

Presettable synchronous BCD decade up/down counter

FEATURES

- Synchronous reversible counting
- Asynchronous parallel load
- Asynchronous reset
- Expandable without external logic
- Output capability: standard
- I_{CC} category: MSI

PACKAGE/ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
74HC192N	DIP-16	74HC192	TUBE	1000pcs/Box
74HC192M/TR	SOP-16	74HC192	REEL	2500pcs/Reel
74HC192MT/TR	TSSOP-16	HC192	REEL	2500pcs/Reel
74HCT192N	DIP-16	74HCT192	TUBE	1000pcs/Box
74HCT192M/TR	SOP-16	74HCT192	REEL	2500pcs/Reel
74HCT192MT/TR	TSSOP-16	HCT192	REEL	2500pcs/Reel

GENERAL DESCRIPTION

The 74HC/HCT192 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT192 are synchronous BCD up/down counters. Separate up/down clocks, CP_U and CPD respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CP_U clock is pulsed while CPD is held HIGH, the device will count up. If the CPD clock is pulsed while CPU is held HIGH, the device will count down. Only one clock input can be held HIGH at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input (\overline{PL}).

The "192" contains four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions.

Each flip-flop contains JK feedback from slave to master, such that a LOW-to-HIGH transition on the CPD input will decrease the count by one, while a similar transition on the CPU input will advance the count by one.

One clock should be held HIGH while counting with the other, otherwise the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW. Applications requiring reversible operation must make the reversing decision while the activating clock is HIGH to avoid erroneous counts.

The terminal count up (\overline{TC}_U) and terminal count down $(\overline{TC}D)$ outputs are normally HIGH. When the circuit has reached the maximum count state of 9, the next HIGH-to-LOW transition of CP_U will cause \overline{TC}_U to go LOW. \overline{TC}_U will stay LOW until CP_U goes HIGH again, duplicating the count up clock.

Likewise, the $\overline{\text{TC}}_D$ output will go LOW when the circuit is in the zero state and the CPD goes LOW. The terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock wave forms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added.

The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel data inputs (D_0 to D_3) is loaded into the counter and appears on the outputs (Q_0 to Q_3) regardless of the conditions of the clock inputs when the parallel load (\overline{PL}) input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs (Q_0 to Q_3) LOW. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBOL	PARAMETER	CONDITIONS	нс	нст	ONIT	
t _{PHL} / t _{PLH}	propagation delay CPD, CPU to Qn	CL = 45 = 5: VCC = 5V	20	20	ns	
f _{max}	maximum clock frequency	CL = 15 pF; VCC =5V	40	45	MHz	
T∟	Soldering temperature	10s	-	245	°C	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	24	28	pF	

Notes: 1. CPD is used to determine the dynamic power dissipation (PD in μW):

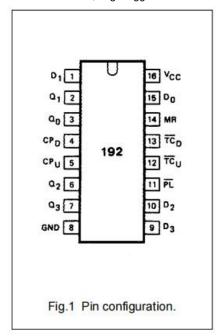
 $P_D {=} C_{PD} {\times} V_{CC}{}^2 {\times} fi \ {+} \Sigma (CL {\times} V_{CC}{}^2 {\times} F_O) where:$

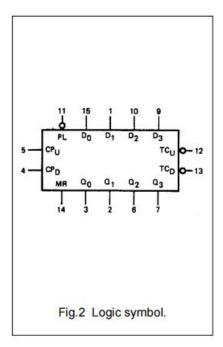
fi=input frequency in MHz fo=output frequency in MHz $\Sigma (CL \times V_{CC}{}^2 \times F_O) = sum \ of \ outputs$ $C_L = output \ load \ capacitance \ in \ pF$

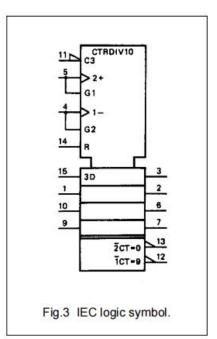
V_{CC} = supply voltage in V

2. For HC the condition is V_{I} = GND to VCC

For HCT the condition is V_1 = GND to VCC-1.5V




PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
3, 2, 6, 7	Q0 to Q3	flip-flop outputs
4	CP _D	count down clock input(1)
5	CPu	count up clock input(1)
8	GND	ground (0 V)
11	PL	asynchronous parallel load input (active LOW)
12	TC∪	terminal count up (carry) output (active LOW)
13	TCD	terminal count down (borrow) output (active LOW)
14	MR	asynchronous master reset input (active HIGH)
15, 1, 10, 9	D ₀ to D ₃	data inputs
16	V _{CC}	positive supply voltage

Note

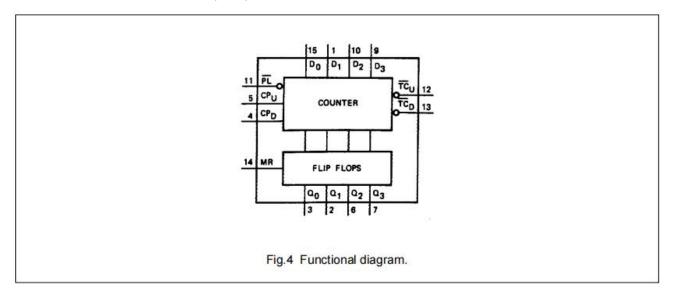
1. LOW-to-HIGH, edge triggered

FUNCTION TABLE

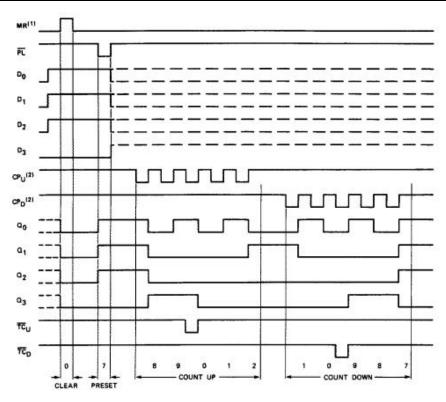
OPERATING MODE				INP	UTS				OUTPUTS					
OPERATING MODE	MR	PL	CPU	CPD	D0	D1	D2	D3	Q0	Q1	Q2	Q3	ΤCυ	\overline{TC}_D
reset (clear)	Н	Х	Х	L	Х	Х	Х	Х	L	L	L	L	Н	L
reset (clear)	Н	Х	Х	Н	Х	Х	Х	Х	L	L	L	L	Н	Н
	L	L	Х	L	L	L	L	L	L	L	L	L	Н	L
navellal land	L	L	Х	Н	L	L	L	L	L	L	L	L	Н	Н
parallel load	L	L	L	Х	Н	Х	Х	н		Qn =	= Dn		L	Н
	L	L	Н	Х	Н	Х	Х	н	Qn = Dn		Н	Н		
count up	L	Н		Н	Х	Х	Х	Х	count up			H ⁽²⁾	Н	
count down	L	Н	Н		Х	Х	Х	Х	count down F			Н	H ⁽³⁾	

Notes

H = HIGH voltage level


L = LOW voltage level

X = don't care


↑= LOW-to-HIGH clock transition

 \overline{TC}_U = CPU at terminal count up (HLLH)

 \overline{TC}_D = CPD at terminal count down (LLLL)

Clear overrides load, data and count inputs.

When counting up the count down clock input (CPD) must be HIGH, when counting down the count up clock input (CPU) must be HIGH. **Sequence**

Clear (reset outputs to zero); load (preset) to BCD seven; count up to eight, nine, terminal count up, zero, one and two; count down to one, zero, terminal count down, nine, eight, and seven.

Fig.5 Typical clear, load and count sequence.

Fig.6 Logic diagram.

DC CHARACTERISTICS FOR 74HC

Output capability: standard

Icc category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; CL = 50 pF$

				T	amb (°	C)				TEST CONDITIONS		
					74HC	:			1			
SYMBOL	PARAMETER		25		-40 t	o +85	-40 to	o +125	UNIT	VCC	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(V)		
	propagation delay		66	215		270		325		2.0		
$t_{\text{PHL}}/\ t_{\text{PLH}}$	propagation delay $CP_{U}, CP_{D} \text{ to Qn}$		24	43		54		65	ns	4.5	Fig.7	
	CPU, CPD to QII		19	37		46		55		6.0		
	propagation delay		33	125		155		190		2.0		
$t_{\text{PHL}}/\ t_{\text{PLH}}$	CP _U to TC _U		12	25		31		38	ns	4.5	Fig.8	
	CPU to TCU		10	21		26		32		6.0		
	propagation delay		39	125		155		190		2.0		
t _{PHL} / t _{PLH}	propagation delay CP _D to TC _D		14	25		31		38	ns	4.5	Fig.8	
	CPD to TCD		11	21		26		32		6.0		
			69	215		270		325		2.0		
t _{PHL} / t _{PLH}	propagation delay PE to Qn		25	43		54		65	ns	4.5	Fig.9	
			20	37		46		55		6.0		
	propagation dolay		63	200		250		300		2.0		
t_{PHL}	propagation delay		23	40		50		60	ns	4.5	Fig.10	
	MR to Qn		18	34		43		51		6.0		
			91	275		345		415		2.0		
t_{PHL}	propagation delay		33	55		69		83	ns	4.5	Fig.9	
	Dn to Qn		26	47		59		71		6.0		
			80	240		300		360		2.0		
t_{PHL}	propagation delay		29	48		60		72	ns	4.5	Fig.9	
	Dn to Qn		23	41		51		61		6.0		
	propagation delay		102	315		395		475		2.0		
$t_{\text{PHL}}/\ t_{\text{PLH}}$	PL to TCU,		37	63		79		95	ns	4.5	Fig.12	
	PL to TC _D		30	54		67		81		6.0		
	propagation delay		96	285		355		430		2.0		
$t_{\text{PHL}}/t_{\text{PLH}}$	MR to \overline{TC}_{U} ,		35	57		71		86	ns	4.5	Fig.12	
	MR to \overline{TC}_D		28	48		60		73		6.0		
	propagation delay		83	290		365		435		2.0		
$t_{\text{PHL}}/t_{\text{PLH}}$	Dn to \overline{TC}_{U} ,		30	58		73		87	ns	4.5	Fig.12	
	Dn to \overline{TC}_D		24	49		62		74		6.0		
			19	75		95		110		2.0		
t_{THL}/t_{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.10	
			6	13		16		19		6.0		

				T	amb (°	(C)				TES	TEST CONDITIONS		
OVMDOL	DADAMETED				74HC					.,,,,			
SYMBOL	PARAMETER		+25		-40 t	o +85	-40 to	o +125	UNIT	VCC	WAVEFORMS		
		min.	typ.	max.	min.	max.	min.	max.		(V)			
	up clock pulse width	120	39		150		180			2.0			
tW	HIGH or LOW	24	14		30		36		ns	4.5	Fig.7		
	THISTI OF LOW	20	11		26		31			6.0			
	down clock pulse width	140	50		175		210			2.0			
tW	HIGH or LOW	28	18		35		42		ns	4.5	Fig.7		
	HIGH OF LOW	24	14		30		36			6.0			
	magter reget pulse width	80	22		100		120			2.0			
tW	master reset pulse width HIGH	16	8		20		24		ns	4.5	Fig.10		
	ПСП	14	6		17		20			6.0			
	parallal land pulse width	80	22		100		120			2.0			
tW	parallel load pulse width LOW	16	8		20		24		ns	4.5	Fig.9		
	LOW	14	6		17		20			6.0			
	removal time	50	3		65		75			2.0			
trem	removal time	10	1		13		15		ns	4.5	Fig.9		
	PL to CPU, CPD	9	1		11		13			6.0			
	removal time	50	0		65		75			2.0			
trem	removal time MR to CPU, CPD	10	0		13		15		ns	4.5	Fig.10		
	WIR to CPO, CPD	9	0		11		13			6.0			
	act up time	80	22		100		120			2.0	Fig 11 pates CD		
tsu	set-up time	16	8		20		24		ns	4.5	Fig.11 note: CP_{U} = CP_{D} = HIGH		
	Dn to PL	14	6		17		20			6.0			
	hald time	0	14		0		0			2.0			
th	hold time	0	5		0		0		ns	4.5	Fig.11		
	Dn to PL	0	4		0		0			6.0			
	hold time CDU to CDD	80	19		100		120			2.0			
th	hold time CPU to CPD,	16	7		20		24		ns	4.5	Fig.13		
	CPD to CPU	14	6		17		20			6.0			
		4.0	12		3.2		2.6			2.0			
fmax	maximum up, down	20	36		16		13		MHz	4.5	Fig.7		
	clock pulse frequency	24	43		19		15			6.0			

DC CHARACTERISTICS FOR 74HCT

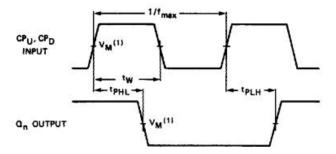
Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (\triangle ICC) for a unit load of 1 is given in the family specifications. To determine \triangle ICC per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
Dn	0.35
CP _U , CP _D	1.40
PL	0.65
MR	1.05

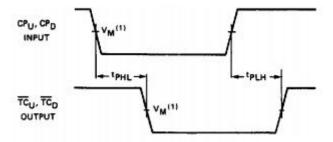
AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

				T	amb (°C)				TEST CONDITIONS		
SYMBOL	PARAMETER				74HC	Т			UNIT	VCC		
STWIBOL	PARAMETER		+25		-40 t	o +85	-40 to +125		ONT	(V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay CP _∪ , CP _D to Qn		23	43		54		65	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay CPU to \overline{TC}_U		16	30		38		45	ns	4.5	Fig.8	
t _{PHL} / t _{PLH}	propagation delay CPD to \overline{TC}_D		17	30		38		45	ns	4.5	Fig.8	
t _{PHL} / t _{PLH}	propagation delay PL to Qn		28	46		58		69	ns	4.5	Fig.9	
t _{PHL}	propagation delay MR to Qn		24	40		50		60	ns	4.5	Fig.10	
t _{PHL} / t _{PLH}	propagation delay Dn to Qn		36	62		78		93	ns	4.5	Fig.9	
t _{PHL} / t _{PLH}	propagation delay \overline{PL} to \overline{TC}_U , PL to \overline{TC}_D		36	64		80		96	ns	4.5	Fig.12	
t _{PHL} / t _{PLH}	propagation delay MR to \overline{TC}_{U} , MR to \overline{TC}_{D}		36	64		80		96	ns	4.5	Fig.12	
t _{PHL} / t _{PLH}	propagation delay Dn to \overline{TC}_{U} , Dn to \overline{TC}_{D}		33	58		73		87	ns	4.5	Fig.12	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.10	
t _W	up, down clock pulse width HIGH or LOW	25	14		31		38		ns	4.5	Fig.7	

t _W	master reset pulse width HIGH	16	6	20	24	ns	4.5	Fig.10
t _W	parallel load pulse width LOW	20	10	25	30	ns	4.5	Fig.9
trem	removal time PL to CP _U , CP _D	10	1	13	15	ns	4.5	Fig.9
trem	removal time MR to CP _U , CP _D	10	2	13	15	ns	4.5	Fig.10
tsu	set-up time Dn to PL	16	8	20	24	ns	4.5	Fig.11 note: $CP_U = CP_D =$ HIGH
th	hold time Dn to PL	0	-6	0	0	ns	4.5	Fig.11
th	hold time CP _U to CP _D , CP _D to CP _U	20	9	25	30	ns	4.5	Fig.13
fmax	maximum up, down clock pulse frequency	20	41	16	13	MHz	4.5	Fig.7

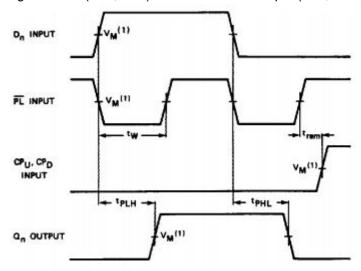
AC WAVEFORMS



(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} .

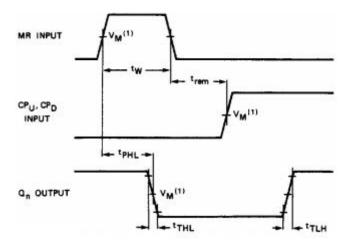
HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Wave forms showing the clock (CP_U, CP_D) to output (Qn) propagation delays, the clock pulse width and the maximum clock pulse frequency.



(1) HC : V_M = 50%; V_I = GND to V_{CC} .

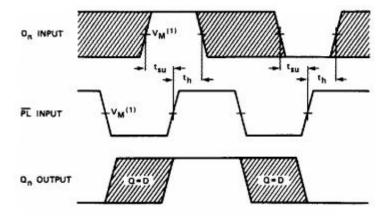
HCT: $V_M = 1.3 V$; $V_I = GND$ to 3 V.


Fig.8 Wave forms showing the clock (CP_U , CP_D) to terminal count output (\overline{TC}_U , \overline{TC}_D) propagation delays.

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} .

HCT: V_M = 1.3 V; V_I = GND to 3 V.

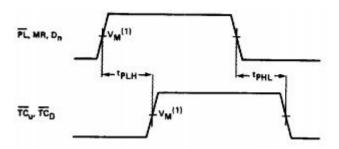
Fig.9 Wave forms showing the parallel load input (\overline{PL}) and data (Dn) to Qn output propagation delays and \overline{PL} removal time to clock input ($\overline{CP_U}$, $\overline{CP_D}$).



(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} .

HCT: $V_M = 1.3 V$; $V_I = GND$ to 3 V.

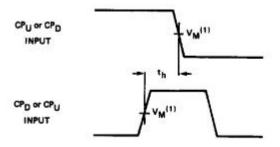
Fig.10 Wave forms showing the master reset input (MR) pulse width, MR to Qn propagation delays, MR to CP_U , CP_D removal time and output transition times.



The shaded areas indicate when the input is permitted to change for predictable output performance.

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} .

HCT: $V_M = 1.3 \text{ V}$; $V_I = \text{GND to 3 V}$.


Fig.11 Waveforms showing the data input (Dn) to parallel load input (PL) set-up and hold times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} .

HCT: $V_M = 1.3 V$; $V_I = GND$ to 3 V.

Fig.12 Waveforms showing the data input (Dn), parallel load input (\overline{PL}) and the master reset input (MR) to the terminal count outputs (\overline{TC}_{D}) propagation delays.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.13 Waveforms showing the CP_U to CP_D or CPD to CPU hold times.

APPLICATION INFORMATION

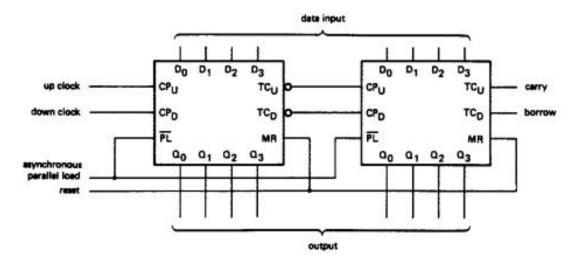
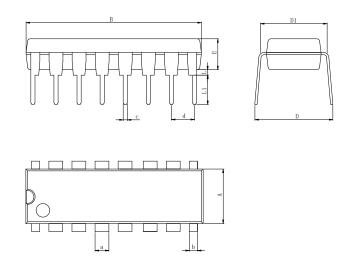
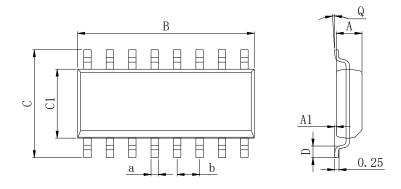
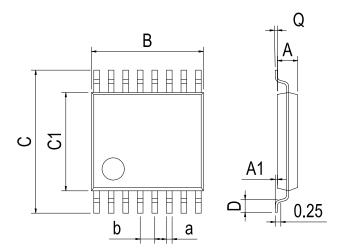



Fig.14 Cascaded up/down counter with parallel load.


PHYSICAL DIMENSIONS

DIP-16

Dimensions In Millimeters(DIP-16)											
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	d
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	0.54.000
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC


SOP-16

Dimensions In Millimeters(SOP-16)											
Symbol:	Α	A1	В	С	C1	D	Q	а	b		
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC		
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	1.27 630		

TSSOP-16

Dimensions In M	Dimensions In Millimeters(TSSOP-16)											
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC			
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.00 650			

REVISION HISTORY

DATE	REVISION	PAGE
2018-9-8	New	1-17
2023-9-15	Modify the package dimension diagram TSSOP-16、Update encapsulation type、Update Soldering temperature、Updated DIP-16 dimension	1、3、14、15

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.