

TP90H050WS

900V GaN FET in TO-247 (source tab)

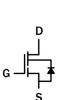
Preliminary Datasheet

Description

The TP90H050WS 900V, $50m\Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies—offering superior reliability and performance.

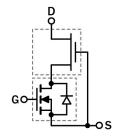
Transphorm GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature


- ANOOOO: Recommended External Circuitry for GaN FETs
- ANOOO3: Printed Circuit Board Layout and Probing
- ANOO10: Paralleling GaN FETs

Ordering Information

Part Number	Package	Package Configuration
TP90H050WS	3 lead TO-247	Source


TP90H050WS TO-247 (top view)

Cascode Schematic Symbol

Cascode Device Structure

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- · Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low Q_{RR}
- Reduced crossover loss
- · RoHS compliant and Halogen-free packaging

Benefits

- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- · Achieves increased efficiency in both hard- and softswitched circuits
- Easy to drive with commonly-used gate drivers
- · GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
- Servo motor

Key Specifications				
V _{DS} (V) min	900			
V _{(TR)DSS} (V) max	1000			
$R_{DS(on)eff}(m\Omega)\;max^*$	63			
Q _{RR} (nC) typ	145			
Q _G (nC) typ	16			

^{*} Reflects both static and dynamic on-resistance; see Figures 14 and 15

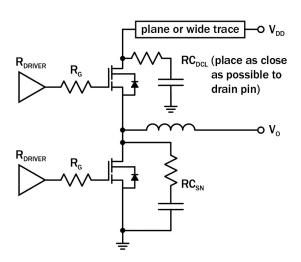
Common Topology Power Recommendations				
CCM bridgeless totem-pole*	3087W max			
Hard-switched inverter**	3672W max			

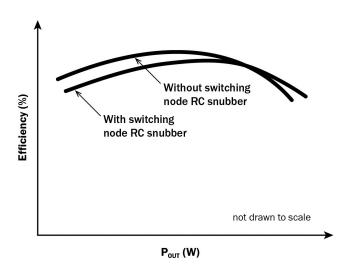
Conditions: F_{SW}=45kHz; T_J=115°C; T_{HEATSINK}=90°C; insulator between device and heatsink (6 mil Sil-Pad® K-10); power de-rates at lower voltages with constant current

- VIN=230VAC; VOUT=390VDC
- V_{IN} =380 V_{DC} ; V_{OUT} =240 V_{AC}

Absolute Maximum Ratings (T_J =25 °C unless otherwise stated. All recommended current levels (I_{DM}) are based on adequate heat sinking, ensuring T_J =150 °C)

Symbol	Parame	Limit Value	Unit	
	Continuous drain current @T _C =25°C a		34	А
I _D	Continuous drain current @T _C =	=100°C a	22	А
I _{DM}	Pulsed drain current (pulse wid	dth: 10µs)	150	А
di/dt _{RDMC}	Reverse diode di/dt, repetitive	, b	1600	A/µs
I _{RDMC1}	Reverse diode switching curre	nt, repetitive (dc) c	24	А
I _{RDMC2}	Reverse diode switching curre	nt, repetitive (ac) c	28	А
di/dt _{RDMT}	Reverse diode di/dt, transient	3000	A/µs	
I _{RDMT}	Reverse diode switching current, transient		36	А
$V_{(TR)DSS}$	Transient drain to source voltage e		1000	V
V _{GSS}	Gate to source voltage		±20	V
P _D	Maximum power dissipation @	Maximum power dissipation @T _C =25 °C		W
Tc	Operating temperature	Case	-55 to +150	°C
TJ	Operating temperature	Junction	-55 to +150	°C
Ts	Storage temperature	Storage temperature		°C
T _{SOLD}	Soldering peak temperature ^f		260	°C


Notes:


- a. For increased stability at high current operation, see Circuit Implementation on page 3
- b. Continuous switching operation
- c. Definitions: dc = dc to dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency
- d. \leq 300 pulses in 1 second
- e. In off-state, spike duty cycle D<0.01, spike duration <1μs
- f. For 10 sec., 1.6mm from the case

Thermal Resistance

Symbol	Parameter	Typical	Unit
R _{OJC}	Junction-to-case	1.05	°C/W
R _{OJA}	Junction-to-ambient	40	°C/W

Circuit Implementation

Simplified Half-bridge Schematic

Efficiency vs Output Power

Recommended gate drive: (0V, 12-14V) with $R_{G(tot)}$ = 22-30 Ω , where $R_{G(tot)}$ = R_G + R_{DRIVER}

Required DC Link RC Snubber (RC _{DCL}) ^a		Recommended Switching Node RC Snubber (RC _{SN}) ^b
	[10nF + 8Ω] x 2	100pF + 10Ω

Notes:

- a. RC_{DCL} should be placed as close as possible to the drain pin
- b. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of I_{RDMC1} or I_{RDMC2})

Electrical Parameters (T_J=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward	Device Characteristics						
$V_{(BL)DSS}$	Maximum drain-source voltage	900	_	_	V	V _{GS} =0V	
$V_{\text{GS(th)}}$	Gate threshold voltage	3.3	4.0	4.8	V	V _{DS} =V _{GS} , I _D =0.7mA	
	Drain-source on-resistance ^a	_	50	63	mΩ	V _{GS} =10V, I _D =22A	
R _{DS(on)eff}		_	105	_		V _{GS} =10V, I _D =22A, T _J =150°C	
	Drain to course leakage current	_	4	40	μA	V _{DS} =900V, V _{GS} =0V	
I _{DSS}	Drain-to-source leakage current	_	15	_		V _{DS} =900V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	_	_	100	4	V _{GS} =20V	
I _{GSS}	Gate-to-source reverse leakage current	_	_	-100	nA	V _{GS} =-20V	
C _{ISS}	Input capacitance	_	1000	_			
Coss	Output capacitance	_	115	_	pF	V _{GS} =0V, V _{DS} =600V, <i>f</i> =1MHz	
C_{RSS}	Reverse transfer capacitance	_	6	_			
C _{O(er)}	Output capacitance, energy related b	_	150	_	pF	V _{GS} =0V, V _{DS} =0V to 600V	
$C_{O(tr)} \\$	Output capacitance, time related c	_	242	_	ρι		
Q _G	Total gate charge	_	16	24			
Q _{GS}	Gate-source charge	_	6	_	nC	V _{DS} =600V, V _{GS} =10V, I _D =22A	
Q _{GD}	Gate-drain charge	_	5	_			
Qoss	Output charge	_	130	_	nC	V _{GS} =0V, V _{DS} =0V to 600V	
$t_{D(on)}$	Turn-on delay	_	62	_			
t _R	Rise time	_	11	_	ns	V _{DS} =600V, V _{GS} =10V, I _D =22A	
t _{D(off)}	Turn-off delay	_	60	_	113	$R_G=22\Omega$, 4A driver	
t _F	Fall time	_	10	_			
Reverse	Reverse Device Characteristics						
Is	Reverse current	_	_	22	А	V _{GS} =0V, T _C =100 °C, ≤25% duty cycle	
V_{SD}	Reverse voltage a	_	21.8	2.3	V	V _{GS} =0V, I _S =22A	
VSD		_	1.3	1.7		V _{GS} =0V, I _S =11A	
t _{RR}	Reverse recovery time	_	73	_	ns	I _S =22A, V _{DD} =600V,	
Q _{RR}	Reverse recovery charge	_	145	_	nC	di/dt=1000A/µs	
	I.					1	

Notes:

- a. Reflects both static and dynamic on-resistance; dynamic on-resistance test setup and waveform; see Figures 14 and 15 for conditions
- b. Equivalent capacitance to give same stored energy from OV to 600V
- c. Equivalent capacitance to give same charging time from 0V to 600V

Typical Characteristics (T_C=25 °C unless otherwise stated)

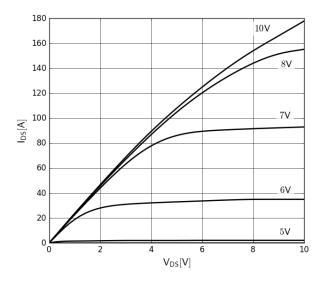


Figure 1. Typical Output Characteristics T_J=25 °C

Parameter: V_{GS}

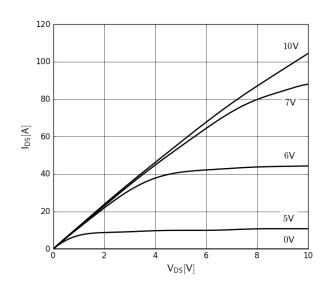


Figure 2. Typical Output Characteristics T_J=150 °C

Parameter: V_{GS}

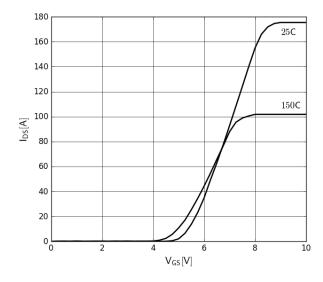


Figure 3. Typical Transfer Characteristics V_{DS} =10V, parameter: T_J

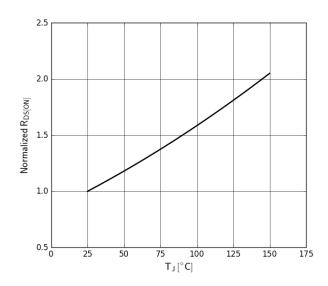


Figure 4. Normalized On-resistance $I_D=22A, V_{GS}=8V$

Typical Characteristics (T_C=25 °C unless otherwise stated)

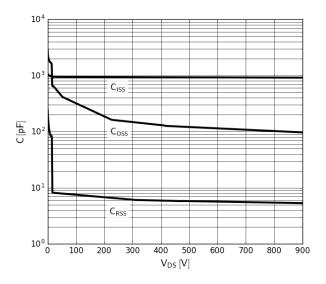


Figure 5. Typical Capacitance V_{GS} =0V, f=1MHz

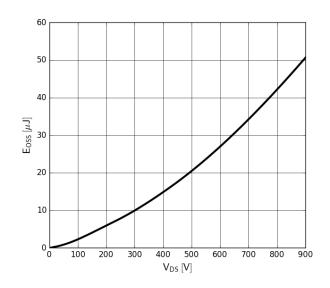


Figure 6. Typical Coss Stored Energy

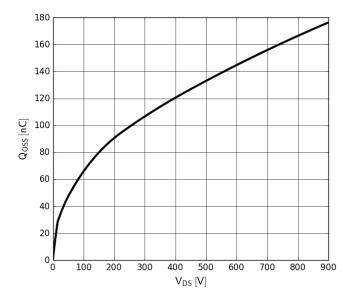
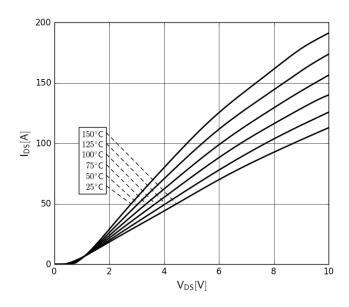
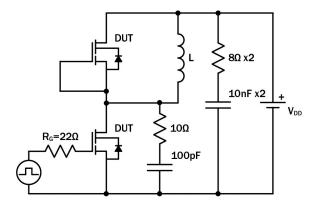


Figure 7. Typical Qoss




Figure 8. Forward Characteristics of Rev. Diode $I_S {=} f(V_{SD}), \ parameter {:}\ T_J$

Typical Characteristics (T_C =25 °C unless otherwise stated)

Figure 9. Power Dissipation

Test Circuits and Waveforms

Figure 10. Switching Time Test Circuit (see Circuit Implementation on page 3 for methods to ensure clean switching)

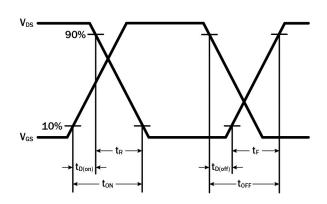


Figure 11. Switching Time Waveform

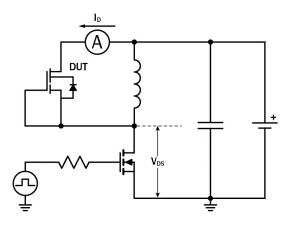


Figure 12. Diode Characteristics Test Circuit

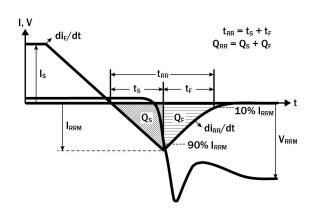


Figure 13. Diode Recovery Waveform

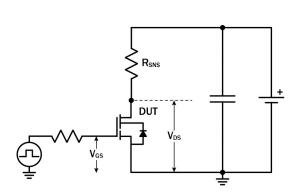


Figure 14. Dynamic R_{DS(on)eff} Test Circuit

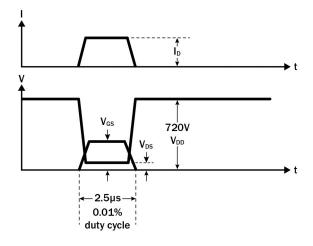


Figure 15. Dynamic RDS(on)eff Waveform

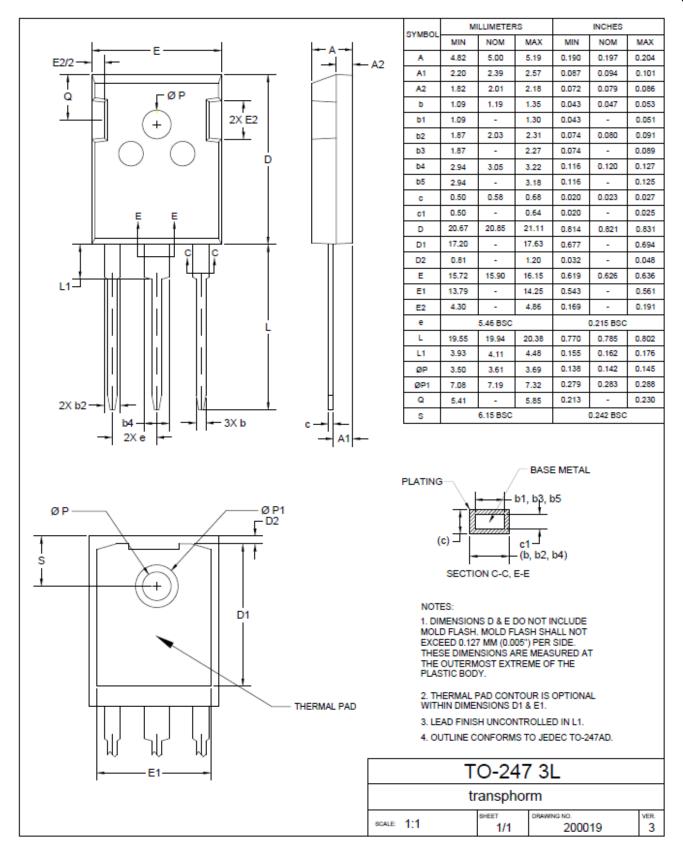
Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	


GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- · Design guides
- · Simulation models
- Technical papers and presentations

Mechanical

3 Lead TO-247 Package

Revision History

Version	Date	Change(s)	
0	06/25/2019	Release preliminary datasheet	