Tagore Technology

TS7541L - 50W CW GaN Broadband RF Switch SP4T

1.0 Features

- Low insertion loss: 0.40 dB @ 800MHz
- High isolation: 36dB @ 800MHz
- High linear power handling capability
- No external DC blocking capacitors on RF lines
- Versatile 2.6-5.5V power supply

3.0 Description

The TS7541L is a symmetrical reflective Single Pole Four Throws (SP4T) switch designed for broadband, high power switching applications. Its broadband behavior from 30 MHz to 1.2GHz frequencies makes the TS7541L an excellent switch for all the applications requiring low insertion loss, high isolation and high linearity within a small package size. Part can also be used below 30 MHz with reduced power handling.

The TS7541L is packaged into a compact Quad Flat No lead (QFN) 4x4mm 32 leads plastic package.

Figure 1 Device Image
(32 Pin $4 \times 4 \times 0.8 \mathrm{~mm}$ QFN Package)

Figure 2 Function Block Diagram
(Top View)

4.0 Ordering Information

Table 1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TS7541L	32 Pin $4 \times 4 \times 0.8 \mathrm{~mm}$ QFN	Tape and Reel	3000	$13^{\prime \prime}(330 \mathrm{~mm})$	18 mm	TS7541LMTRPBF
Evaluation Board						TS7541L-EVB

Tagore Technology

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description
1	VDD	DC power supply
2	V1	Switch control input 1
3	V2	Switch control input 2
$4,5,6,7,8,9,10,11,12,14,15,17$,	NC	No internal connection, can be grounded
$18,19,20,22,23,24,26,27,29,30,31$	RF4	RF port 4
13	RF3	RF port 3
16	ANT	Antenna port
21	RF2	RF port 2
28	RF1	RF port 1
25	VCP	Internal charge pump voltage output. Connect a 1nF capacitor to GND on this pin to improve switching time.

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings $@ T_{A}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified

Parameter	Symbol	Value	Unit
Electrical Ratings			
Power Supply Voltage	VDD	2.6 to 5.5	V
Storage Temperature Range	$\mathrm{T}_{\text {st }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {op }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	T_{J}	+140	${ }^{\circ} \mathrm{C}$
RF Input Power CW, 250MHz-1.2GHz, Tc = 85degC	RFx	46	dBm
RF Input Power CW, 30MHz -100MHz, Tc = 85degC	RFx	44.5	dBm
Thermal Ratings			
Thermal Resistance (junction-to-case) - Bottom side	$\mathrm{R}_{\text {өJc }}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (junction-to-top)	$\mathrm{R}_{\text {өJт }}$	≤ 37	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Soldering Temperature	Tsold	260	${ }^{\circ} \mathrm{C}$
ESD Ratings			
Human Body Model (HBM)	Level 1B	500 to <1000	V
Charged Device Model (CDM)	Level C3	≥ 1000	V
Moisture Rating			
Moisture Sensitivity Level	MSL	1	-

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

Table 4 Electrical Specifications $@ T_{A=+25^{\circ}} \mathrm{C}$ Unless Otherwise Specified; VDD $=+3.3 \mathrm{~V}$; 50Ω Source/Load.

Parameter	Condition	Minimum	Typical	Maximum	Unit
Operating Frequency		30		1200	MHz
Insertion Loss, RFx	400 MHz		0.35		dB
	800 MHz		0.40	0.50	
Isolation, ANT-RFx	400 MHz		43		dB
	800 MHz	33	36		
Return Loss, ANTRFx	400 MHz		28		dB
	800 MHz		23		
H2	$800 \mathrm{MHz}, \mathrm{Pin}=40 \mathrm{dBm}$		-75		dBc
H3	$800 \mathrm{MHz}, \mathrm{Pin}=40 \mathrm{dBm}$		-80		dBc
IIP3	800MHz		70		dBm
P0.2dB ${ }^{[1]}$	$250 \mathrm{MHz}-1.2 \mathrm{GHz}$, CW		47		dBm
P0.2dB ${ }^{[1]}$	$100 \mathrm{MHz}-<250 \mathrm{MHz}$, CW		46		dBm
P0.2dB ${ }^{[1]}$	$30 \mathrm{MHz}-<100 \mathrm{MHz}$, CW		45		dBm
Switching time	50% ctrl to $10 / 90 \%$ of the RF value is settled. C1=1nF (refer to Figure 3)		2.0		$\mu \mathrm{S}$
Control Voltage	Power supply VDD	2.6	3.3	5.5	V
	All control pins high, Vih	1.0	3.3	5.25	V
	All control pins low, $\mathrm{V}_{\text {il }}$	-0.3		0.5	V
Control Current	All control pins low, $\mathrm{l}_{\text {il }}$		0		$\mu \mathrm{A}$
	All control pins high, lih			7.5	$\mu \mathrm{A}$
Current Consumption, IDD	Active mode		190	220	$\mu \mathrm{A}$

Note: [1] P 0.2 dB is a figure of merit.
[2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

8.0 Switch Truth Table

Table 5 Switch Truth Table

V1	V2	Active RF Path
0	0	ANT-RF1
1	0	ANT-RF2
0	1	ANT-RF3
1	1	ANT-RF4

Attention: [1] VDD should be applied first before V1 and V2, otherwise may cause damage to the device.
[2] There is an internal pull-down to ground on V1 and V2 control pins, therefore the switch state at start-up without any control voltage applied will be ANT-RF1 on by default.

9.0 Evaluation Board Schematic

Figure 3 Evaluation Board Schematic (No Match)

10.0 Typical Characteristics

Figure 4 RF1 to RF4 Insertion Loss

Figure 6 RF1 to RF4 Return Loss

Figure 5 RF1 on, RF2 to RF4 Isolation

Figure 7 ANT Return Loss

11.0 Device Package Information

Figure 8 Device Package Drawing
(All dimensions are in mm)
Table 6 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A	0.80	± 0.05	E	4.00 BSC	± 0.05
A1	0.203	± 0.02	E1	2.70	± 0.05
b	0.20	$+0.05 /-0.07$	F	0.50	± 0.05
D	4.00 BSC	± 0.05	G	0.50	± 0.05
D1	2.70	± 0.05	L	0.40	± 0.05
e	0.40 BSC	± 0.05	K	0.25	± 0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: $7.5 \mu \mathrm{~m} \sim 20 \mu \mathrm{~m}$ (Typical $10 \mu \mathrm{~m} \sim 12 \mu \mathrm{~m}$)

Attention:

Please refer to application notes $T N-001$ and $T N-002$ at http://www.tagoretech.com for PCB and soldering related guidelines.

12.0 PCB Land Design

Guidelines:

[1] 4 layer PCB is recommended.
[2] Via diameter is recommended to be 0.2 mm to prevent solder wicking inside the vias.
[3] Thermal vias shall only be placed on the center pad.
[4] The maximum via number for the center pad is $4(\mathrm{X}) \times 4(\mathrm{Y})=16$.

Figure 9 PCB Land Pattern
(Dimensions are in mm)

Figure 10 Solder Mask Pattern
(Dimensions are in mm)

Figure 11 Thermal Via Pattern
(Recommended Values: $\mathrm{S} \geq 0.15 \mathrm{~mm} ; \mathrm{Y} \geq 0.20 \mathrm{~mm}$; $\mathrm{d}=0.2 \mathrm{~mm}$; Plating Thickness $\mathrm{t}=25 \mu \mathrm{~m}$ or $50 \mu \mathrm{~m}$)

13.0 PCB Stencil Design

Guidelines:

[1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
[2] Stencil thickness is recommended to be $125 \mu \mathrm{~m}$.

Figure 12 Stencil Openings
(Dimensions are in mm)

Figure 13 Stencil Openings Shall not Cover Via Areas If Possible
(Dimensions are in mm)

14.0 Tape and Reel Information

Section B-B

Figure 14 Tape and Reel Drawing
Table 7 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	4.35	± 0.10	K0	1.10	± 0.10
B0	4.35	± 0.10	P0	4.00	± 0.10
D0	1.50	$+0.10 /-0.00$	P1	8.00	± 0.10
D1	1.50	$+0.10 /-0.00$	P2	2.00	± 0.05
E	1.75	± 0.10	T	0.30	± 0.05
F	5.50	± 0.05	W	12.00	± 0.30

Edition Revision 1.3-2020-11-17

Published by

Tagore Technology Inc.
5 East College Drive, Suite 200
Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.

