	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{C C}=5 \mathrm{~V}$	5		
	Output Voltage, Iow		VoL		0.2	0.4	V	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\text {Fon }}(\max .) \end{aligned}$	4		
	Turn-On Threshold Current	H11L1	$\mathrm{I}_{\text {(OON })}$		1.0	1.6	mA	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\text {cc }}=5 \mathrm{~V}$	1, 2, 3	1	
		H11L2				10					
		H11L3				5					
	Turn-Off Threshold Current		$\mathrm{IF}_{\text {(OFF) }}$	0.3			mA	$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V}$			
	Hysteresis Ratio		$\mathrm{I}_{\text {F(OFF) })} /$ $\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	0.5		0.9		$\mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V}$			

Note 1: Maximum $\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$ is the maximum current required to trigger the output, For example, a 1.6 mA maximum trigger current would require the LED to be driven at a current greater than 1.6 mA to guarantee the device turns on. A 10% gurad band is recommended to account for degradation of LED over its lifetime.

4.3 SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to Low Output Level	$\mathrm{T}_{\text {PHL }}$	-	180	500	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}=} \mathrm{I}_{\text {FON }}(\text { max. } .), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-	-
Fall Time	t_{f}	-	3	-	ns		-	-
Propagation Delay Time to High Output Level	TPLH	-	120	500	ns		-	-
Rise Time	t_{r}	-	0.1	-	ns		-	-
Data Rate	-	-	2	-	MHz	-	-	-
Logic High Common Mode Transient Immunity	\|CM ${ }_{\text {H }}$	10	-	-	kV/ $/$ s	$\begin{aligned} & \mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \\ & =270 \Omega \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8	2
Logic Low Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	10	-	-	kV/ $/$ s	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=270 \Omega, \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\text {FON }} \text { (max.) }, \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8	3

Note 2: Common mode transient immunity in a Logic High level is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>3.0 \mathrm{~V}$).
Note 3: Common mode transient immunity in a Logic Low level is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).

Data Sheet

Photocoupler H11Lx-L series

5. TYPICAL PERFORMANCE CURVES

Figure 1. Transfer Chracteristic

Figure 3. Threshold Current vs. Supply Temperature

Figure 2. Threshold Current vs. Supply Voltage

Figure 4. Output Voltage, Low vs. Load Current

Figure 5. Supply Current vs. Supply Voltage

Figure 6. Forward Current vs. LED Forward Voltage

Figure 7. Propagation delay vs. Forward Current

Data Sheet

Photocoupler H11Lx-L series

Figure 8. Propagation delay vs. Load resistance

Figure 9. Switching Test Circuit and Waveform

Figure 10 : CMR Test Circuit and Waveforms

Data Sheet

Photocoupler
 H11Lx-L series

6. TEMPERATURE PROFILE OF SOLDERING

6.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\mathrm{smin}}$) - Temperature Max ($\mathrm{T}_{\mathrm{Smax}}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60 \sim 100 \mathrm{sec} \end{gathered}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec}$ max.
Ramp-down rate	$3 \sim 6^{\circ} \mathrm{C} / \mathrm{sec}$

LITEONI ${ }^{\circ}$
OPTOELECTRONICS
\square

Photocoupler H11Lx-L series

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature:25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

6.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.
7. RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

8. NAMING RULE

Part Number Options
H11Lx-L
H11LxM-L
H11LxS-TA-L
H11LxS-TA1-L
H11Lx-V-L
H11LxM-V-L
H11LxSTA-V-L
H11LxSTA1-V-L

Definition of Suffix	Remark
"H11Lx-L"	LiteOn model name Part number: H11L1 / H11L2 / H11L3
"No Suffix"	Dual-in-Line package clearance distance 7 mm typical
"M"	Wide lead spacing package clearance distance 8 mm typical
"S"	Surface mounting package clearance distance 8 mm typical
"TA"	Pin 1 location at lower right of the tape
"TA1"	Pin 1 location at upper left of the tape

9. Notes

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

