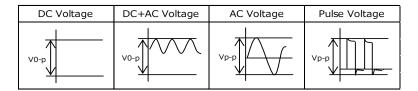


Reference Specification

Leaded MLCC for Automotive (Powertrain/Safety) RCE Series

Product specifications in this catalog are as of Feb. 2024, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.


<Reference>Please kindly use our website.

⚠ CAUTION

1. OPERATING VOLTAGE

- 1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called out in the specifications.
 - 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage.
 - (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.
 - (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage.

Typical Voltage Applied to the DC Capacitor

(E: Maximum possible applied voltage.)

1-2. Influence of over voltage

Over voltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers. The time duration until breakdown depends on the applied voltage and the ambient temperature.

2. Use a safety standard certified capacitor in a power supply input circuit (AC filter), as it is also necessary to consider the withstand voltage and impulse withstand voltage defined for each device.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

⚠ CAUTION

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

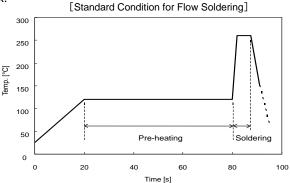
Excessive shock or vibration may cause to fatigue destruction of lead wires mounted on the circuit board. If necessary, take measures to hold a capacitor on the circuit boards by adhesive, molding resin or coating and other.

Please confirm there is no influence of holding measures on the product with an intended equipment.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Please verify that the soldering process does not affect the quality of capacitors.


6-1. Flow Soldering

Soldering temperature : 260 °C max.

Soldering time : 7.5 s max.

Preheating temperature : 120 °C max.

Preheating time : 60 s max.

6-2. Reflow Soldering

Do not apply reflow soldering.

6-3. Soldering Iron

Temperature of iron-tip : 350 °C max.
Soldering iron wattage : 60 W max.
Soldering time : 3.5 s max.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile.

So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

⚠ CAUTION

9. LIMITATION OF APPLICATIONS

The products listed in the specification(hereinafter the product(s) is called as the "Product(s)") are designed and manufactured for applications specified in the specification. (hereinafter called as the "Specific Application")

We shall not warrant anything in connection with the Products including fitness, performance, adequateness, safety, or quality, in the case of applications listed in from (1) to (11) written at the end of this precautions, which may generally require high performance, function, quality, management of production or safety.

Therefore, the Product shall be applied in compliance with the specific application.

WE DISCLAIM ANY LOSS AND DAMAGES ARISING FROM OR IN CONNECTION WITH THE PRODUCTS INCLUDING BUT NOT LIMITED TO THE CASE SUCH LOSS AND DAMAGES CAUSED BY THE UNEXPECTED ACCIDENT, IN EVENT THAT (i) THE PRODUCT IS APPLIED FOR THE PURPOSE WHICH IS NOT SPECIFIED AS THE SPECIFIC APPLICATION FOR THE PRODUCT, AND/OR (ii) THE PRODUCT IS APPLIED FOR ANY FOLLOWING APPLICATION PURPOSES FROM (1) TO (11) (EXCEPT THAT SUCH APPLICATION PURPOSE IS UNAMBIGUOUSLY SPECIFIED AS SPECIFIC APPLICATION FOR THE PRODUCT IN OUR CATALOG SPECIFICATION FORMS, DATASHEETS, OR OTHER DOCUMENTS OFFICIALLY ISSUED BY US*)

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment
- 7. Traffic control equipment
- 8. Disaster prevention/security equipment
- 9. Industrial data-processing equipment
- 10. Combustion/explosion control equipment
- 11. Equipment with complexity and/or required reliability equivalent to the applications listed in the above.

For exploring information of the Products which will be compatible with the particular purpose other than those specified in the specification, please contact our sales offices, distribution agents, or trading companies with which you make a deal, or via our web contact form.

Contact form: https://www.murata.com/contactform

*We may design and manufacture particular Products for applications listed in (1) to (11). Provided that, in such case we shall unambiguously specify such Specific Application in the specification without any exception.

Therefore, any other documents and/or performances, whether exist or non-exist, shall not be deemed as the evidence to imply that we accept the applications listed in (1) to (11).

CAUTION

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this product specification.

1. Application

This product specification is applied to Leaded MLCC RCE series.

- 1. Specific applications:
- ·Automotive powertrain/safety equipment: Products that can be used for automotive equipment related to running, turning, stopping, safety devices, etc., or equipment whose structure, equipment, and performance are legally required to meet technical standards for safety assurance or environmental protection.
- ·Automotive infotainment/comfort equipment: Products that can be used for automotive equipment such as car navigation systems and car audio systems that do not directly relate to human life and whose structure, equipment, and performance are not specifically required by law to meet technical standards for safety assurance or environmental protection.
- ·Medial Equipment [GHTF A/B/C] except for Implant Equipment: Products suitable for use in medical devices designated under the GHTF international classifications as Class A or Class B (the functions of which are not directly involved in protection of human life or property) or in medical devices other than implants designated under the GHTF international classifications as Class C (the malfunctioning of which is considered to pose a comparatively high risk to the human body).
- 2.Unsuitable Application: Applications listed in "Limitation of applications" in this product specification.

2. Rating

· Part Number Configuration

ex.) RCE 1E W M1 H03 R7 226 Series Temperature Rated Capacitance Capacitance Dimension Lead Individual Package Characteristics Voltage Tolerance (LxW) Style Specification

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Cap. Change	Standard Temp.	Operating Temp. Range
C7	X7S (EIA code)	-55∼125°C	+/-22%	25°C	-55 ∼ 125°C
R7	X7R (EIA code)	-55∼125°C	+/-15%	25°C	-55∼125°C

Rated Voltage

Code	Rated voltage
1E	DC25V
1H	DC50V
2A	DC100V

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 226.

 $22 \times 10^6 = 22000000 \text{ pF}$

Capacitance Tolerance

Code	Capacitance Tolerance
K	+/-10%
M	+/-20%

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
A2	Straight type	2.5+/-0.8
A3	Straight type	2.5+/-0.8
DB	Straight taping type	2.5+0.4/-0.2
DN	Straight taping type	2.5+0.4/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

• Individual Specification

Murata's control code.

Please refer to [Part number list].

• Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

3. Marking

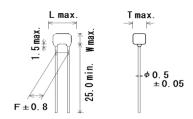
Temp. char. : Letter code : C (X7R/X7S Char. Except dimension code : 0,1)

Capacitance : 3 digit numbers

Capacitance tolerance : Code

Rated voltage : Letter code : 2 (DC25V. Except dimension code : 0,1)

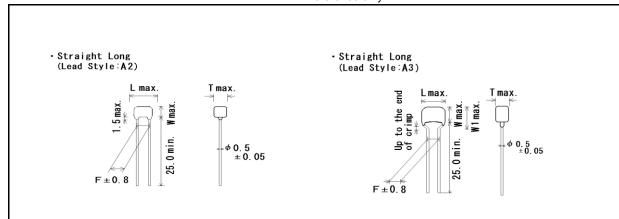
Letter code : 5 (DC50V. Except dimension code : 0,1) Letter code : 1 (DC100V. Except dimension code : 0,1)

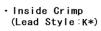

Company name code : Abbreviation : (Except dimension code : 0,1)

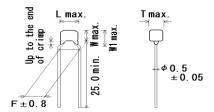
(Ex.)

(⊏X.)			
Rated voltage Dimension code	DC25V	DC50V	DC100V
0,1	105K	103K	104K
2	(M 475 K2C	(M 105 K5C	(M 105 K1C
3,W	C 226 M2C	(4 226 K5C	G 475 K1C

4. Part number list

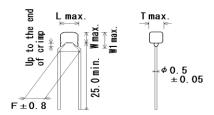

- Straight Long (Lead Style:A2)


Unit: mm


Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime	ension ((mm)		Dimension (LxW)	Pac qty
Part Number	Murata Fart Number	1.0.	Volt. (V)	Оар.	Tol.	L	W	W1	F	Т	Lead Style	
	RCER71E104K0A2H03B	X7R	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71E154K0A2H03B	X7R	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71E224K0A2H03B	X7R	25	0.22µF	±10%	3.6	3.5		2.5	2.5	0A2	50
	RCER71E334K1A2H03B	X7R	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	50
	RCER71E474K1A2H03B	X7R	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	1A2	50
	RCER71E684K1A2H03B	X7R	25	0.68µF	±10%	4.0	3.5		2.5	2.5	1A2	50
	RCER71E105K1A2H03B	X7R	25	1.0µF	±10%	4.0	3.5		2.5	2.5	1A2	50
	RCER71E155K2A2H03B	X7R	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	50
	RCER71E225K2A2H03B	X7R	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	50
	RCER71E335K2A2H03B	X7R	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	2A2	50
	RCER71E475K2A2H03B	X7R	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	2A2	50
	RCER71E106K3A2H03B	X7R	25	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	50
	RCER71H221K0A2H03B	X7R	50	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	50
	RCER71H331K0A2H03B	X7R	50	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	50
	RCER71H471K0A2H03B	X7R	50	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	50
	RCER71H681K0A2H03B	X7R	50	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	50
	RCER71H102K0A2H03B	X7R	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H152K0A2H03B	X7R	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H222K0A2H03B	X7R	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H332K0A2H03B	X7R	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H472K0A2H03B	X7R	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	50
	RCER71H682K0A2H03B	X7R	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H103K0A2H03B	X7R	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H153K0A2H03B	X7R	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H223K0A2H03B	X7R	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H333K0A2H03B	X7R	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H473K0A2H03B	X7R	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H683K0A2H03B	X7R	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H104K0A2H03B	X7R	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RCER71H154K1A2H03B	X7R	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	1A2	5
	RCER71H224K1A2H03B	X7R	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	1A2	5
	RCER71H334K1A2H03B	X7R	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	5
	RCER71H474K1A2H03B	X7R	50	0.47µF	±10%	4.0	3.5	-	2.5	2.5	1A2	5
	RCER71H684K2A2H03B	X7R	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	2A2	5
	RCEC71H105K1A2H03B	X7S	50	1.0µF	±10%	4.0	3.5	-	2.5	2.5		5
	RCER71H105K2A2H03B	X7R	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15		5
	RCER71H155K2A2H03B	X7R	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15		5
	RCER71H225K2A2H03B	X7R	50	2.2µF	±10%	5.5	4.0	_	2.5	3.15		50
	RCER71H335K3A2H03B	X7R	50	3.3µF	±10%	5.5	5.0	_	2.5	4.0		50
•	RCEC71H475K2A2H03B	X7S	50	4.7µF	±10%	5.5	4.0		2.5	3.15		50

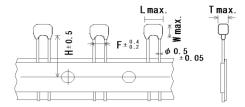
PNLIST

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime	ension ((mm)		Dimension (LxW)	Pack
Part Number	Murata Fait Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)
	RCER71H475K3A2H03B	X7R	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RCEC71H106K3A2H03B	X7S	50	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RCER72A221K0A2H03B	X7R	100	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A331K0A2H03B	X7R	100	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A471K0A2H03B	X7R	100	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A681K0A2H03B	X7R	100	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A102K0A2H03B	X7R	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A152K0A2H03B	X7R	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A222K0A2H03B	X7R	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A332K0A2H03B	X7R	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A472K0A2H03B	X7R	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A682K0A2H03B	X7R	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A103K0A2H03B	X7R	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A153K0A2H03B	X7R	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A223K0A2H03B	X7R	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER72A333K1A2H03B	X7R	100	33000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER72A473K1A2H03B	X7R	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER72A683K1A2H03B	X7R	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER72A104K1A2H03B	X7R	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER72A154K2A2H03B	X7R	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER72A224K2A2H03B	X7R	100	0.22µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER72A334K1A2H03B	X7R	100	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER72A474K2A2H03B	X7R	100	0.47µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER72A684K2A2H03B	X7R	100	0.68µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCEC72A105K1A2H03B	X7S	100	1.0µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER72A105K2A2H03B	X7R	100	1.0µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCEC72A155K3A2H03B	X7S	100	1.5µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RCEC72A225K2A3H03B	X7S	100	2.2µF	±10%	5.5	4.0	6.0	2.5	3.15	2A3	500
	RCEC72A225K3A2H03B	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RCEC72A475K3A3H03B	X7S	100	4.7µF	±10%	5.5	5.0	7.5	2.5	4.0	3A3	500



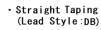
Unit: mm

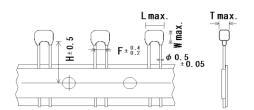
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime	ension (mm)		Dimension (LxW)	Pack qty.
Part Number			Volt. (V)	oup.	Tol.	L	W	W1	F	Т	Lead Style	(pcs)
	RCER71E104K0K1H03B	X7R	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71E154K0K1H03B	X7R	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71E224K0K1H03B	X7R	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71E334K1K1H03B	X7R	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71E474K1K1H03B	X7R	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71E684K1K1H03B	X7R	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71E105K1K1H03B	X7R	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71E155K2K1H03B	X7R	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71E225K2K1H03B	X7R	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71E335K2K1H03B	X7R	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71E475K2K1H03B	X7R	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71E106K3K1H03B	X7R	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCER71E226MWK1H03B	X7R	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RCER71H221K0K1H03B	X7R	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H331K0K1H03B	X7R	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H471K0K1H03B	X7R	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H681K0K1H03B	X7R	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H102K0K1H03B	X7R	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H152K0K1H03B	X7R	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H222K0K1H03B	X7R	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H332K0K1H03B	X7R	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H472K0K1H03B	X7R	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H682K0K1H03B	X7R	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H103K0K1H03B	X7R	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H153K0K1H03B	X7R	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H223K0K1H03B	X7R	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H333K0K1H03B	X7R	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H473K0K1H03B	X7R	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H683K0K1H03B	X7R	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H104K0K1H03B	X7R	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H154K1K1H03B	X7R	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H224K1K1H03B	X7R	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H334K1K1H03B	X7R	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H474K1K1H03B	X7R	50	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H684K2K1H03B	X7R	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCEC71H105K1K1H03B	X7S	50	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H105K2K1H03B	X7R	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H155K2K1H03B	X7R	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H225K2K1H03B	X7R	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H335K3K1H03B	X7R	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500


PNLIST

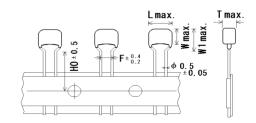
Inside Crimp (Lead Style:K*)

											OTIIL . IIIIII	
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime	ension ((mm)		Dimension (LxW)	Pac qty
Part Number	Wardia Fait Namber	1.0.	Volt. (V)	оцр.	Tol.	L	W	W1	F	Т	Lead Style	(pcs
	RCEC71H475K2K1H03B	X7S	50	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H475K3K1H03B	X7R	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	50
	RCEC71H106K3K1H03B	X7S	50	10µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	50
	RCER71H106MWK1H03B	X7R	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	50
	RCEC71H226MWK1H03B	X7S	50	22µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	50
	RCER72A221K0K1H03B	X7R	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A331K0K1H03B	X7R	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A471K0K1H03B	X7R	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A681K0K1H03B	X7R	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A102K0K1H03B	X7R	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A152K0K1H03B	X7R	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A222K0K1H03B	X7R	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A332K0K1H03B	X7R	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	50
	RCER72A472K0K1H03B	X7R	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCER72A682K0K1H03B	X7R	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCER72A103K0K1H03B	X7R	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCER72A153K0K1H03B	X7R	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCER72A223K0K1H03B	X7R	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RCER72A333K1K1H03B	X7R	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RCER72A473K1K1H03B	X7R	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RCER72A683K1K1H03B	X7R	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RCER72A104K1K1H03B	X7R	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RCER72A154K2K1H03B	X7R	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCER72A224K2K1H03B	X7R	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCER72A334K1K1H03B	X7R	100	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RCER72A474K2K1H03B	X7R	100	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCER72A684K2K1H03B	X7R	100	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCEC72A105K1K1H03B	X7S	100	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RCER72A105K2K1H03B	X7R	100	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCEC72A155K3K1H03B	X7S	100	1.5µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	5
	RCEC72A225K2K1H03B	X7S	100	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RCEC72A225K3K1H03B	X7S	100	2.2µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	5
	RCEC72A475K3K1H03B	X7S	100	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	5
	RCEC72A475MWK1H03B	X7S	100	4.7µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	50


Straight Taping (Lead Style:DB)

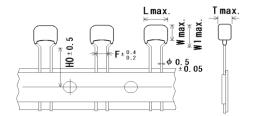


Unit: mm

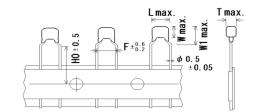

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		D	imensi	on (mr	n)		Dimension (LxW)	Pad qty
Part Number			Volt. (V)	'	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RCER71E104K0DBH03A	X7R	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RCER71E154K0DBH03A	X7R	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71E224K0DBH03A	X7R	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71E334K1DBH03A	X7R	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71E474K1DBH03A	X7R	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71E684K1DBH03A	X7R	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71E105K1DBH03A	X7R	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71E155K2DBH03A	X7R	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCER71E225K2DBH03A	X7R	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCER71E335K2DBH03A	X7R	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCER71E475K2DBH03A	X7R	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCER71E106K3DBH03A	X7R	25	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	15
	RCER71H221K0DBH03A	X7R	50	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H331K0DBH03A	X7R	50	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H471K0DBH03A	X7R	50	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H681K0DBH03A	X7R	50	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H102K0DBH03A	X7R	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H152K0DBH03A	X7R	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER71H222K0DBH03A	X7R	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H332K0DBH03A	X7R	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER71H472K0DBH03A	X7R	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H682K0DBH03A	X7R	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER71H103K0DBH03A	X7R	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H153K0DBH03A	X7R	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H223K0DBH03A	X7R	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H333K0DBH03A	X7R	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H473K0DBH03A	X7R	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER71H683K0DBH03A	X7R	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H104K0DBH03A	X7R	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER71H154K1DBH03A	X7R	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71H224K1DBH03A	X7R	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71H334K1DBH03A	X7R	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71H474K1DBH03A	X7R	50	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71H684K2DBH03A	X7R	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCEC71H105K1DBH03A	X7S	50	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RCER71H105K2DBH03A	X7R	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCER71H155K2DBH03A	X7R	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCER71H225K2DBH03A	X7R	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RCER71H335K3DBH03A	X7R	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	15
	RCEC71H475K2DBH03A	X7S	50	4.7µF	±10%	5.5	4.0	_	2.5		16.0	2DB	20

PNLIST

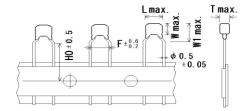
• Straight Taping (Lead Style:DN)



Unit: mm


Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		D	imensi	on (mr	n)		Dimension (LxW)	Pa qt
Part Number			Volt. (V)	,	Tol.	L	W	W1	F	Т	H/H0	Lead Style	(po
	RCER71H475K3DBH03A	X7R	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	15
	RCEC71H106K3DBH03A	X7S	50	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	15
	RCER72A221K0DBH03A	X7R	100	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER72A331K0DBH03A	X7R	100	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RCER72A471K0DBH03A	X7R	100	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A681K0DBH03A	X7R	100	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A102K0DBH03A	X7R	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A152K0DBH03A	X7R	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A222K0DBH03A	X7R	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A332K0DBH03A	X7R	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A472K0DBH03A	X7R	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A682K0DBH03A	X7R	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A103K0DBH03A	X7R	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A153K0DBH03A	X7R	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A223K0DBH03A	X7R	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RCER72A333K1DBH03A	X7R	100	33000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RCER72A473K1DBH03A	X7R	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RCER72A683K1DBH03A	X7R	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RCER72A104K1DBH03A	X7R	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RCER72A154K2DBH03A	X7R	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2
	RCER72A224K2DBH03A	X7R	100	0.22µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2
	RCER72A334K1DBH03A	X7R	100	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RCER72A474K2DBH03A	X7R	100	0.47µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2
	RCER72A684K2DBH03A	X7R	100	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2
	RCEC72A105K1DBH03A	X7S	100	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RCER72A105K2DBH03A	X7R	100	1.0µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2
	RCEC72A155K3DBH03A	X7S	100	1.5µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A225K2DNH03A	X7S	100	2.2µF	±10%	5.5	4.0	6.0	2.5	3.15	16.0	2DN	2
	RCEC72A225K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A230K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A231K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A232K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A233K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A234K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A235K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A236K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A237K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A238K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A239K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RCEC72A240K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	_	2.5	4.0	16.0		1:

PNLIST



Inside Crimp Taping (Lead Style: M*)

			DC			Dimension (mm)			Dimonoion Doo				
Customer	Murata Part Number	T.C.	Rated	Сар.	Cap. Tol.	Dimension (mm)						Dimension (LxW)	Pac qty
Part Number	Warata Fart Namber	1.0.	Volt. (V)			L	W	W1	F	Т	H/H0	Lead Style	
	RCEC72A475K3DNH03A	X7S	100	4.7µF	±10%	5.5	5.0	7.5	2.5	4.0	16.0	3DN	200
	RCER71E104K0M1H03A	X7R	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RCER71E154K0M1H03A	X7R	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71E224K0M1H03A	X7R	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71E334K1M1H03A	X7R	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71E474K1M1H03A	X7R	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71E684K1M1H03A	X7R	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71E105K1M1H03A	X7R	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71E155K2M1H03A	X7R	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCER71E225K2M1H03A	X7R	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCER71E335K2M1H03A	X7R	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCER71E475K2M1H03A	X7R	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCER71E106K3M1H03A	X7R	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	15
	RCER71E226MWM1H03A	X7R	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	15
	RCER71H221K0M1H03A	X7R	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H331K0M1H03A	X7R	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H471K0M1H03A	X7R	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H681K0M1H03A	X7R	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H102K0M1H03A	X7R	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H152K0M1H03A	X7R	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H222K0M1H03A	X7R	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H332K0M1H03A	X7R	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H472K0M1H03A	X7R	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H682K0M1H03A	X7R	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H103K0M1H03A	X7R	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H153K0M1H03A	X7R	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H223K0M1H03A	X7R	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H333K0M1H03A	X7R	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H473K0M1H03A	X7R	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H683K0M1H03A	X7R	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H104K0M1H03A	X7R	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER71H154K1M1H03A	X7R	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71H224K1M1H03A	X7R	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71H334K1M1H03A	X7R	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71H474K1M1H03A	X7R	50	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71H684K2M1H03A	X7R	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCEC71H105K1M1H03A	X7S	50	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RCER71H105K2M1H03A	X7R	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCER71H155K2M1H03A	X7R	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCER71H225K2M1H03A	X7R	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20

Inside Crimp Taping (Lead Style: M*)

	1		I			1			OTHE . ITHII	I			
Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		D	imensi	on (mr	n)		Dimension (LxW)	Pa qt
Part Number			Volt. (V)	·	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RCER71H335K3M1H03A	X7R	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	15
	RCEC71H475K2M1H03A	X7S	50	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RCER71H475K3M1H03A	X7R	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	15
	RCEC71H106K3M1H03A	X7S	50	10µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	18
	RCER71H106MWM1H03A	X7R	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1:
	RCEC71H226MWM1H03A	X7S	50	22µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1:
	RCER72A221K0M1H03A	X7R	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER72A331K0M1H03A	X7R	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RCER72A471K0M1H03A	X7R	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A681K0M1H03A	X7R	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A102K0M1H03A	X7R	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A152K0M1H03A	X7R	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A222K0M1H03A	X7R	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A332K0M1H03A	X7R	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A472K0M1H03A	X7R	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A682K0M1H03A	X7R	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A103K0M1H03A	X7R	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A153K0M1H03A	X7R	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A223K0M1H03A	X7R	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2
	RCER72A333K1M1H03A	X7R	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2
	RCER72A473K1M1H03A	X7R	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2
	RCER72A683K1M1H03A	X7R	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2
	RCER72A104K1M1H03A	X7R	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2
	RCER72A154K2M1H03A	X7R	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCER72A224K2M1H03A	X7R	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCER72A334K1M1H03A	X7R	100	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2
	RCER72A474K2M1H03A	X7R	100	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCER72A684K2M1H03A	X7R	100	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCEC72A105K1M1H03A	X7S	100	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2
	RCER72A105K2M1H03A	X7R	100	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCEC72A155K3M1H03A	X7S	100	1.5µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1
	RCEC72A225K2M1H03A	X7S	100	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2
	RCEC72A225K3M1H03A	X7S	100	2.2µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1
	RCEC72A475K3M1H03A	X7S	100	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2
	RCEC72A475MWM1H03A	X7S	100	4.7µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1:

Reference only

_			Kelei	ence only					
Spe No.	ecification	t Item	Specification	Toot Mathad (Compliant Standard: AEC-0200)					
1	Pre-and Post-S		Specification	Test Method (Compliant Standard:AEC-Q200)					
1	Electrical Test	311622		-					
2		Annogrango	No defects or abnormalities	Sit the connector for 1000 (12h at 150 (2°C) Lat sit for 24 (2h at					
2	High	Appearance	within ±12.5%	Sit the capacitor for 1000±12h at 150±3°C. Let sit for 24±2h at *room condition then measure.					
	Temperature	Capacitance	WILTIN ±12.3%	Pretreatment					
	Exposure	Change	0.04 *4						
	(Storage)	D.F.	0.04 max. * 1	Perform the heat treatment at 150+0/-10°C for 60±5 min and					
		I.R.	More than 1,000MΩ or 50 MΩ∙μF	then let sit for 24±2 h at *room condition.					
_	- <i>i</i>		(Whichever is smaller)						
3	Temperature	Appearance	No defects or abnormalities	Perform the 1000 cycles according to the four heat treatments					
	Cycling	Capacitance	within ±12.5%	listed in the following table. Let sit for 24±2 h at *room condition,					
		Change		then measure.					
		D.F.	0.05 max. * 1	Step 1 2 3 4					
		I.R.	1,000MΩ or 50MΩ•μF min.	Tomp Poom Poom					
			(Whichever is smaller)	(°C) -55+0/-3 Temp. 125+3/-0 Temp.					
				Time 45 0 45 0					
				(min.) 15±3 1 15±3 1					
				•Pretreatment					
				Perform the heat treatment at 150+0/-10°C for 60±5 min and					
_				then let sit for 24±2 h at *room condition.					
ļ	Moisture	Appearance	No defects or abnormalities	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%)					
	Resistance	Capacitance	within ±12.5%	treatment shown below, 10 consecutive times.					
		Change		Let sit for 24±2 h at *room condition, then measure.					
		D.F.	0.05 max. * 1	Temperature Humidity Humidity (°C) Humidity 80~98% Humidity 80~98% Humidity					
		I.R.	500MΩ or 25MΩ∙μF min.	(°C) Humany SS Name and Humany SS Name and Humany SS Name and Name					
			(Whichever is smaller)	65					
				60					
				55					
				§50 g45					
				840					
				§40 §35					
				25					
				20 +10					
				15 - 2 °C					
				10 Initial measurement					
				5					
				-5					
				-10 One cycle 24 hours					
				0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2					
				Hours					
				•Pretreatment					
				Perform the heat treatment at 150+0/-10°C for 60±5 min and					
				then let sit for 24±2 h at *room condition.					
;	Biased	Appearance	No defects or abnormalities	Apply the rated voltage and DC1.3+0.2/-0V (add 100kΩ resistor)					
	Humidity	Capacitance	within ±12.5% * 2	at 85±3°C and 80 to 85% humidity for 1000±12h.					
		Change		Remove and let sit for 24±2 h at *room condition, then measure.					
		D.F.	0.05 max. * 1	The charge/discharge current is less than 50mA.					
		I.R.	500MΩ or 25MΩ•μF min. * 3	•Pretreatment					
			(Whichever is smaller)	Perform the heat treatment at 150+0/-10°C for 60±5 min and					
				then let sit for 24±2 h at *room condition.					
;	Operational	Appearance	No defects or abnormalities	Apply 200% of the rated voltage * 5 for 1000±12h at 125±3°C.					
	Life	Capacitance	within ±12.5% * 2	Let sit for 24±2 h at *room condition, then measure.					
		Change		The charge/discharge current is less than 50mA.					
		J.141.90	0.04	•Pretreatment					
		DF							
		D.F.	0.04 max. * 1						
		D.F. I.R.	0.04 max. * 1 1,000MΩ or 50MΩ•μF min. * 4 (Whichever is smaller)	Apply test voltage for 60±5 min at test temperature. Remove and let sit for 24±2 h at *room condition.					

Below parts are applicable in

* 1 D.F.: 0.2 max..

* 2 Capacitance Change : within ±15%

* 3 I.R.: 12.5MΩ · μF min.

Char.	Char. Rated Voltage		Dimensions
C7	2A	105	1
C7	2A	225	2
C7	2A	475	3

* 5 Below parts are applicable in rated voltage×150%

5 Below parts are applicable in rated voltagex150%.							
Char.	Rated Voltage	Capacitance	Dimensions				
C7	1H	105	1				
C7	1H	475	2				
C7	1H	106	3				
C7	1H	226	W				
R7	2A	334	1				
R7	2A	474-105	2				
C7	2A	105	1				
C7	2A	225	2				
C7	2A	155-475	3				
C7	2A	475	W				

ESRCE01G

Reference only

No.	Ton	t Item	Specification	Test Method (Compliant Standard:AEC-Q200)				
7	External Visual		'	Visual inspection				
			No defects or abnormalities					
8			Within the specified dimensions	Using calipers and micrometers.				
9	Marking	T.	To be easily legible.	Visual inspection				
10	Resistance	Appearance	No defects or abnormalities	Per MIL-STD-202 Method 215				
	to Solvents	Capacitance	Within the specified tolerance	Solvent 1 : 1 part (by volume) of isopropyl alcohol				
		D.F.	0.025 max. * 6	3 parts (by volume) of mineral spirits				
		I.R.	More than 10,000MΩ or 500 MΩ∙μF * 7	Solvent 2 : Terpene defluxer				
			(Whichever is smaller)	Solvent 3: 42 parts (by volume) of water				
				1part (by volume) of propylene glycol monomethyl ether				
				1 part (by volume) of monoethanolamine				
11	Mechanical	Appearance	No defects or abnormalities	Three shocks in each direction should be applied along 3				
	Shock	Capacitance	Within the specified tolerance	mutually perpendicular axes of the test specimen (18 shocks).				
		D.F.	0.025 max. * 6	The specified test pulse should be Half-sine and should have a				
		D.II .	0.020 max. 0	duration: 0.5ms, peak value: 1500G and velocity change: 4.7m/s.				
12	Vibration	Annogrange	No defeate or obnormalities					
12	Vibration	Appearance	No defects or abnormalities	The capacitor should be subjected to a simple harmonic motion				
		Capacitance	Within the specified tolerance	having a total amplitude of 1.5mm, the frequency being varied				
		D.F.	0.025 max. * 6	uniformly between the approximate limits of 10 and 2,000Hz.				
				The frequency range, from 10 to 2000Hz and return to 10Hz,				
				should be traversed in approximately 20 min. This motion				
				should be applied for 12 items in each 3 mutually perpendicular				
				directions (total of 36 times).				
13-1	Resistance	Appearance	No defects or abnormalities	The lead wires should be immersed in the melted solder 1.5 to				
	to Soldering	Capacitance	Within ±7.5% * 8	2.0mm from the root of terminal at 260±5°C for 10±1 seconds.				
	Heat	Change						
	(Non-	Dielectric	No defects	Pre-treatment				
	Preheat)	Strength	THO GOLOGIS	Capacitor should be stored at 150+0/-10°C for one				
	Preneat)			hour, then place at *room condition for 24±2 hours before initial				
		(Between						
		terminals)		measurement.				
				Post-treatment				
				Capacitor should be stored for 24±2 hours at *room condition.				
13-2	Resistance	Appearance	No defects or abnormalities	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 seconds.				
	to Soldering	Capacitance	Within ±7.5% * 8	Then, the lead wires should be immersed in the melted solder				
	Heat	Change 1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/-1 sec						
	(On-	Dielectric	Dielectric No defects					
	Preheat)	Strength						
		(Between		Capacitor should be stored at 150+0/-10°C for one				
		`		hour, then place at *room condition for 24±2 hours before initial				
		terminals)						
				measurement.				
				Post-treatment				
				Capacitor should be stored for 24±2 hours at *room condition.				
13-3	Resistance	Appearance	No defects or abnormalities	Test condition				
	to Soldering	Capacitance	Within ±7.5% * 8	Temperature of iron-tip: 350±10°C				
	Heat	Change		Soldering time : 3.5±0.5 seconds				
	(soldering	Dielectric	No defects	Soldering position				
	iron method)	Strength	1	Straight Lead : 1.5 to 2.0mm from the root of terminal.				
	,	(Between	1	Crimp Lead : 1.5 to 2.0mm from the end of lead bend.				
		terminals)		,				
		ionninaio)		Pre-treatment				
			1					
			1	Capacitor should be stored at 150+0/-10°C for one				
			1	hour, then place at *room condition for 24±2 hours before initial				
				measurement.				
				Post-treatment				
				Capacitor should be stored for 24±2 hours at *room condition.				
14	Thermal	Appearance	No defects or abnormalities	Perform the 300 cycles according to the two heat treatments listed				
	Shock	Capacitance	within ±12.5%	in the following table(Maximum transfer time is 20s.). Let sit for				
		Change	1	24±2 h at *room condition, then measure.				
		D.F.	0.05 max. * 1	d				
		I.R.	1,000MΩ or 50MΩ•μF min.	Step 1 2				
			· ·	Temp55+0/-3 125+3/-0				
			(Whichever is smaller)	(°C) -55+0/-3 125+3/-0				
				Time 45.0				
				(min.) 15±3 15±3				
		1	ĺ	•Pretreatment				
				Perform the heat treatment at 150+0/-10°C for 60±5 min and				
				Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition.				

Below parts are applicable in

* 1 D.F. : 0.2 max.. * 6 D.F.: 0.125 max..

*7 I.R.: 50 MΩ · μF min.
*8 Capacitance Change: within ±10%

Char.	Rated Voltage	Capacitance	Dimensions
C7	2A	105	1
C7	2A	225	2
C7	2A	475	3

ESRCE01G

Reference only

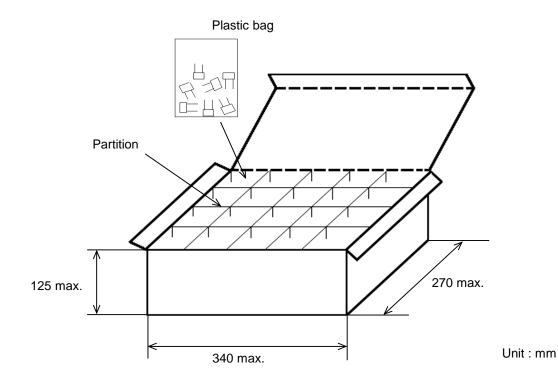
				Kelelelice	, ey					
No.	Tes	t Item		Specification	Test Method (Compliant Standard:AEC-Q200)					
15	ESD	Appearance	No defects	or abnormalities	Per AEC-Q200-002					
		Capacitance	1	specified tolerance	1					
		D.F.	0.025 max.	·	1					
		I.R.		10,000MΩ or 500 MΩ•μF * 7	1					
		i.ix.	(Whichever	•						
16	Solderability		,	should be soldered with uniform	Should be placed int	to steam	aging for 8h+1	5 min		
10	Solderability						0 0			
			-	the axial direction over 95%	The terminal of capa			DIGITOR OF TOSITI		
			or the circu	mferential direction.	ethanol (25% rosin ii			1 ~		
					Immerse in solder so					
						epth of dip	pping is up to a	about 1.5 to 2mm from		
					the terminal body.					
					Temp. of solder : 24	15±5°C (S	Sn-3.0Ag-0.5C	n)		
		1.								
17	Electrical	Appearance		or abnormalities	Visual inspection.					
	Characte-	Capacitance		specified tolerance	The capacitance/D.F	F. should	be measured	at 25°C at the frequency		
	rization	D.F.	0.025 max.	* 6	and voltage shown in	in the tab	le.			
					Nominal Car	p.	Frequency	Voltage		
					C≦10µF		1±0.1kHz	AC1±0.2V (r.m.s.)		
					C>10µF		120±24Hz	AC0.5±0.1V (r.m.s.)		
							-	(1,		
		I.R.	Between	10,000MΩ or 500MΩ•μF min. * 7	The insulation resist	tance sho	ould be measur	ed with a DC voltage		
			Terminals	(Whichever is smaller)	not exceeding the ra	ated volta	ige at 25 °C wi	thin 2 min. of charging.		
		Dielectric	Between	No defects or abnormalities	The capacitor should	d not be	damaged wher	DC voltage of 250%		
		Strength	Terminals		of the rated voltage	* 9 is app	olied between t	the terminations for 1 to 5		
					seconds.					
					(Charge/Discharge of	current ≦	≨ 50mA.)			
			Terminal	No defects or abnormalities	The capacitor is place		-	metal balls of 1mm		
			То					is kept approximately		
			External					DC voltage is impressed		
			Resin		for 1 to 5 seconds be					
					(Charge/Discharge of			iaio ana motar banor		
18	Terminal	Tensile	Termination	n not to be broken or loosened	-			y the force gradually		
.0	Strength	Strength	Torrination	That to be broken or leadened	_			pacitor until reaching		
	Outerigui	Outerigan			10N and then keep t					
					1/4//		арриоа (о. 10.			
					7 7 7					
					½					
					ˈ /					
		Rending	Termination	n not to be broken or loosened	Each load wire at	ıld bo o	niected to a f-	op of 2 5N and than		
		Bending Strength	1 CITIIII I ALIOI	THOU TO BE BLOKELLOL HOOSEHED	Each lead wire shou		•			
		Strength			be bent 90° at the po	_				
								ent 90° in the opposite		
40	Conneiterer	<u> </u>	Char VZD	Within 1450/	direction at the rate					
19	Capacitance			Within ±15%	The capacitance cha	-		eu arrer omin.		
	Temperature		Cnar.x/S:	Within ±22%	at each specified ter	mperatur	e step.			
	Characteristics				[Step T	emperature(°	C)		
						1	25±2			
						2	-55±3			
						3	25±2			
						4	125±3			
						5	25±2			
								<u></u>		
					The ranges of capac	citance cl	hange compare	ed with the above		
					25°C value over the	tempera	ture ranges sh	own in the table		
					should be within the	specifie	d ranges.			
					•Pretreatment					
					Perform the heat trea	atment a	t 150+0/-10°C	for 60±5 min and		
					then let sit for 24±2 h	h at *rooi	m condition.			
					Perform the initial m					
				elative humidity : 45 to 75%, Atmos						

* "room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

Below parts are applicable in

* 6 D.F.: 0.125 max..

* 7 I.R. : 50 M Ω * μ F min.


* 9 Rated voltage×200%

	Rated Voltage	Capacitance	Dimensions
C7	2A	105	1
C7	2A	225	2
C7	2A	475	3

6. Packing specification

•Bulk type (Packing style code : B)

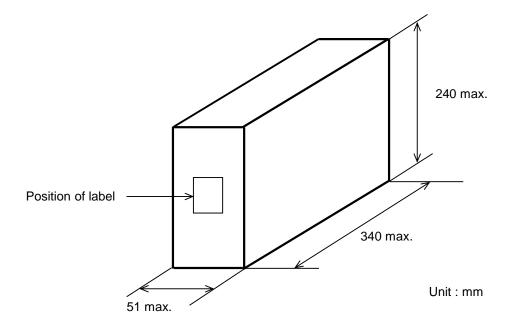
The size of packing case and packing way

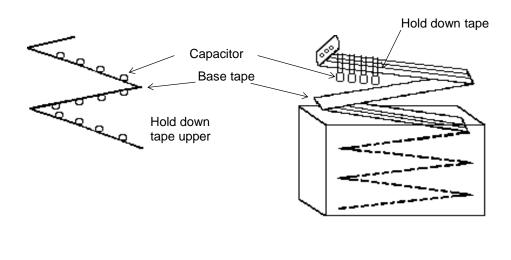
The number of packing = *1 Packing quantity \times *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

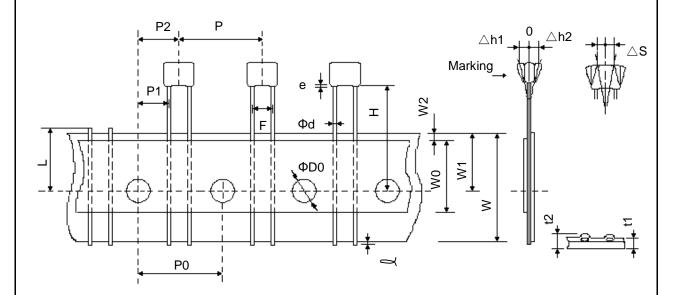

The outer package and the number of outer packing be changed by the order getting amount.


JKBCRPE02

·Ammo pack taping type (Packing style code : A)

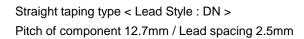
A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

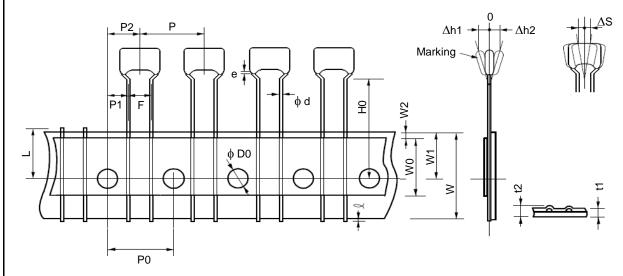
The size of packing case and packing way



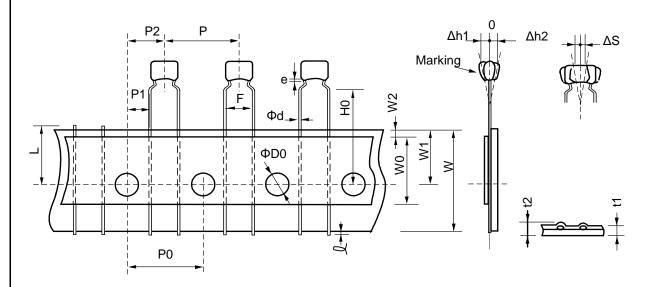
7. Taping specification

7-1. Dimension of capacitors on tape

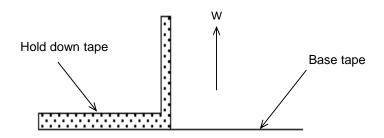

Straight taping type < Lead Style : DB >


Pitch of component 12.7mm / Lead spacing 2.5mm

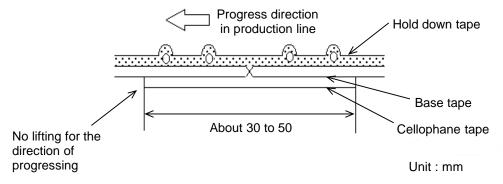
Unit: mm


Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	2.5+0.4/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	5.1+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	Н	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Daviation agrees tape	∆h1	1.0 max.	
Deviation across tape	∆ h2	1.0 Illax.	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	1.5 max.	

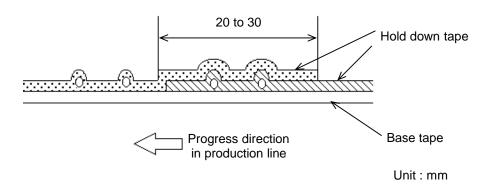
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	2.5+0.4/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	5.1+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	НО	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	Δh1	1.0 max.	
Deviation across tape	∆ h2	1.0 max.	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp


Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

			Other thin
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7]
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation corose tone	∆ h1	2.0 max. (D	imension code : W)
Deviation across tape	Δ h2	1.0 max. (e)	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp
	_		


7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

b) When hold down tape is spliced

•Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

c) When both tape are spliced

•Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01