SPnT Coaxial Switches DC to 6 GHz , DC to 20 GHz , DC to 26.5 GHz , DC to 40 GHz

Radiall's PLATINUM SERIES switches are optimised to perform at a high level over an extended life span. With outstanding RF performances, and a guaranteed Insertion Loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM SERIES switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

PART NUMBER SELECTION

PICTURE

Technical Data Sheet
TERMINATED MULTIPORT SWITCHES PLATINUM Series

RF PERFORMANCES

PART NUMBER	$\begin{aligned} & \hline \text { R5943-34-7 } \\ & \text { R5943-36-7 } \end{aligned}$	$\begin{aligned} & \hline \text { R5944-34-7 } \\ & \text { R5944-36-7 } \end{aligned}$	$\begin{aligned} & \hline \text { R594F-34-7 } \\ & \text { R594F-36-7 } \end{aligned}$	$\begin{aligned} & \hline \text { R5948-34-7 } \\ & \text { R5948-36-7 } \end{aligned}$
Frequency Range GHz	DC to 6	DC to 20	DC to 26.5	DC to 40
Impedance Ohms	50			
Insertion Loss dB (Maximum)	$0.3+0.015 \times$ frequency (GHz)			
Isolation dB (Minimum)	100	$\begin{gathered} \mathrm{DC} \text { to } 6 \mathrm{GHz}: 100 \\ 6 \text { to } 12.4 \mathrm{GHz}: 90 \\ 12.4 \text { to } 20 \mathrm{GHz}: 80 \end{gathered}$	$\begin{aligned} & \mathrm{DC} \text { to } 6 \mathrm{GHz}: 100 \\ & 6 \text { to } 12.4 \mathrm{GHz}: 90 \\ & 12.4 \text { to } 20 \mathrm{GHz}: 80 \\ & 20 \text { to } 26.5 \mathrm{GHz}: 70 \end{aligned}$	DC to $6 \mathrm{GHz}: 100$ 6 to $12.4 \mathrm{GHz}: 90$ 12.4 to $20 \mathrm{GHz}: 80$ 20 to $26.5 \mathrm{GHz}: 70$ 26.5 to $40 \mathrm{GHz}: 60$
V.S.W.R. (Maximum)	1.20	$\begin{aligned} & \text { DC to } 6 \mathrm{GHz}: 1.20 \\ & 6 \text { to } 12.4 \mathrm{GHz}: 1.35 \\ & 12.4 \text { to } 18 \mathrm{GHz}: 1.45 \\ & 18 \text { to } 20 \mathrm{GHz}: 1.70 \end{aligned}$	DC to $6 \mathrm{GHz}: 1.20$ 6 to $12.4 \mathrm{GHz}: 1.35$ 12.4 to $18 \mathrm{GHz}: 1.45$ 18 to $26.5 \mathrm{GHz}: 1.70$	$\begin{aligned} & \text { DC to } 6 \mathrm{GHz}: 1.20 \\ & 6 \text { to } 12.4 \mathrm{GHz}: 1.35 \\ & 12.4 \text { to } 18 \mathrm{GHz}: 1.45 \\ & 18 \text { to } 26.5 \mathrm{GHz}: 1.70 \\ & 26.5 \text { to } 40 \mathrm{GHz}: 1.90 \end{aligned}$
Third order Inter Modulation	-120 dBc typical (2 carriers 20W)			
Repeatability (measured at $25^{\circ} \mathrm{C}$)	0.03 dB			0.05 dB

TYPICAL RF PERFORMANCES

[^0]Technical Data Sheet
TERMINATED MULTIPORT SWITCHES PLATINUM Series

PAGE 3/8
ISSUE 22-06-2018
SERIES SPnT
PART NUMBER R594 XXX XXX

ADDITIONAL SPECIFICATIONS

Operating mode		Latching			
Nominal operating voltage (Vdc) (across operating temperature)		24 (20 / 32)			
Coil resistance (+/-10\%) (Ohms)		120			
Nominal operating current at $23^{\circ} \mathrm{C}(\mathrm{mA})$		200			
Maximum stand-by current (mA)		50			
Average power		RF path	Cold switching : see Power Rating Chart on page 8 Hot switching : 1 Watt CW		
TTL input	High Level	3 to 7 V			1.4 mA max at $\mathrm{Vcc}=\mathrm{Max}$
	Low Level	0 to 0.8 V			
Indicator specifications		Maximum withstanding voltage $:$ 60 V Maximum current capacity $:$ 150 mA Maximum « ON » resistance $:$ 2.5Ω Minimum « OFF » resistance $:$ $100 \mathrm{M} \Omega$			
Switching time max (ms)		15			
Life min for	SMA	10 million cycles			
	SMA 2.9	2.5 million cycles			
Connectors		SMA - SMA 2.9			
Actuator terminal		HE10 ribbon receptacle			
Weight max (g)		230			

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range (${ }^{\circ} \mathrm{C}$)	-25 to +75
Storage temperature range (${ }^{(} \mathrm{C}$)	-55 to +85
Temperature cycling (MIL-STD-202, Method 107D, Cond.A) (${ }^{\circ} \mathrm{C}$)	-55 to +85 (10 cycles)
Vibration (MIL STD 202 , Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$ operating
Shock (MIL STD 202 , Method 213B, Cond.C)	$50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine operating
Moisture resistance (MIL STD 202 , Method 106E , Cond.E)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10$ days
Altitude storage (MIL STD 202 , Method 105C , Cond.B)	50,000 feet (15,240 meters)
RFI (MIL STD 1344, Method 3008 or IEC 61726)	55 dB at 20 GHz
Magnetic field	$<5.10^{-5}$ gauss at 1 meter

[^1] from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

ELECTRONIC POSITION INDICATORS

The electronic position indicators use photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. If one or several RF paths are closed, the corresponding indicators are connected to the common. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply (20 to 32 VDC) to be connected to pin 1 and ground connected to pin 15.
Pin number Function

Ways 1 and 4 are not connected for SP4T switches.

DRIVING THE SWITCH : Type 4 : without TTL and indicator
Each RF path is driven independently. Each path can be closed or open by applying ground to the corresponding "open" or "close" pin.

Ways 1 and 4 are not connected for SP4T switches.
,

Standard drive:

- Connect pin 15 to ground.
- Connect pin 1 to supply (+20 VDC to +32 VDC).
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin 3 to close RF path 1).
- To open desired RF path connect ground to the corresponding "open" pin (Ex: ground pin 4 to open RF path 1).
- To open all RF paths, first ensure that all RF path "close" pins are disconnected from ground. To complete the operation, connect pin 16 to ground.

Make-Before-Break

Make-Before-Break switching can be accomplished by closing the new RF path before opening the previously selected RF path. To complete the operation, close the new RF port. A minimum of 15 ms must be allowed before opening the previously selected RF port.

DRIVING THE SWITCH : Type 7 : with TTL (option " 2 ") / without TTL (option "1").

Each RF path can be closed by applying Ground or TTL "High" for option 2 to the corresponding "drive" pin. In general, except for Make-Before-Break drive, all other RF paths are simultaneously opened by internal logic.

Ways 1 and 4 are not connected for SP4T switches.

Standard drive option "1"

- Connect pin 15 to ground.
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying Ground to the corresponding "drive" pin (Ex: apply Ground to pin 3 to close RF path 1).
- To select another path, ensure that all unwanted RF path "drive" pins are disconnected from Ground (to prevent multiple RF path engagement). Apply Ground to the "drive" pin which corresponds to the desired RF path.
- To open all RF paths, ensure that all RF path "drive" pins are disconnected from Ground. Complete the operation by applying Ground to pin 16.

TTL drive option " 2 "

- Connect pin 15 to ground.
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin 3 to close RF path 1).
- To select another path, ensure that all unwanted RF path "drive" pins are in TTL "Low" position (to prevent multiple RF path engagement). Apply TTL "High" to the "drive" pin which corresponds to the desired RF path.
- To open all RF paths, ensure that all RF path "drive" pins are in TTL "Low" position. Complete the operation by applying TTL "High" to pin 16.

Break-Before-Make

Open the undesired RF path. After 15 ms (minimum), close the new RF port.

Make-Before-Break

Ensure that the previously selected RF path "drive" is connected to Ground (or TTL "High" for option "2", then close the new RF path.

TYPICAL OUTLINE DRAWING

SMA 2.9 Connectors

All dimensions are in inches/millimetres.
Ways 1 and 4 are not connected for SP4T

POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature : $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R. : 1 and cold switching

DERATING FACTOR VERSUS V.S.W.R.

The average power input must be reduced for load V.S.W.R. above 1.

[^0]: This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement from Radiall. The data defined in this document are given as an indication, in the effort to improve our products; we reserve the right to make any changes judged necessary.

[^1]: This document contains proprietary information and such information shall not be disclosed to any third party for any purpose whatsoever or used for manufacturing purposes without prior written agreement

