Datasheet

XC3100, XC3100A

Logic Cell Array Families

XC3100 and XC3100A are performance-optimized relatives of the XC3000 and XC3000A families. While all families are footprint compatible, the XC3100 and XC3100A families extend the system performance beyond 80 MHz .
The XC3100 and XC3100A families follow the XC4000 speed-grade nomenclature, indicating device performance with a number that is based on the internal logic-block delay, in ns.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

> The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical’ values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

XC3100, XC3100A Logic Cell Array Families

Product Specifications

Features

- Two ultra-high-speed FPGA families with six members each
- $50-80 \mathrm{MHz}$ system clock rates
- 190 to 270 MHz guaranteed flip-flop toggle rates
- 2.7 to 4.1 ns logic delays
- High-end additional family members in the 22×22 CLB array-size XC3195 and XC3195A devices
- 8 mA output sink current and 8 mA source current
- Maximum power-down and quiescent current is 5 mA
- Both families are 100\% architecture and pin-out compatible with other XC3000 families
- Beyond this, XC3100 is also software and bitstream compatible with the XC3000 family, while XC3100A is software and bitstream compatible with the XC3000A and XC3000L families

The XC3100A family is recommended for all new designs, since it offers improved functionality and enhanced development system support

XC3100A combines the features of the XC3000A and XC3100 families.

- Additional interconnect resources for TBUFs and CE inputs
- Error checking of the configuration bitstream
- Soft startup holds all outputs slew-rate limited during initial power-up
- More advanced CMOS process

Description

XC3100 and XC3100A are performance-optimized relatives of the XC3000 and XC3000A families. While all families are footprint compatible, the XC3100 and XC3100A families extend the system performance beyond 80 MHz .

The XC3100 and XC3100A families follow the XC4000 speed-grade nomenclature, indicating device performance with a number that is based on the internal logic-block delay, in ns.

The XC3100A family offers the following enhancements over the popular XC3100 family.

The XC3100A family has additional interconnect resources to drive the l-inputs of TBUFs driving horizontal Longlines. The CLB Clock Enable input can be driven from a second vertical Longline. These two additions result in more efficient and faster designs when horizontal Longlines are used for data bussing.

During configuration, the XC3100A devices check the bitstream format for stop bits in the appropriate positions. Any error terminates the configuration and pulls INIT Low.
When the configuration process is finished and the device starts up in user mode, the first activation of the outputs is automatically slew-rate limited. This feature, called Soft Startup, avoids the potential ground bounce when all outputs are turned on simultaneously. After start-up, the slew rate of the individual outputs is, as in all XC3000 families, determined by the individual configuration option.

The XC3100A family is a superset of the XC3000 families. Any bitstream used to configure an XC3000, XC3000A, XC3000L or XC3100 device, will configure the same-size XC3100A device exactly the same way.

Device	CLBs	Array	User Vo Max	Flip-Flops	Horizontal Longlines	Configuration Data Bits
XC3120 / XC3120A	64	8×8	64	256	16	14,779
XC3130 / XC3130A	100	10×10	80	360	20	22,176
XC3142 / XC3142A	144	12×12	96	480	24	30,784
XC3164 / XC3164A	224	16×14	120	688	28	46,064
XC3190 / XC3190A	320	16×20	144	928	40	64,160
XC3195 / XC3195A	484	22×22	176	1,320	44	94,944

Xilinx maintains test specifications for each product as controlled documents. To insure the use of the most recently released device periormance parameters, please request a copy of the current test-specification revision.

Absolute Maximum Ratings

Symbol	Description		Units
V_{CC}	Supply voltage relative to GND	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage with respect to GND	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{TS}}$	Voltage applied to 3-state output	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature (ambient)	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Maximum soldering temperature (10 s @ 1/16 in.)	+260	${ }^{\circ} \mathrm{C}$
	Junction temperature plastic	+125	${ }^{\circ} \mathrm{C}$
	Junction temperature ceramic	+150	${ }^{\circ} \mathrm{C}$

Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

Operating Conditions

Symbol	Description			Min	Max	Units
V_{cc}	Supply voltage relative to GND	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4.75	5.25	V
	Supply voltage relative to GND	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4.5	5.5	\checkmark
$\mathrm{V}_{\mathrm{IHT}}$	High-level input voltage - TTL configuration			2.0	$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {ILT }}$	Low-level input voltage - TTL configuration			0	0.8	\checkmark
$\mathrm{V}_{\text {IHC }}$	High-level input voltage - CMOS configuration			70\%	100\%	V_{cc}
$\mathrm{V}_{\text {LLC }}$	Low-level input voltage - CMOS configuration			0	20\%	Vcc
$\mathrm{T}_{\text {in }}$	Input signal transition time				250	ns

DC Characteristics Over Operating Conditions

Symbol	Description		Min	Max	Units
V_{OH}	High－level output voltage（＠ $\mathrm{IOH}=-8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \mathrm{min}$ ）	Commercial	3.86		V
Vol	Low－level output voltage（ $⿴ 囗 ⿰ 丨 丨 \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{C C} \mathrm{max}$ ）			0.40	V
V_{OH}	High－level output voltage（ $\left(6 \mathrm{I}_{\mathrm{OH}}=-8.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}} \mathrm{min}\right.$ ）	Industrial	3.76		V
$V_{0 L}$	Low－level output voltage（ $¢ \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}, \mathrm{~V}_{C C} \mathrm{max}$ ）			0.40	V
$V_{\text {CCPD }}$	Power－down supply voltage（PWRDWN must be Low）		2.30		V
I cco	Quiescent LCA supply current Chip thresholds programmed as CMOS levels ${ }^{1}$			8	mA
	Chip thresholds programmed as TTL levels			14	mA
$1 /$.	Input Leakage Current		－10	＋10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input capacitance，all packages except PGA175 （sample tested） All Pins except XTL1 and XTL2 XTL1 and XTL2			$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
	Input capacitance，PGA 175 （sample tested） All Pins except XTL1 and XTL2 XTL1 and XTL2			$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
$\mathrm{I}_{\text {RIN }}$	Pad pull－up（when selected）＠$V_{1 N}=O V$（sample tested）		0.02	0.17	mA
Iril	Horizontal long line pull－up（when selected）＠logic Low		0.20	2.80	mA

Note：1．With no output current loads，no active input or long line pull－up resistors，all package pins at $V_{C C}$ or GND， and the LCA configured with a MakeBits tie option．
2．Total continuous output sink current may not exceed 100 mA per ground pin．The number of ground pins varies from two for the XC3120 in the PC84 package，to eight for the XC3195 in the PQ208 or PG223 package．

CLB Switching Characteristic Guidelines

Buffer (Internal) Switching Characteristic Guidelines

Speed Grade		-5	-4	-3	-2	
Description	Symbol	Max	Max	Max	Max	Units
Global and Alternate Clock Distribution* Either: Normal IOB input pad through clock buffer to any CLB or IOB clock input Or: Fast (CMOS only) input pad through clock buffer to any CLB or IOB clock input	$\begin{aligned} & T_{\text {PID }} \\ & T_{\text {PIDC }} \end{aligned}$	$\begin{aligned} & 6.8 \\ & 5.4 \end{aligned}$	6.5 5.1	5.6 4.3	$\begin{aligned} & 5.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
TBUF driving a Horizontal Long line (L.L. $)^{*}$ I to L.L. while T is Low (buffer active) (XC3100) (XC3100A) $T \downarrow$ to L.L. active and valid with single pull-up resistor $T \downarrow$ to L.L. active and valid with pair of pull-up resistors T \uparrow to L.L. High with single pull-up resistor T \uparrow to L.L. High with pair of pull-up resistors	$\begin{aligned} & \mathrm{T}_{10} \\ & \mathrm{~T}_{10} \\ & \mathrm{~T}_{\text {ON }} \\ & \mathrm{T}_{\mathrm{ON}} \\ & \mathrm{~T}_{\text {Pus }} \\ & \mathrm{T}_{\text {Puf }} \end{aligned}$	$\begin{array}{r} 4.1 \\ 3.6 \\ 5.6 \\ 7.1 \\ 15.6 \\ 12.0 \end{array}$	3.7 3.6 5.0 6.5 13.5 10.5	3.1 3.1 4.2 5.7 11.4 8.8	3.1 4.2 5.7 11.4 8.1	ns ns ns ns ns ns
BIDI Bidirectional buffer delay	$\mathrm{T}_{\text {BID }}$	1.4	1.2	1.0	0.9	ns

[^0]
CLB Switching Characteristic Guidelines (continued)

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100\% functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more detailed, more precise, and more up-to-date timing information, use the values provided by the XACT timing calculator and used in the simulator.

Speed Grade			-5		-4		-3		-2		Units
Description		mbol	Min	Max	Min	Max	Min	Max	Min	Max	
Combinatorial Delay Logic Variables A, B, C, D, E, to outputs X or Y	1	TILO		4.1		3.3		2.7		2.2	ns
Sequential delay Clock K to outputs X or Y Clock K to outputs X or Y when Q is returned through function generators F or G to drive X or Y	8	$\begin{aligned} & \text { TСко } \\ & \text { TQLO }^{\text {OL }} \end{aligned}$		3.1 6.3		2.5 5.2		2.1 4.3		1.7 3.5	ns ns
Set-up time before clock K Logic Variables A, B, C, D, E Data In DI Enable Clock EC Reset Direct inactive RD	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	Tick Tіск TECCK	$\begin{aligned} & 3.1 \\ & 2.0 \\ & 3.8 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 1.6 \\ & 3.2 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2.1 \\ & 1.4 \\ & 2.7 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.8 \\ & 1.3 \\ & 2.5 \\ & 1.0 \end{aligned}$		ns ns ns ns
Hold Time after clock k Logic Variables A, B, C, D, E Data In DI Enable Clock EC	$\begin{aligned} & 3 \\ & 5 \\ & 7 \end{aligned}$	$T_{\text {CKI }}$ TCkDI Tскес	$\begin{gathered} 0 \\ 1.0 \\ 1.0 \end{gathered}$		$\begin{array}{r} 0 \\ 1.0 \\ 0.8 \end{array}$		$\begin{gathered} 0 \\ 0.9 \\ 0.7 \end{gathered}$		$\begin{gathered} 0 \\ 0.9 \\ 0.7 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Clock Clock High time Clock Low time Max. flip-flop toggle rate	11	$T_{\text {CH }}$ $T_{C L}$ FCLK	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 190 \end{aligned}$		$\begin{gathered} 2.0 \\ 2.0 \\ 230 \end{gathered}$		$\begin{aligned} & 1.6 \\ & 1.6 \\ & 270 \end{aligned}$		$\begin{array}{\|l} 1.3 \\ 1.3 \\ 325 \end{array}$		$\begin{gathered} \mathrm{ns} \\ \mathrm{~ns} \\ \mathrm{MHz} \end{gathered}$
```Reset Direct (RD) RD width delay from RD to outputs X or Y```	$\begin{array}{\|c} 13 \\ 9 \end{array}$	$\begin{aligned} & \mathrm{T}_{\text {RPW }} \\ & \mathrm{T}_{\mathrm{RII}} \end{aligned}$	3.8	4.4	3.2	3.7	2.7	3.1	2.3	2.7	ns
Global Reset, from RESET Pad, based on XC3142 and XC3142A RESET width (Low) (XC3142) (XC3142A) delay from RESET pad to outputs $X$ or $Y$		$T_{\text {MRW }}$   TMRW   $\mathrm{T}_{\text {MRO }}$	$\begin{aligned} & 18.0 \\ & 14.0 \end{aligned}$	17.0	$\left\lvert\, \begin{aligned} & 15.0 \\ & 14.0 \end{aligned}\right.$	14.0	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	12.0	12.0	12.0	ns ns ns

Notes: The CLB K to Q output delay ( $T_{C K O}, \# 8$ ) of any CLB, plus the shortest possible interconnect delay, is always longer than the Data In hold time requirement ( $T_{C K D 1}, \# 5$ ) of any CLB on the same die.
$T_{\text {ILO }}, T_{\text {QLO }}$ and $T_{\text {ICK }}$ are specified for 4-input functions. For 5 -input functions or base FGM functions, each of these specifications for the XC3100 family increases by $0.60 \mathrm{~ns}(-5), 0.6 \mathrm{~ns}(-4)$ and $0.5 \mathrm{~ns}(-3)$ and each of these specifications for the XC3100A family increses by $0.50 \mathrm{~ns}(-5), 0.42 \mathrm{~ns}(-4)$ and $0.35 \mathrm{~ns}(-3)$.

IOB Switching Characteristic Guidelines


## IOB Switching Characteristic Guidelines (continued)

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100\% functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more detailed, more precise, and more up-to-date timing information, use the values provided by the XACT timing calculator and used in the simulator.


Notes: 1. Timing is measured at pin threshold, with 50 pF external capacitive loads (incl. test fixture). For larger capacitive loads, see XAPP 024. Typical slew rate limited output rise/fall times are approximately four times longer.
2. Voltage levels of unused (bonded and unbonded) pads must be valid logic levels. Each can be configured with the internal pull-up resistor or alternatively configured as a driven output or driven from an external source.
3. Input pad set-up time is specified with respect to the internal clock (IK). In order to calculate system set-up time, subtract clock delay (pad to ik) from the input pad set-up time value. Input pad holdtime with respect to the internal clock (IK) is negative. This means that pad level changes immediately beiore the internal clock edge (IK) will not be recognized.
4. $T_{\text {PIO }}, T_{\text {PTG }}$, and $T_{\text {PICK }}$ are 3 ns higher for XTAL2 when the pin is configured as a user input.

For a detailed description of the device architecture, see pages 2-105 through 2-123.
For a detailed description of the configuration modes and their timing, see pages 2-124 through 2-132.
For detailed lists of package pin-outs, see pages 2-140 through 2-150.
For package physical dimensions and thermal data, see Section 4.


## Component Availability




[^0]:    * Timing is based on the XC3142, for other devices see XACT timing calculator.

