ISL84782, ISL43L740

Data Sheet

October 11, 2004

FN6097.1

Ultra Low ON-Resistance, Low-Voltage, Single Supply, Differential 4 to 1 Analog Multiplexer

The Intersil ISL84782 and ISL43L740 devices are precision, bidirectional, analog switches configured as a differential 4-channel multiplexer/demultiplexer, designed to operate from a single +1.6V to +3.6V supply. The devices have an inhibit pin to simultaneously open all signal paths.

ON resistance is 0.5Ω with a +3V supply and 0.62Ω with a single +1.8V supply. Each switch can handle rail to rail analog signals. The off-leakage current is only 4nA max at +25°C and 30nA max at +85°C with a +3.3V supply.

All digital inputs are 1.8V logic-compatible when using a single +3V supply.

The ISL84782 is a differential 4 to 1 multiplexer device that is offered in a 16 Ld TSSOP package. The ISL43L740 is a differential 4 to 1 multiplexer device that is offered in a 16 Ld 3x3 QFN package.

Table 1 summarizes the performance of this family.

	ISL84782	ISL43L740
Configuration	Diff 4:1 Mux	Diff 4:1 Mux
3V R _{ON}	0.5Ω	0.5Ω
3V t _{ON} /t _{OFF}	DFF 16ns/13ns 16ns	
1.8V R _{ON}	0.62Ω	0.62Ω
1.8V t _{ON} /t _{OFF}	v/toff 24ns/16ns 24ns/16r	
Packages	16 Ld TSSOP	16 Ld 3x3 QFN

TABLE 1. FEATURES AT A GLANCE

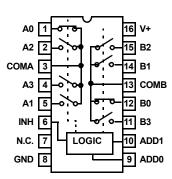
Related Literature

- Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"
- Application Note AN557 "Recommended Test Procedures for Analog Switches"

Features

- Drop-in Replacements for MAX4782 (TSSOP package)
- Pin Compatible with MAX4618
- ON Resistance (R_{ON})

	$- V + = +3.0V 0.5\Omega$ $- V + = +1.8V 0.62\Omega$
•	R_{ON} Matching Between Channels 0.12 $\!\Omega$
•	R_{ON} Flatness Across Signal Range $\ldots \ldots \ldots .0.056 \Omega$
•	Single Supply Operation +1.6V to +3.6V
•	Low Power Consumption (PD)
•	Fast Switching Action ($V_S = +3V$)
	- t _{ON}
•	Guaranteed Break-Before-Make
•	High Current Handling Capacity (300mA Continuous)


- Available in 16 Ld 3x3 QFN and 16 Ld TSSOP
- 1.8V CMOS-Logic Compatible (+3V Supply)
- Pb-Free Available as an Option (see Ordering Info)

Applications

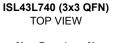
- Battery Powered, Handheld, and Portable Equipment
 - Cellular/Mobile Phones
 - Pagers
 - Laptops, Notebooks, Palmtops
- · Portable Test and Measurement
- Medical Equipment
- · Audio and Video Switching

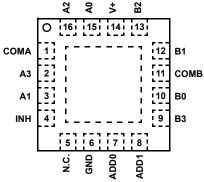
Pinouts (Note 1)

ISL84782 (TSSOP) TOP VIEW

NOTE:

1. Switches Shown for Logic "0" Inputs.


Truth Table


ISL84782, ISL43L740							
INH ADD0 ADD1 SWITCH O							
1	Х	Х	None				
0	0	0	A0, B0				
0	0	1	A1, B1				
0	1	0	A2, B2				
0	1	1	A3, B3				

NOTE: Logic "0" \leq 0.5V. Logic "1" \geq 1.4V, with a 3V supply. X = Don't Care.

Pin Descriptions

PIN	FUNCTION
V+	System Power Supply Input (1.6V to 3.6V)
N.C.	No Connect. Not internally connected.
GND	Ground Connection
INH	Digital Control Input. Connect to GND for Normal Operation. Connect to V+ to turn all switches off.
COMA	Analog Switch Channel A Output
COMB	Analog Switch Channel B Output
A0-A3	Analog Switch Channel A Input
B0-B3	Analog Switch Channel B Input
ADDx	Address Input Pin

Ordering Information

PART NO.	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
ISL84782IV	-40 to 85	16 Ld TSSOP	M16.173
ISL84782IV-T	-40 to 85	16 Ld TSSOP Tape & Reel	M16.173
ISL43L740IR	-40 to 85	16 Ld 3x3 QFN	L16.3x3
ISL43L740IR-T	-40 to 85	16 Ld 3x3 QFN Tape & Reel	L16.3x3
ISL84782IVZ (See Note)	-40 to 85	16 Ld TSSOP (Pb-free)	M16.173
ISL84782IVZ-T (See Note)	-40 to 85	16 Ld TSSOP Tape and Reel (Pb-free)	M16.173
ISL43L740IRZ (See Note)	-40 to 85	16 Ld 3x3 QFN (Pb-free)	L16.3x3
ISL43L740IRZ-T (See Note)	-40 to 85	16 Ld 3x3 QFN Tape and Reel (Pb-free)	L16.3x3

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-Free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C.

Absolute Maximum Ratings

V+ to GND
Input Voltages
INH, Ax, Bx, ADDx (Note 2)
COMx (Note 2)
Continuous Current NO or COM
Peak Current NO or COM
(Pulsed 1ms, 10% Duty Cycle, Max) ±500mA ESD Rating
HBM

Thermal Information

Thermal Resistance (Typical, Note 3)	θ _{JA} (°C/W)
16 Ld TSSOP Package	150
16 Ld 3x3 QFN Package	75
Maximum Junction Temperature (Plastic Package)	
Maximum Storage Temperature Range65	5°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(Lead Tips Only)	

Operating Conditions

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

2. Signals on Ax, Bx, COMx, ADDx, or INH exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current ratings.

3. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications - 3V Supply Test Conditions: V_{SUPPLY} = +2.7V to +3.3V, GND = 0V, V_{INH} = 1.4V, V_{INL} = 0.5V (Notes 4, 8), Unless Otherwise Specified

$ \begin{array}{ c c c c c c } \hline Analog Signal Range, V_{ANALOG} & Full & 0 & - & V+ & 0 \\ \hline Analog Signal Range, V_{ANALOG} & V+ = 2.7V, I_{COM} = 100mA, V_{AX or} V_{BX} = 0V to V+, & 25 & - & 0.5 & 0.75 & 0.76 & 0.75 & 0.76 & 0.75 & 0.76 & 0.75 & 0.76 & 0.75 & 0.76 & 0.75 & 0.76 & 0.75 & 0.76 & 0.75 & 0$	PARAMETER	TEST CONDITIONS	TEMP (°C)	(NOTE 5) MIN	ТҮР	(NOTE 5) MAX	UNITS
$ \begin{array}{ c c c c c c } \mbox{ON Resistance, R_{ON}} & V* = 2.7V, I_{COM} = 100mA, $V_{AX or}$V_{BX}$ = 0V to $V*$, $$ Set $Fiul $ -$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	ANALOG SWITCH CHARACTERISTI	cs					
$ \frac{(\text{See Figure 5})}{(\text{See Figure 5})} \qquad $	Analog Signal Range, V _{ANALOG}		Full	0	-	V+	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ON Resistance, R _{ON}		25	-	0.5	0.75	Ω
ARON RON. (Note 6) Full - 0.2 0.2 RON Flatness, RFLAT(ON) V+ = 2.7V, I _{COM} = 100mA, V _{AX or} V _{BX} = 0V to V+, (Note 7) 25 - 0.056 0.15 0 Ax or Bx OFF Leakage Current, I _{AX} (OFF) or I _{BX} (OFF) V+ = 3.3V, V _{COM} = 0.3V, 3V, V _{AX or} V _{BX} = 3V, 0.3V 25 -4 - 4 0 COM ON Leakage Current, I _{COM} (ON) V+ = 3.3V, V _{COM} = V _{AX or} V _{BX} = 0.3V, 3V 25 -8 - 8 1 DIGITAL INPUT CHARACTERISTICS V+ = 3.3V, V _{COM} = V _{AX or} V _{BX} = 0.3V, 3V 25 -8 - 8 1 Input Voltage High, V _{INH} , V _{ADDH} V= 3.3V, V _{COM} = V _{AX or} V _{BX} = 0.3V, 3V 25 -8 - 60 1 Input Voltage Low, V _{INL} , V _{ADDL} V= 1.3V, V _{COM} = V _{AX or} V _{BX} = 0.3V, 3V 1 - - 0.5 1 Input Voltage Low, V _{INL} , V _{ADDL} V= 3.6V, V _{INH} = V _{ADD} = 0V or V+ (Note 10) Full 0 0.5 1 Input Voltage Low, V _{INL} , I _{ADDH} , I _{ADD} V= 2.7V, V _{AX or} V _{BX} = 1.5V, R _L = 50Ω, C _L = 35P, [S - 16 25 - 16		(See Figure 5)	Full	-	-	0.8	Ω
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	÷		25	-	0.12	0.2	Ω
$\begin{array}{ c c c c c c }\hline \text{(Note 7)} & \hline \text{Full} & - & - & 0.15$	ΔR _{ON}	R _{ON} , (Note 6)	Full	-	-	0.2	Ω
$\begin{array}{ c c c c c c } \hline Full & - & - & 0.15 \\ \hline Full & - & - & 0.15 \\ \hline Full & - & - & 0.15 \\ \hline Full & - & - & 0.15 \\ \hline Full & - & - & 0.15 \\ \hline Full & Ax or Bx OFF Leakage Current, I_{COM(ON)} \\ \hline Full & -30 & - & 30 \\ \hline Full & -30 & - & 30 \\ \hline Full & -30 & - & 8 \\ \hline Full & -60 & - & 60 \\ \hline Full & -60 & - & 60 \\ \hline O \\ \hline DGITAL INPUT CHARACTERISTICS \\ \hline Input Voltage Low, V_{INL}, V_{ADDH} \\ \hline Input Voltage Low, V_{INL}, V_{ADDL} \\ \hline Input Voltage Low, V_{INL}, V_{ADDL} \\ \hline Full & - & - & 0.5 \\ \hline Input Current, I_{INL}, I_{ADDH}, I_{ADDL} \\ \hline V+ = 3.6V, V_{INH} = V_{ADD} = 0V \text{ or } V+ (Note 10) \\ \hline Full & -0.5 & - & 0.5 \\ \hline DYNAMIC CHARACTERISTICS \\ \hline Inhibit Turn-ON Time, t_{ON} \\ \hline V+ = 2.7V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, \\ (See Figure 1, Note 10) \\ \hline Full & - & - & 27 \\ \hline Inhibit Turn-OFF Time, t_{OFF} \\ \hline V+ = 2.7V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, \\ (See Figure 1, Note 10) \\ \hline Full & - & - & 25 \\ \hline Address Transition Time, t_{TRANS} \\ \hline V+ = 3.3V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, \\ (See Figure 1, Note 10) \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 25 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & - & 30 \\ \hline Full & - & - & 30 \\ \hline Full & - & - & - & 30 \\ \hline Full & - & - & 4 \\ \hline Full & - & - & 4 \\ \hline Full & - & - & - & 30 \\ \hline Full & - & - & - & 30 \\ \hline Full & - & - & - & 30 \\ \hline Full & - & - & - & 30 \\ \hline Full & - & - & - & 30 \\ \hline Full & - & - & - & - & 30 \\ \hline Full & - & -$	R _{ON} Flatness, R _{FLAT(ON)}		25	-	0.056	0.15	Ω
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Full	-	-	0.15	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•	V+ = 3.3V, V _{COM} = 0.3V, 3V, V _{AX or} V _{BX} = 3V, 0.3V	25	-4	-	4	nA
$\begin{tabular}{ c c c c c c } \hline Full & -60 & - & 60 \\ \hline Full & -60 & - & 60 \\ \hline DIGITAL INPUT CHARACTERISTICS \\ \hline Input Voltage High, V_{INH}, V_{ADDH} & & & & & & & & & & & & & & & & & & &$	I _{Ax(OFF)} or I _{Bx(OFF)}		Full	-30	-	30	nA
Digital input Voltage High, V _{INH} , V _{ADDH} Full 1.4 - - 0.5	COM ON Leakage Current, I _{COM(ON)}	V+ = 3.3V, V _{COM} = V _{AX or} V _{BX} = 0.3V, 3V	25	-8	-	8	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Full	-60	-	60	nA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DIGITAL INPUT CHARACTERISTICS						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Voltage High, V _{INH} , V _{ADDH}		Full	1.4	-	-	V
DYNAMIC CHARACTERISTICS V+ = 2.7V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 1, Note 10) 25 - 16 25 Inhibit Turn-ON Time, t _{ON} V+ = 2.7V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 1, Note 10) 25 - 16 25 Inhibit Turn-OFF Time, t _{OFF} V+ = 2.7V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 1, Note 10) 25 - 14 23 Address Transition Time, t _{TRANS} V+ = 2.7V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 1, Note 10) 25 - 19 28 Break-Before-Make Time, t _{BBM} V+ = 3.3V, V_{Ax or} V_{Bx} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 3, Note 10) 25 - 4 -	Input Voltage Low, V _{INL} , V _{ADDL}		Full	-	-	0.5	V
$ \begin{array}{c c} \text{Inhibit Turn-ON Time, } t_{\text{ON}} & V+=2.7V, V_{\text{Ax or}} V_{\text{Bx}}=1.5V, R_{\text{L}}=50\Omega, C_{\text{L}}=35\text{pF}, \\ (\text{See Figure 1, Note 10}) & Full & - & 16 & 25 \\ \hline \text{Full} & - & & 27 & 27 & 27 & 27 & 27 & 27 & 2$	Input Current, I _{INH} , I _{INL} , I _{ADDH} , I _{ADDL}	V+ = 3.6V, V _{INH} = V _{ADD} = 0V or V+ (Note 10)	Full	-0.5	-	0.5	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DYNAMIC CHARACTERISTICS						
$\frac{ V_{FU} ^{2}}{ V_{F} ^{2}} = \frac{ V_{F} ^{2}}{ V_{F} ^{2}} = $	Inhibit Turn-ON Time, t _{ON}		25	-	16	25	ns
		(See Figure 1, Note 10)	Full	-	-	27	ns
Address Transition Time, t_{TRANS} V+ = 2.7V, V_{AX or} V_{BX} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 1, Note 10) 25 19 28 Break-Before-Make Time, t_{BBM} V+ = 3.3V, V_{AX or} V_{BX} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 3, Note 10) V+ = 3.3V, V_{AX or} V_{BX} = 1.5V, R_L = 50\Omega, C_L = 35pF, (See Figure 3, Note 10) 25 - 4 -	Inhibit Turn-OFF Time, t _{OFF}		25	-	14	23	ns
(See Figure 1, Note 10) Full - 30 Break-Before-Make Time, t_{BBM} V+ = 3.3V, $V_{AX or} V_{BX} = 1.5V$, $R_L = 50\Omega$, $C_L = 35pF$, (See Figure 3, Note 10) 25 - 4 -		(See Figure 1, Note 10)	Full	-	-	25	ns
Full - - 30 Break-Before-Make Time, t_{BBM} V+ = 3.3V, $V_{AX or} V_{BX} = 1.5V$, $R_L = 50\Omega$, $C_L = 35pF$, (See Figure 3, Note 10) 25 - 4 -	Address Transition Time, t _{TRANS}		25	-	19	28	ns
(See Figure 3, Note 10)		(See Figure 1, Note 10)	Full	-	-	30	ns
(See Figure 3, Note 10) Full 1	Break-Before-Make Time, t _{BBM}		25	-	4	-	ns
		(See Figure 3, Note 10)	Full	1	-	-	ns

ISL84782, ISL43L740

Electrical Specifications - 3V Supply Test Conditions: V_{SUPPLY} = +2.7V to +3.3V, GND = 0V, V_{INH} = 1.4V, V_{INL} = 0.5V (Notes 4, 8), Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (°C)	(NOTE 5) MIN	ТҮР	(NOTE 5) MAX	UNITS
Charge Injection, Q	C_L = 1.0nF, V_G = 0V, R_G = 0 Ω , (See Figure 2)	25	-	-65	-	рС
Input OFF Capacitance, COFF	f = 1MHz, $V_{AX \text{ or }} V_{BX} = V_{COM} = 0V$, (See Figure 7)	25	-	62	-	pF
COM OFF Capacitance, C _{OFF}	f = 1MHz, $V_{AX \text{ or }} V_{BX} = V_{COM} = 0V$, (See Figure 7)	25	-	218	-	pF
COM ON Capacitance, C _{COM(ON)}	f = 1MHz, $V_{AX \text{ or }} V_{BX} = V_{COM} = 0V$, (See Figure 7)	25	-	232	-	pF
OFF Isolation	$R_L = 50\Omega, C_L = 35pF, f = 100kHz,$	25	-	65	-	dB
Crosstalk, (Note 9)	(See Figures 4 and 6)	25	-	-100	-	dB
Total Harmonic Distortion (THD)	f = 20Hz to 20kHz, 0.5Vp-p, R_L = 32 Ω	25	-	0.02	-	%
POWER SUPPLY CHARACTERIST	CS					1
Power Supply Range		Full	1.6	-	3.6	V
Positive Supply Current, I+	V+ = 3.6V, V_{INH} , V_{ADD} = 0V or V+, Switch On or Off	25	-	-	0.05	μA
		Full	-	-	0.9	μA

NOTES:

4. V_{IN} = Input voltage to perform proper function.

5. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

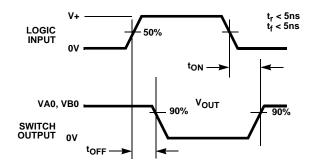
6. R_{ON} matching between channels is calculated by subtracting the channel with the highest max Ron value from the channel with lowest max Ron value.

7. Flatness is defined as the difference between maximum and minimum value of on-resistance over the specified analog signal range.

8. Parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.

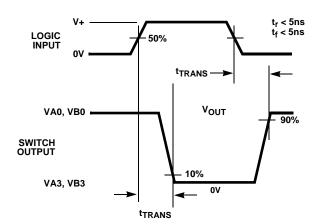
9. Between any two switches.

10. Guaranteed but not tested.


Electrical Specifications: 1.8V Supply Test Conditions: V+ = +1.8V, GND = 0V, V_{INH} = 1V, V_{INL} = 0.4V (Notes 4, 8), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (°C)	MIN (NOTE 5)	ТҮР	MAX (NOTE 5)	UNITS
ANALOG SWITCH CHARACTERIS	TICS					
Analog Signal Range, V _{ANALOG}		Full	0	-	V+	V
ON Resistance, R _{ON}	V+ = 1.8V, I _{COM} = 10.0mA, V _{AX or} V _{BX} = 1.0V,	25	-	0.63	0.85	Ω
	(See Figure 5)	Full	-	-	0.9	Ω
R _{ON} Matching Between Channels,	V+ = 1.8V, I _{COM} = 10.0mA, V _{AX or} V _{BX} = 1.0V,	25	-	0.12	-	Ω
ΔR _{ON)}	(See Figure 5)	Full	-	0.12	-	Ω
R _{ON} Flatness, R _{FLAT(ON)}	$V_{+} = 1.8V, I_{COM} = 10.0mA, V_{AX \text{ or }} V_{BX} = 0V, 0.9V, 1.6V,$	25	-	0.14	-	Ω
	(See Figure 5)	Full	-	0.14	-	Ω
DIGITAL INPUT CHARACTERISTIC	DS	•	<u>+</u>			
Input Voltage High, V _{INH} , V _{ADDH}		Full	1	-	-	V
Input Voltage Low, V _{INL} , V _{ADDL}		Full	-	-	0.4	V
Input Current, I _{INH} , I _{INL} , I _{ADDH} , I _{ADDL}	V+ = 1.8V, V _{INH} , V _{ADD} = 0V or V+ (Note 10)	Full	-0.5	-	0.5	μA
DYNAMIC CHARACTERISTICS						
Inhibit Turn-ON Time, t _{ON}	$V_{+} = 1.8V, V_{Ax \text{ or }} V_{Bx} = 1.0V, R_{L} = 50\Omega, C_{L} = 35pF,$	25	-	24	33	ns
	(See Figure 1, Note 10)	Full	-	-	35	ns

PARAMETER	TEST CONDITIONS	TEMP (°C)	MIN (NOTE 5)	ТҮР	MAX (NOTE 5)	UNITS
Inhibit Turn-OFF Time, t _{OFF}	$V_{+} = 1.8V, V_{Ax \text{ or }} V_{Bx} = 1.0V, R_{L} = 50\Omega, C_{L} = 35pF,$	25	-	16	25	ns
	(See Figure 1, Note 10)	Full	-	-	27	ns
Address Transition Time, t _{TRANS}	$V_{+} = 1.8V, V_{AX \text{ or }} V_{BX} = 1.0V, R_{L} = 50\Omega, C_{L} = 35pF,$	25	-	25	34	ns
	(See Figure 1, Note 10)	Full	-	-	36	ns
Break-Before-Make Time, t _{BBM}	V+ = 1.8V, V _{AX or} V _{BX} = 1.0V, R _L = 50 Ω , C _L = 35pF, (See Figure 3, Note 10)	25	-	9	-	ns
Charge Injection, Q	C_L = 1.0nF, V_G = 0V, R_G = 0 Ω , (See Figure 2)	25	-	-39	-	рС


Electrical Specifications: 1.8V Supply Test Conditions: V+ = +1.8V, GND = 0V, V_{INH} = 1V, V_{INL} = 0.4V (Notes 4, 8), Unless Otherwise Specified (Continued)

Test Circuits and Waveforms

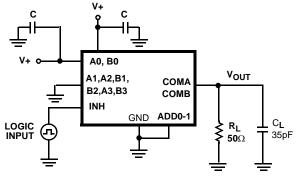
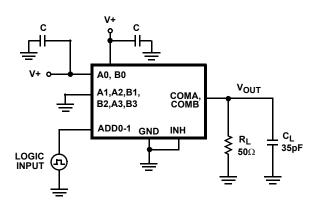

Logic input waveform is inverted for switches that have the opposite logic sense.

FIGURE 1A. INHIBIT tON/tOFF MEASUREMENT POINTS

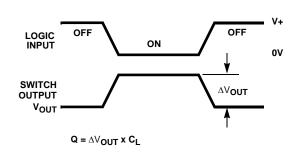
Logic input waveform is inverted for switches that have the opposite logic sense.


FIGURE 1C. ADDRESS tTRANS MEASUREMENT POINTS

Repeat test for other switches. CL includes fixture and stray capacitance.

$$V_{OUT} = V_{(NO \text{ or } NC)} \frac{R_L}{R_L + R_{(ON)}}$$

FIGURE 1B. INHIBIT t_{ON}/t_{OFF} TEST CIRCUIT


Repeat test for other switches. CL includes fixture and stray capacitance. $\hfill \hfill \h$

$$V_{OUT} = V_{(NO \text{ or } NC)} \frac{\kappa_L}{R_L + R_{(ON)}}$$

FIGURE 1D. ADDRESS t_{TRANS} TEST CIRCUIT

FIGURE 1. SWITCHING TIMES

Test Circuits and Waveforms (Continued)

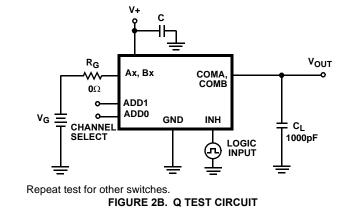


FIGURE 2A. Q MEASUREMENT POINTS

FIGURE 2. CHARGE INJECTION

FIGURE 3. BREAK-BEFORE-MAKE TIME

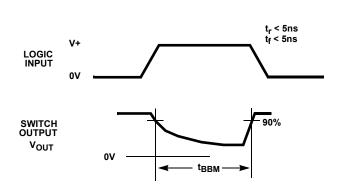
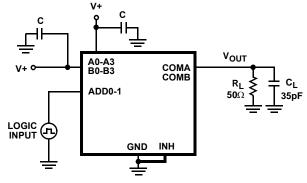
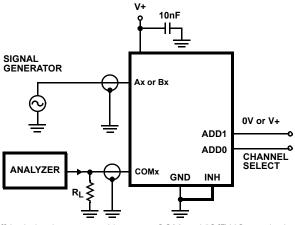




FIGURE 3A. tBBM MEASUREMENT POINTS

Repeat test for other switches. $\ensuremath{\mathsf{C_L}}$ includes fixture and stray capacitance.

FIGURE 3B. t_{BBM} TEST CIRCUIT

Off-Isolation is measured between COM and "Off" NO terminal on each switch.

Signal direction through switch is reversed and worst case values are recorded.

FIGURE 4. OFF ISOLATION TEST CIRCUIT

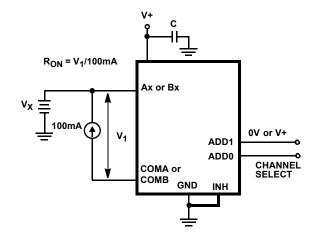
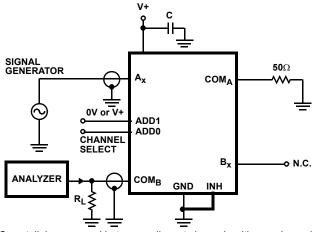



FIGURE 5. RON TEST CIRCUIT

Test Circuits and Waveforms (Continued)

Crosstalk is measured between adjacent channels with one channel ON and the other channel OFF.

Signal direction through switch is reversed and worst case values are recorded.

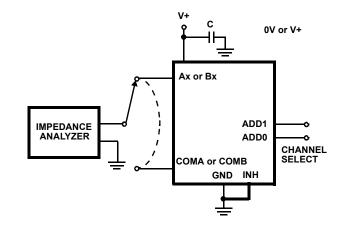


FIGURE 7. CAPACITANCE TEST CIRCUIT

Detailed Description

The ISL84782 and ISL43L740 analog switches offer precise switching capability from a single 1.6V to 3.6V supply with low on-resistance (0.5Ω) and high speed operation (t_{ON} = 16ns, t_{OFF} = 13ns). The devices are especially well suited to portable battery powered equipment thanks to the low operating supply voltage (1.6V), low power consumption (0.2μ W), low leakage currents (60nA max). High frequency applications also benefit from the wide bandwidth, and the very high off isolation and crosstalk rejection.

Supply Sequencing and Overvoltage Protection

With any CMOS device, proper power supply sequencing is required to protect the device from excessive input currents which might permanently damage the IC. All I/O pins contain ESD protection diodes from the pin to V+ and to GND (see Figure 8). To prevent forward biasing these diodes, V+ must be applied before any input signals, and the input signal voltages must remain between V+ and GND. If these conditions cannot be guaranteed, then one of the following two protection methods should be employed.

Logic inputs can easily be protected by adding a $1k\Omega$ resistor in series with the input (see Figure 8). The resistor limits the input current below the threshold that produces permanent damage, and the sub-microamp input current produces an insignificant voltage drop during normal operation.

This method is not applicable for the signal path inputs. Adding a series resistor to the switch input defeats the purpose of using a low R_{ON} switch, so two small signal diodes can be added in series with the supply pins to provide overvoltage protection for all pins (see Figure 8). These

additional diodes limit the analog signal from 1V below V+ to 1V above GND. The low leakage current performance is unaffected by this approach, but the switch signal range is reduced and the resistance may increase, especially at low supply voltages.

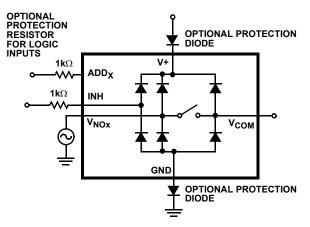


FIGURE 8. OVERVOLTAGE PROTECTION

Power-Supply Considerations

The ISL84782 and ISL43L740 construction is typical of most CMOS analog switches, in that they have two supply pins: V+ and GND. V+ and GND drive the internal CMOS switches and set their analog voltage limits. Unlike switches with a 4V maximum supply voltage, the ISL84782 and ISL43L740 4.7V maximum supply voltage provides plenty of room for the 10% tolerance of 3.6V supplies, as well as room for overshoot and noise spikes.

The minimum recommended supply voltage is 1.6V but the part will operate with a supply below 1.5V. It is important to

note that the input signal range, switching times, and onresistance degrade at lower supply voltages. Refer to the electrical specification tables and *Typical Performance* curves for details.

V+ and GND power the internal logic (thus setting the digital switching point) and level shifters. The level shifters convert the logic levels to switched V+ and V- signals to drive the analog switch gate terminals.

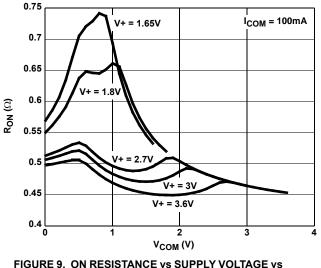
Logic-Level Thresholds

These devices are 1.8V CMOS compatible (0.5V and 1.4V) over a supply range of 2.0V to 3.6V (see Figure 13). At 3.6V the V_{IH} level is about 1.27V. This is still below the 1.8V CMOS guaranteed high output minimum level of 1.4V, but noise margin is reduced.

The digital input stages draw supply current whenever the digital input voltage is not at one of the supply rails. Driving the digital input signals from GND to V+ with a fast transition time minimizes power dissipation.

High-Frequency Performance

In 50 Ω systems, signal response is reasonably flat even past 10MHz with a -3dB bandwidth of 70MHz (see Figure 17). The frequency response is very consistent over a wide V+ range, and for varying analog signal levels.


An OFF switch acts like a capacitor and passes higher frequencies with less attenuation, resulting in signal feed through from a switch's input to its output. Off Isolation is the resistance to this feed through, while Crosstalk indicates the amount of feed through from one switch to another. Figure 18 details the high Off Isolation and Crosstalk rejection provided by this family. At 100kHz, Off Isolation is about 65dB in 50Ω systems, decreasing approximately 20dB per decade as frequency increases. Higher load impedances decrease Off Isolation and Crosstalk rejection due to the voltage divider action of the switch OFF impedance and the load impedance.

Leakage Considerations

Reverse ESD protection diodes are internally connected between each analog-signal pin and both V+ and GND. One of these diodes conducts if any analog signal exceeds V+ or GND.

Virtually all the analog leakage current comes from the ESD diodes to V+ or GND. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V+ and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity. There is no connection between the analog signal paths and V+ or GND.

SWITCH VOLTAGE

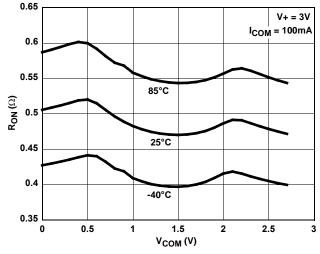


FIGURE 10. ON RESISTANCE vs SWITCH VOLTAGE

Typical Performance Curves T_A = 25°C, Unless Otherwise Specified (Continued)

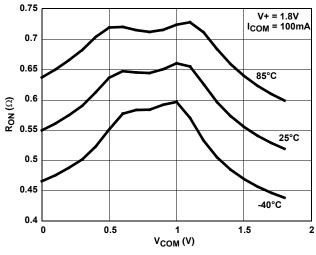


FIGURE 11. ON RESISTANCE vs SWITCH VOLTAGE

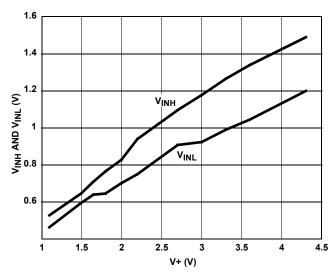


FIGURE 13. DIGITAL SWITCHING POINT vs SUPPLY VOLTAGE

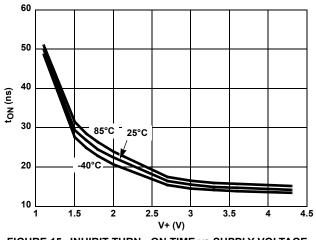


FIGURE 15. INHIBIT TURN - ON TIME vs SUPPLY VOLTAGE

9

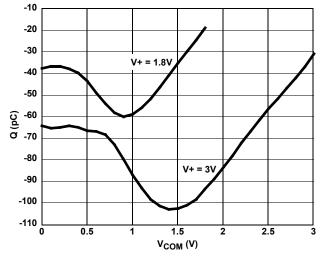


FIGURE 12. CHARGE INJECTION vs SWITCH VOLTAGE

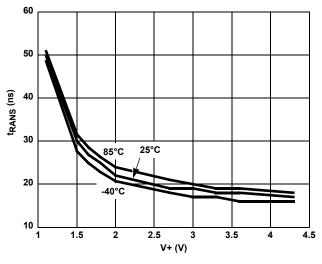
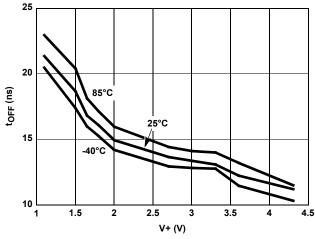
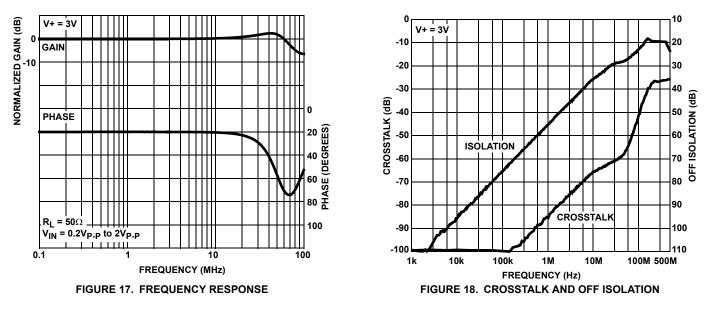




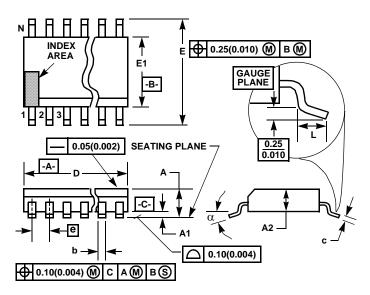
FIGURE 14. ADDRESS TRANS TIME vs SUPPLY VOLTAGE

Typical Performance Curves T_A = 25°C, Unless Otherwise Specified (Continued)

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):

GND (QFN Paddle Connection: To Ground or Float)


TRANSISTOR COUNT:

228

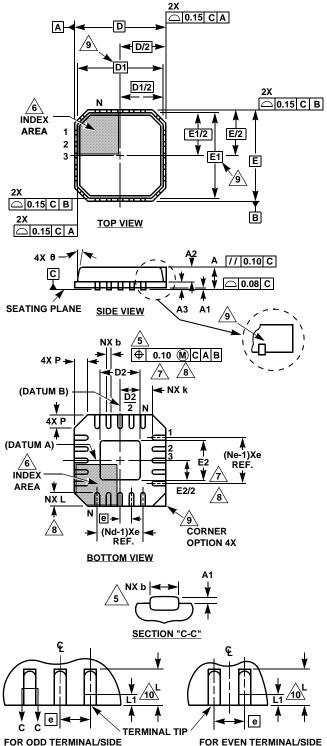
PROCESS:

Submicron CMOS

Thin Shrink Small Outline Plastic Packages (TSSOP)

NOTES:

- 1. These package dimensions are within allowable dimensions of JEDEC MO-153-AB, Issue E.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch).
- 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees)


M16.173

16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIN	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
А	-	0.043	-	1.10	-	
A1	0.002	0.006	0.05	0.15	-	
A2	0.033	0.037	0.85	0.95	-	
b	0.0075	0.012	0.19	0.30	9	
С	0.0035	0.008	0.09	0.20	-	
D	0.193	0.201	4.90	5.10	3	
E1	0.169	0.177	4.30	4.50	4	
е	0.026 BSC		0.65	BSC	-	
Е	0.246	0.256	6.25	6.50	-	
L	0.020	0.028	0.50	0.70	6	
Ν	1	6	16		7	
α	0 ⁰	8 ⁰	0 ⁰	8 ⁰	-	

Rev. 1 2/02

Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP)

L16.3x3

16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE

	MILLIMETERS			
SYMBOL	MIN	NOMINAL	MAX	NOTES
А	0.80	0.90	1.00	-
A1	-	-	0.05	-
A2	-	-	1.00	9
A3	0.20 REF			9
b	0.18	0.23	0.30	5, 8
D	3.00 BSC			-
D1	2.75 BSC			9
D2	1.35	1.50	1.65	7, 8, 10
E	3.00 BSC			-
E1	2.75 BSC			9
E2	1.35	1.50	1.65	7, 8, 10
е	0.50 BSC			-
k	0.20	-	-	-
L	0.30	0.40	0.50	8
Ν	16			2
Nd	4			3
Ne	4			3
Р	-	-	0.60	9
θ	-	-	12	9
	•			Rev. 1 6/04

NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
- 2. N is the number of terminals.
- 3. Nd and Ne refer to the number of terminals on each D and E.
- 4. All dimensions are in millimeters. Angles are in degrees.
- 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
- 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
- Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
- 9. Features and dimensions A2, A3, D1, E1, P & 0 are present when Anvil singulation method is used and not present for saw singulation.
- 10. Compliant to JEDEC MO-220VEED-2 Issue C, except for the E2 and D2 MAX dimension.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com