transphorm

TPH3206PS

600V Cascode GaN FET in TO-220 (source tab)

Not recommended for new designs—see TPH3206PSB

Description

The TPH3206PS 600V, $150m\Omega$ gallium nitride (GaN) FET is a normally-off device. Transphorm GaN FETs offer better efficiency through lower gate charge, faster switching speeds, and smaller reverse recovery charge, delivering significant advantages over traditional silicon (Si) devices.

Transphorm is a leading-edge wide band gap supplier with world-class innovation and a portfolio of fully-qualified GaN transistors that enables increased performance and reduced overall system size and cost.

Related Literature

- AN0009: Recommended External Circuitry for GaN FETs
- <u>AN0003</u>: Printed Circuit Board Layout and Probing

Ordering Information

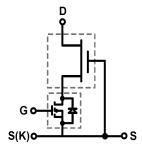
Part Number	Package	Package Configuration	
TPH3206PS	3 Lead T0-220	Common Source	

Features

- Easy to drive—compatible with standard gate drivers
- Low conduction and switching losses
- Low Qrr of 54nC-no free-wheeling diode required
- GSD pin layout improves high speed design
- JEDEC-qualified GaN technology
- RoHS compliant and Halogen-free

Benefits

- · Increased efficiency through fast switching
- Increased power density
- Reduced system size and weight
- Enables more efficient topologies—easy to implement bridgeless totem-pole designs
- Lower BOM cost


Applications

- Renewable energy
- Industrial
- Automotive
- Telecom and datacom
- Servo motors

Key Specifications

V _{DS} (V) min	600
V _{TDS} (V) max	750
$R_{DS(on)}(m\Omega)$ max*	180
Q _{rr} (nC) typ	54
Qg (nC) typ	6

* Dynamic R_{DS(on)}

Cascode Device Structure

Absolute Maximum Ratings (Tc=25 °C unless otherwise stated)

Symbol	Param	eter	Limit Value	Unit
I _{D25°C}	Continuous drain current @To	;=25°C ª	17	A
ID100°C	Continuous drain current @To	=100°C ª	12	A
I _{DM}	Pulsed drain current (pulse w	idth: 100µs)	60	A
V _{DSS}	Drain to source voltage		600	V
V _{TDS}	Transient drain to source voltage ^b		750	V
V _{GSS}	Gate to source voltage	Gate to source voltage		V
P _{D25°C}	Maximum power dissipation	Maximum power dissipation		W
Tc	Operating temperature	Operating temperature Case Junction		°C
TJ				°C
Ts	Storage temperature	Storage temperature		°C
T _{CSOLD}	Soldering peak temperature °		260	°C

Thermal Resistance

Symbol	Parameter	Typical	Unit	
R _{0JC}	Junction-to-case	1.55	°C/W	
R _{ØJA}	Junction-to-ambient	62	°C/W	

Notes:

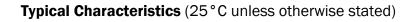
For high current operation, see application note AN0009 In off-state, spike duty cycle D<0.1, spike duration <1µs a.

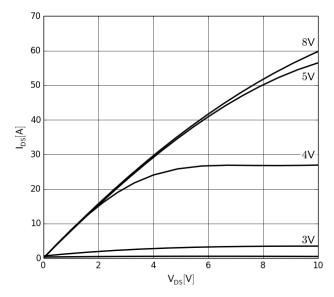
b.

For 10 sec., 1.6mm from the case c.

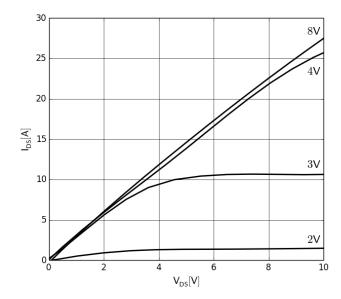
Electrical Parameters (Tc=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward	Device Characteristics						
V _{DSS-MAX}	Maximum drain-source voltage	600	_	_	V	V _{GS} =0V	
$V_{\text{GS}(\text{th})}$	Gate threshold voltage	1.65	2.1	2.6	V	$V_{DS}=V_{GS}$, $I_D=500\mu A$	
	Drain-source on-resistance (T_=25°C) a	_	150	180		V _{GS} =8V, I _D =11A, T _J =25°C	
$R_{\text{DS(on)}}$	Drain-source on-resistance (T_=175°C) a	_	340	_	mΩ	V _{GS} =8V, I _D =11A, T _J =175°C	
I _{DSS}	Drain-to-source leakage current (Tj=25°C)	_	2.5	30	μA	V _{DS} =600V, V _{GS} =0V, T _J =25°C	
200	Drain-to-source leakage current (Tj=150°C)	_	8	-		V _{DS} =600V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	_	_	100	۳A	V _{GS} =18V	
I _{GSS}	Gate-to-source reverse leakage current	_	_	-100	nA	V _{GS} =-18V	
CISS	Input capacitance	_	760	_			
Coss	Output capacitance	_	44	_	pF	V _{GS} =0V, V _{DS} =480V, <i>f</i> =1MHz	
C _{RSS}	Reverse transfer capacitance	_	5	-			
C _{O(er)}	Output capacitance, energy related ^b	_	64	_	pF		
C _{O(tr)}	Output capacitance, time related °	_	105	_	μr	V_{GS} =0V, V_{DS} =0V to 480V	
Qg	Total gate charge ^d	_	6.2	9.3			
Q_{gs}	Gate-source charge	_	2.1	-	nC	V_{DS} =100V, V_{GS} =0V to 4.5V, I _D =11A	
Qgd	Gate-drain charge	_	2.2	-			
t _{d(on)}	Turn-on delay	_	6	_			
tr	Rise time	_	4.5	-	ne	V_{DS} =480V, V_{GS} =0V to 10V,	
T _{d(off)}	Turn-off delay	_	9.7	-	ns	I_D =11A, R_G =2 Ω	
t _f	Fall time	_	4	_			
Reverse	Device Characteristics						
ls	Reverse current	_	_	12	A	V _{GS} =0V, T _C =100°C, ≤50% Duty Cycle	
V _{SD} Reve		_	2.6	-	V	V _{GS} =0V, I _S =12A, T _J =25°C	
	Reverse voltage ^a	_	4.6	-		V _{GS} =0V, I _S =12A, T _J =175°C	
		_	1.8	_		V _{GS} =0V, I _S =6A, T _J =25°C	
trr	Reverse recovery time	_	17	_	ns	I _S =11A, V _{DD} =400V,	
Q _{rr}	Reverse recovery charge	_	54	_	nC	di/dt=2000A/µs, TJ=25°C	

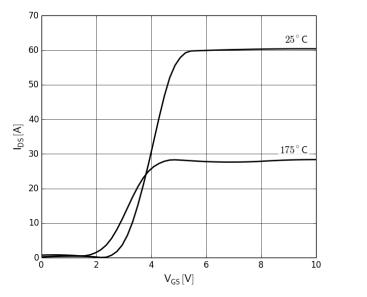

Notes:


a. Dynamic value

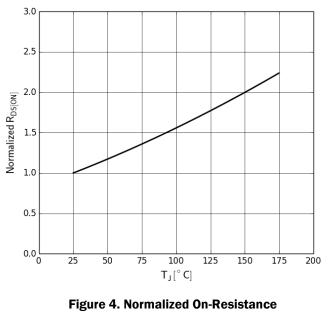
Equivalent capacitance to give same stored energy from OV to 480V Equivalent capacitance to give same charging time from OV to 480V b.

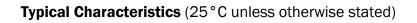

с.

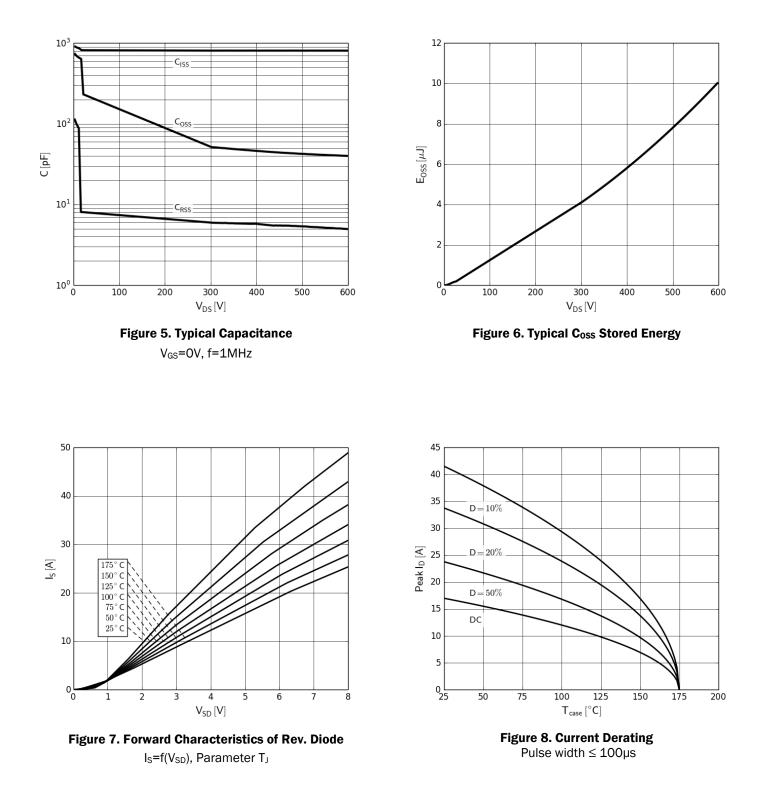
d. Q_g does not change for V_{DS} >100V











I_D=12A, V_{GS}=8V

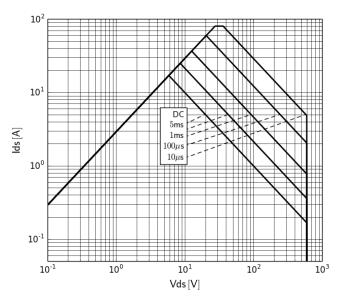


Figure 9. Safe Operating Area Tc=25°C (calculated based on thermal limit)

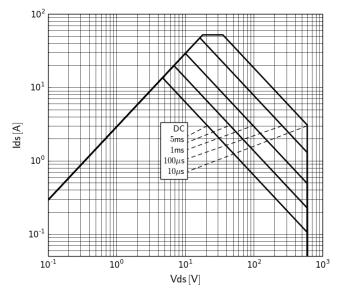


Figure 10. Safe Operating Area Tc=80°C (calculated based on thermal limit)

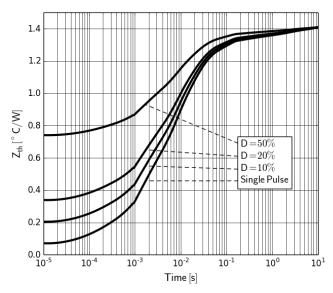


Figure 11. Transient Thermal Resistance

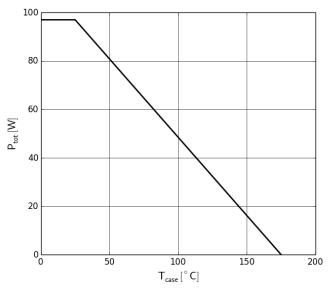


Figure 12. Power Dissipation

Test Circuits and Waveforms

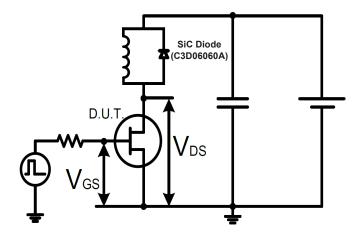


Figure 13. Switching Time Test Circuit *See app note AN0009 for methods to ensure clean switching

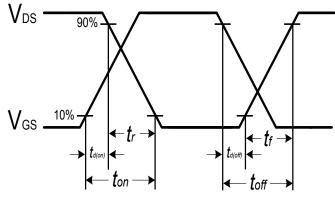


Figure 14. Switching Time Waveform

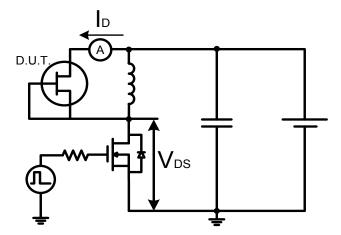


Figure 15. Test Circuit for Diode Characteristics

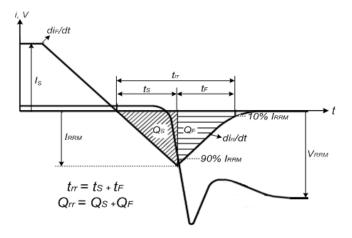
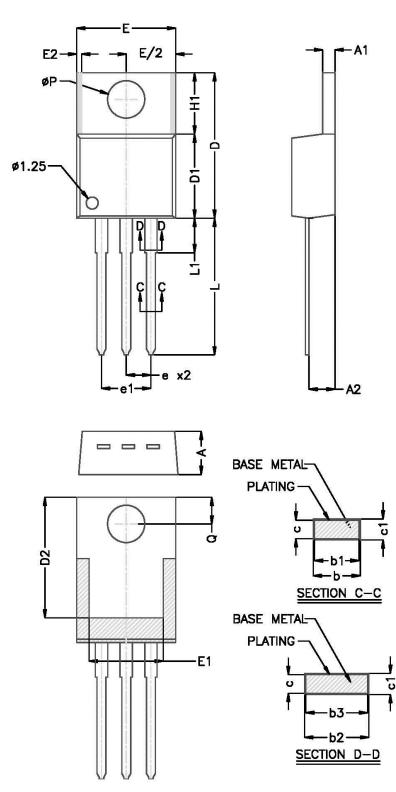



Figure 16. Diode Recovery Waveform

Mechanical

3 Lead TO-220 (PS) Package

Pin 1: Gate; Pin 2: Source; Pin 3: Drain, Tab: Source

-	MILLIMETERS			INCHES			
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	MINIMUM	NOMINAL	MAXIMUM	
A	3.56	4.45	4.83	0.140	0.175	0.190	
A1	0.51	1.27	1.40	0.020	0.050	0.055	
A2	2.03	-	2.92	0.080	25 13	0.115	
b	0.38	-	1.01	0.015	Ţ	0.040	
b1	0.38	-	0.97	0.015	10 Tal. 10	0.038	
b2	1.14	-	1.78	0.045	,	0.070	
b3	1.14	1.27	1.73	0.045	0.050	0.068	
C	0.36	-	0.61	0.014	Ţ	0.024	
c1	0.36	0.38	0.56	0.014	0.015	0.022	
D	14.22	-	16.51	0.560	-	0.650	
D1	8.38	8.64	9.02	0.330	0.340	0.355	
D2	11.68	-	12.88	0.460	-	0.507	
E	9.65	10.19	10.67	0.380	0.401	0.420	
E1	6.86	-	8.89	0.270	-	0.350	
E2	-		0.76		1740 1757	0.030	
0		2.54 BSC		(0.100 BS	3	
e1		5.08 BSC		(0.200 BSC		
H1	5.84	6.30	6.66	0.230	0.248	0.270	
Ĺ	12.70	14.05	14.73	0.500	0.553	0.580	
L1	7 <u></u> 2	2000	6.35	-	-	0.250	
øP	3.54	3.84	4.08	0.139	0.151	0.161	
0	2.54	200	3.42	0.100	-	0.135	

NOTES:

1. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 MM (0.005") PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREME OF THE PLASTIC BODY.

2. DIMENSIONS E2 & H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.

3. OUTLINE CONFORMS TO JEDEC TO-220AB.

Design Considerations

The fast switching of GaN devices reduces current-voltage cross-over losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power</u> <u>Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of TO-220 or TO-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	

Application Notes

- <u>AN0002</u>: Characteristics of Transphorm GaN Power Switches
- AN0003: Printed Circuit Board Layout and Probing
- <u>AN0004</u>: Designing Hard-switched Bridges with GaN
- AN0008: Drain Voltage and Avalanche Ratings for GaN FETs
- AN0009: Recommended External Circuitry for GaN FETs

Evaluation Boards

- TDPS500E2C1-KIT: 1kW totem-pole PFC evaluation platform
- TDPS1000E0E10-KIT: 1kW hard-switched half-bridge, buck, or boost evaluation platform
- TDPV1000E0C1-KIT: 1kW inverter evaluation platform

Revision History

Version	Date	Change(s)
11	11/14/2016	Added application note AN0009
12	12/13/2016	Formatting Changes to p. 3, revision of dynamic measurement verbiage, added NRND