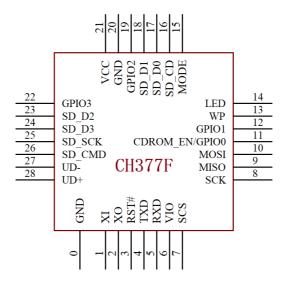

高速读卡器芯片 CH377

手册 版本: 1 http://wch.cn

1、概述

CH377 是一款工业级 USB2. 0 高速读卡器控制芯片,支持 SD 卡、MMC 卡以及 SPI 接口的 FLASH 芯片。实现将 SD 卡、MMC 卡和 FLASH 等存储介质转换成标准的 USB 大容量存储类设备。同时,在串口记录仪模式下,可实时接收串口透传数据,并以文件形式保存到存储介质中。



2、特点

- 480Mbps 高速 USB 设备接口,外围元器件只需晶振和电容。
- 支持 SD 卡、MMC 卡以及 SPI 接口的 FLASH 芯片。
- 兼容 SD 卡规范 2.0, 兼容 MMC 规范 4.5。
- 单一3.3V供电。
- 支持串口记录仪模式,实时保存串口透传数据。
- 支持 FAT 文件系统,支持通过配置文件配置参数。
- 支持 4 路 GPIO 输入输出功能。
- 串口通讯波特率支持 2400bps~3000000bps。
- 内置 EEPROM, 可配置芯片 VID、PID、最大电流值、厂商和产品信息字符串等参数。
- 提供 QFN28 无铅封装,兼容 RoHS。

CH377 手册 2

3、封装

封装形式	塑体宽度		引脚间距		封装说明	订货型号
QFN28_4X4	4*4mm		0. 4mm	15.7mil	四边无引线 28 脚	CH377F

注: CH377 的 USB 收发器按 USB2. 0 全内置设计, UD+和 UD-引脚不能串接电阻, 否则影响信号质量。 CH377 的底板是 0#引脚 GND, 是可选但建议的连接; 其它 GND 是必要连接。

4、引脚

引脚号	引脚名称	类型	引脚说明			
21	VCC	电源	电源调节器正电源输入端,需要外接退耦电容			
0, 20	GND	电源	公共接地端,需要连接 USB 总线的地线			
3	RST#	输入	外部复位输入端,低电平有效,内置上拉电阻			
28	UD+	USB 信号	直接连到 USB 总线的 D+数据线,不能额外串接电阻			
27	UD-	USB 信号	直接连到 USB 总线的 D-数据线,不能额外串接电阻			
1	ΧI	输入	晶体振荡输入端			
2	ХО	输出	晶体振荡反相输出端			
6	V10	电源	I/0 端口电源输入端,需要外接退耦电容			
16	SD_CD	输入(FT)	SD 卡/MMC 卡插入检测引脚			
17 SD D0		输出	SDIO接口数据引脚 0			
.,	00_00	输入(FT)				
18	SD D1	输出	SDI0 接口数据引脚 1			
		输入(FT)	のける。英口奴別的別時に			
23	SD_D2	输出	 SDIO 接口数据引脚 2			
		输入(FT)				
24	SD D3	输出	SDIO 接口数据引脚 3			
24	00_00	输入(FT)	のでの 1文 口 奴 沿 川神 り			
25	SD_SCK	输出	SDIO 接口时钟引脚			
26	SD_CMD	输出	SDIO 接口命令引脚			

7	SCS	输出	SPI 接口片选引脚		
8	SCK	输出	SPI 接口时钟引脚		
9	MISO	输入(FT)	SPI 接口数据输入引脚,内置上拉电阻		
10	MOSI	输出	SPI 接口数据输出引脚		
4	TXD	输出	UART 的串行数据输出引脚,空闲态为高电平		
5	RXD	输入	UART 的串行数据输入引脚,内置上拉电阻		
11	CDROM_EN/ GP100	输出 输入(FT)	CDROM 使能引脚,上电时如果该引脚检测到外接了下拉电阻则将USB大容量存储设备设置为CDROM模式。 通用 GP100,用于 10 口输入或输出		
12	GP101	输出 输入(FT)	通用 GP101,用于 10 口输入或输出		
19	GP102	输出 输入(FT)	通用 GP102, 用于 10 口输入或输出		
22	GP103	输出 输入(FT)	通用 GP103,用于 10 口输入或输出		
13	WP	输入(FT)	写保护检测引脚,低电平有效 上电时如果该引脚检测到外接了下拉电阻则设置成只 读模式		
14	LED	输出	状态输出引脚,低电平有效 USB 配置完成则输出低电平, USB 或串口有数据通信则 快速闪烁		
15	MODE	输入(FT)	模式选择引脚,上电时如果该引脚检测到外接了 下拉电阻则从读卡器模式切换到串口记录仪模式		

注 1: FT 表示引脚作为输入时耐受 5V 电压。

注 2: 芯片第 17 和第 18 引脚的电源来自 VCC, 为 3. 3V 信号电平; 其它引脚的电源来自 VIO, 为 VIO 相匹配的 3. 3V/2. 5/1. 8V 信号电平。

5、功能说明

5.1. 一般说明

CH377 是一款工业级 USB2. 0 高速读卡器控制器芯片,支持 SD 卡、MMC 卡以及 SPI 接口的 FLASH 芯片。实现将 SD 卡、MMC 卡和 FLASH 等存储介质转换成标准的 USB 大容量存储类设备。

CH377 芯片的 VCC 是电源输入端,需外部提供 3. 3V 电源电压。电源引脚 VCC 应该外接容量为 0. 1uF 左右的电源退耦电容。

CH377 芯片的 VIO 引脚用于为 I/O 和 RST 引脚提供 I/O 电源,支持 1.8V \sim 3.3V 电源电压, VIO 应该与连接的外设使用同一电源。UD+和 UD-引脚使用 VCC 电源,不使用 VIO 电源。

CH377 芯片内置了电源上电复位电路,芯片正常工作时需要外部向 XI 引脚提供 12MHz 时钟信号,时钟信号可通过 CH377 内置的反相器通过晶体稳频振荡产生。外围电路需要在 XI 和 X0 引脚之间连接一个 12MHz 晶体, XI 和 X0 引脚对地接 20pF 左右的负载电容。

CH377 芯片内置了 USB 总线所需要的所有外围电路,包括内嵌 USB 控制器和 USB-PHY、USB 信号线的串联匹配电阻、Device 设备所需的 1.5K 上拉电阻等。UD+和 UD-引脚应该直接连接到 USB 总线上。

5.2. 模式说明

CH377 默认工作在 USB 读卡器模式,如果上电时 MODE 引脚检测到外接了下拉电阻则切换到串口记录仪模式。

USB 读卡器模式下,芯片可以通过 SDIO 接口(包括 SD_DO、SD_D1、SD_D2、SD_D3、SD_SCK、SD_CMD和可选的 SD_CD 引脚)连接 SD 卡和 MMC 卡,也可以通过 SPI 接口连接 FLASH,实现将 SD 卡、MMC 卡和FLASH 等存储介质转换成标准的 USB 大容量存储类设备。

串口记录仪模式下,芯片实时接收串口透传数据,并以文件形式保存到存储介质中。存储介质可以是 SD 卡或 MMC 卡。通过 USB 口连接电脑后,可直接对文件进行读取、写入、删除、拷贝等操作。第一次上电时,会在存储介质中新建配置文件 "CONFIG. TXT"并写入默认配置信息。用户可根据需要自行修改该配置文件,重新设置串口通信波特率、起始文件名、单个文件最大存储大小、是否循环覆盖旧文件等配置信息。CH377 的串行数据包括 1 个低电平起始位、8 个数据位、1 个/2 个高电平停止位,支持无校验/奇校验/偶校验。支持常用通讯波特率: 2400、4800、9600、19200、38400、57600、115200、230400、460800、921600、1M、1.5M、2M、3M等。CH377 芯片串口接收信号的允许波特率误差不大于 2%,串口发送信号的波特率误差小于 1%。

5.3. 芯片参数配置

在较大批量应用时,CH377 的厂商识别码 VID 和产品识别码 PID 以及产品信息可以定制。在少量应用时,可以使用官方提供的配置工具进行参数配置。参数主要包括芯片的厂商识别码 VID、产品识别码 PID、最大电流值、BCD 版本号、厂商信息和产品信息字符串描述符等。

6、参数

6.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

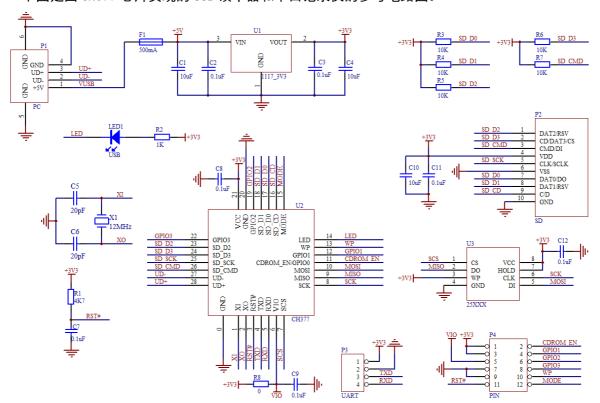
名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	°C
TS	储存时的环境温度	-40	125	°C
VCC	电源电压(VCC 引脚供电,GND 引脚接地)	-0. 3	4. 0	٧
VIO	I/O 电源电压(VIO 引脚供电,GND 引脚接地)	-0. 3	4. 0	٧
VUSB	USB 信号引脚上的电压	-0. 5	3. 8	٧
V105	耐受 5V 引脚上的输入电压	-0.5	5. 6	٧
V103	其它引脚上的输入电压	-0.5	VCC+0. 3	٧

6.2. 电气参数 (测试条件: TA=25°C, VCC=3.3V, 不含 USB 引脚)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压(VCC 引脚供电,GND 引脚接地)	3. 0	3. 3	3. 6	V
V10	I/0 的 VIO 电源电压	1. 7	3. 3	3. 6	V
ICC	芯片正常工作时的电源电流	36	48	60	mA
ISLP	USB 挂起时的电源电流	170	220	300	uA
VIL	低电平输入电压	0		0.8	V
VIH3	不耐受 5V 引脚的高电平输入电压	2. 0		VCC	V

CH377 手册 5

V1H5	耐受 5V 引脚的高电平输入电压	2. 0		5. 0	V
VOL	输出低电压,单个引脚吸入 8mA 电流			0. 4	٧
VOH	输出高电平,单个引脚输出 8mA 电流	VCC-0. 4			٧
RPU	内置上拉的等效电阻	30	40	60	KΩ
VP0R	上电/掉电复位的阈值电压	1. 9	2. 2	2. 5	V
VESD	ESD 静电耐受电压(人体模型,非接触式)	3			KV


6.3. 时序参数(测试条件: TA=25℃, VCC=3.3V)

名称	参数说明	最小值	典型值	最大值	单位
TRSTD	电源上电或外部复位输入后的复位延时	15	28	40	mS
TSUSP	检测 USB 自动挂起时间	3	5	9	mS
TWAKE	芯片睡眠后唤醒完成时间	0. 3	0. 5	2	mS

7、应用

7.1. 参考电路图

下图是由 CH377 芯片实现的 USB 读卡器和串口记录仪的参考电路图。

P1 是 USB 端口, USB 总线包括一对 5V 电源线和一对数据信号线,通常,+5V 电源线是红色,接 地线是黑色,D+信号线是绿色,D-信号线是白色。USB 总线提供的电源电流可以达到 500mA。

P2 为 SD 卡接口座子,可以连接 SD 卡或 MMC 卡。U3 为 SPI 接口的 FLASH 芯片。

P3 为串口 TTL 通信连接引脚,参数配置或者串口记录仪模式下使用。包括 3. 3V、GND、RXD 和 TXD 引脚。可外加电平转换器件(须支持高波特率),实现 TTL 转 RS232、RS485、RS422 等信号转换。

CH377 芯片的 VCC 引脚输入 3.3V 电源电压,每个电源引脚应外接容量为 0.1uF 左右的电源退耦

电容,如图中 C8 为电源退耦电容。

晶体 X1、电容 C5 和 C6 用于 CH377 的时钟振荡电路。X1 的频率为 $12MHz\pm0.4\%$,C5 和 C6 是容量约为 20pF 的独石或高频瓷片电容。R1 和 C7 为可选器件。

建议为 USB 信号线增加 ESD 保护器件, ESD 芯片寄生电容需小于 2pF, 例如 CH412K。

建议串口外设与 CH377 使用同一电源, 否则需考虑分开供电时的 10 引脚倒灌电流问题。

在设计印刷线路板 PCB 时,需要注意: 退耦电容 C8 尽量靠近 CH377 相连的电源引脚; USB 口的 D+和 D-信号线按高速 USB 规范贴近平行布线,保证特性阻抗,尽量在两侧提供地线或者覆铜,减少来自外界的信号干扰。