Low Power Low Offset Voltage Dual Comparators

The IL2903 / IL2903E consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages.

Application areas include limit comparators, simple analog to digital converters; pulse, square wave and time delay generators; wide range VCO; MOS clock timers; multi-vibrators and high voltage digital logic gates.

- Single or Split Supply Operation
- Low Input Bias Current
- Low Input Offset Current
- Input Common Mode Voltage Range to GND
- Low Output Saturation Voltage
- TTL and CMOS Compatible
- IL2903E AEC Q100 Qualified

PIN ASSIGNMENT

PIN $8=V_{c c}$
PIN $4=$ GND

ORDERING INFORMATION
IL2903N/IL2903EN Plastic/Tube IL2903D/IL2903ED SOIC/Tube IL2903DT/IL2903EDT SOIC/T\&R

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Power Supply Voltages Single Supply Split Supplies	36 ± 18	V
$\mathrm{~V}_{\mathrm{IDR}}$	Input Differential Voltage Range	36	V
$\mathrm{~V}_{I C R}$	Input Common Mode Voltage Range (1)	-0.3 to V_{CC}	V
I_{SC}	Output Short Circuit to Ground	Continuous	
I_{N}	Input Current, per pin (2)	50	mA
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature Plastic Packages	150	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Plastic Package Derate above $25^{\circ} \mathrm{C}$	570 5.7	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$

* Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Functional operation should be restricted to the Recommended Operating Conditions.
Notes:

1. Split Power Supplies.
2. $\mathrm{V}_{\mathbb{I N}}<-0.3 \mathrm{~V}$. This input current will only exist when voltage at any of the input leads is driven negative.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage	± 2.5 or 5.0	± 15 or 30	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature, All Package Types	IL2903	-40	+105	${ }^{\circ} \mathrm{C}$
	IL2903E	-40	+125		

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUt }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\mathbb{I N}}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\mathrm{CC}}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions	Guaranteed Limit			Unit
			Min	Typ	Max	
V_{10}	Input Offset Voltage	$\begin{aligned} & \hline \mathrm{V}_{0}=1.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0-30 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}} \leq 100 \Omega \\ & \mathrm{~V}_{\mathrm{ICR}}=0 \mathrm{~V}-\left(\mathrm{V}_{\mathrm{CC}}-1.5\right) \mathrm{V} \end{aligned}$	-		$\begin{gathered} 9.0 \\ 5.0^{*} \end{gathered}$	mV
$\mathrm{I}_{\text {B }}$	Input Bias Current	$\begin{array}{\|l} \hline \mathrm{V}_{0}=1.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{ICR}}=0 \mathrm{~V}-\left(\mathrm{V}_{\mathrm{CC}}-1.5\right) \mathrm{V} \\ \hline \end{array}$	-		400	nA
110	Input Offset Current	$\begin{array}{\|l} \hline \mathrm{V}_{0}=1.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{ICR}}=0 \mathrm{~V}-\left(\mathrm{V}_{\mathrm{CC}}-1.5\right) \mathrm{V} \end{array}$	-		$\begin{gathered} \pm 150 \\ 50^{*} \end{gathered}$	nA
$V_{\text {ICR }}$	Input Common Mode Voltage Range	$\mathrm{V}_{C C}=5.0-30 \mathrm{~V}$	0		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 20 \mathrm{~V} \end{aligned}$	V
I_{CC}	Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CC}}=5.0 \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.0^{*} \\ & 2.5^{*} \end{aligned}$	mA
Avol	Voltage Gain	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{~K} \Omega$	-	200*	-	V / mV
t_{1}	Large Signal Response Time	$\mathrm{V}_{\mathrm{IN}}=\mathrm{TTL}$ Logic Swing, $\mathrm{V}_{\text {ref }}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=5.1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{RL}}=5.0 \mathrm{~V}$	-	300*	-	ns
t_{2}	Response Time (Note 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{~K} \Omega, \\ & \mathrm{~V}_{\mathrm{RL}}=5.0 \mathrm{~V} \end{aligned}$	-	1.3*	-	$\mu \mathrm{S}$
$\mathrm{I}_{\text {sink }}$	Output Sink Current	$\begin{aligned} & \mathrm{V}_{1}(-)=1.0 \mathrm{~V}, \mathrm{~V}_{1}(+)=0 \mathrm{~V}, \\ & \mathrm{~V}_{0} \leq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	6.0*	-	-	mA
$\mathrm{V}_{\text {sat }}$	Saturation Voltage	$\begin{aligned} & \mathrm{V}_{1}(-)=1.0 \mathrm{~V}, \mathrm{~V}_{1}(+)=0 \mathrm{~V}, \\ & \mathrm{I}_{\text {sink }} \leq 4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	-	-	700	mV
l_{OL}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{1}(+)=1.0 \mathrm{~V}, \mathrm{~V}_{1}(-)=0 \mathrm{~V}, \\ & \mathrm{~V}_{0}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{0}=30 \mathrm{~V} \end{aligned}$		0.1*	1000	nA
$V_{\text {IDR }}$	Differential Input Voltage Range	All $\mathrm{V}_{\text {IN }} \geq$ GND or V-Supply (if used)			V_{Cc}	V

*=@ $25^{\circ} \mathrm{C}$

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {response }}$	Propagation delay time, high-to-low; TTL input signal	TTL input with $\mathrm{V}_{\text {ref }}=1.4 \mathrm{~V}$		0.3	us	
$\mathrm{t}_{\text {response }}$	Propagation delay time, high-to-low; Small scale input signal	Input overdrive $=5 \mathrm{mV}$, Input step $=100 \mathrm{mV}$	0.8		us	

TYPICAL PERFORMANCE CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, (each comparator))

Figure 1. Input Bias Current versus Power Supply Voltage

Figure 2. Output Saturation Voltage versus Output Sink Current

Figure 3. Output Saturation Voltage versus Output Sink Current

Figure 4. Power Supply Current versus Power Supply Voltage

Figure 5. Power Supply Current versus Power Supply Voltage

Figure 6. Response Time for Various Overdrives, High-to-Low Transition

Figure 7. Response Time for Various Overdrives Low-to-High Transition

N SUFFIX PLASTIC DIP

(MS - 001BA)

\section*{| ϕ | $0.25(0.010)(D)$ | T |
| :--- | :--- | :--- |}

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC
 (MS - 012AA)

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ; for $\mathrm{B}-0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	4.8	5
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

