Leading-performance 100 MHz Arm Cortex-M33 core, up to 512 KB code flash memory with background operation, 8 KB Data flash memory, and 128 KB SRAM with Parity/ECC. High-integration with USB 2.0 Full-Speed, SDHI, Quad SPI, and advanced analog. Integrated Secure Crypto Engine with cryptography accelerators, key management support, tamper detection and power analysis resistance in concert with Arm TrustZone for integrated secure element functionality.

Features

- Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M33 Core
- Armv8-M architecture with the main extension
- Maximum operating frequency: 100 MHz
- Arm Memory Protection Unit (Arm MPU)
- Protected Memory System Architecture (PMSAv8)
- Secure MPU (MPU_S): 8 regions
- Non-secure MPU (MPU_NS): 8 regions
- SysTick timer
- Embeds two Systick timers: Secure and Non-secure instance
- Driven by LOCO or system clock
- CoreSight ${ }^{\text {TM }}$ ETM-M33
- Memory
- Up to $512-\mathrm{KB}$ code flash memory
- 8-KB data flash memory (100,000 program/erase (P/E) cycles)
- 128-KB SRAM
- Connectivity
- Serial Communications Interface (SCI) $\times 6$
- Asynchronous interfaces
- 8-bit clock synchronous interface
- Smart card interface
- Simple IIC
- Simple SPI
- Manchester coding (SCI3, SCI4)
- $\mathrm{I}^{2} \mathrm{C}$ bus interface (IIC) $\times 2$
- Serial Peripheral Interface (SPI)
- Quad Serial Peripheral Interface (QSPI)
- USB 2.0 Full-Speed Module (USBFS)
- Control Area Network module (CAN)
- SD/MMC Host Interface (SDHI)
- Serial Sound Interface Enhanced (SSIE)
- Analog
- 12-bit A/D Converter (ADC12)
- 12-bit D/A Converter (DAC12) $\times 2$
- Temperature Sensor (TSN)
- Timers
- General PWM Timer 32-bit (GPT32) $\times 4$
- General PWM Timer 16-bit (GPT16) $\times 4$
- Low Power Asynchronous General Purpose Timer (AGT) $\times 6$
- Security and Encryption
- Secure Crypto Engine 9
- Symmetric algorithms: AES
- Asymmetric algorithms: RSA, ECC, and DSA
- Hash-value generation: SHA224, SHA256, GHASH
- 128-bit unique ID
- Arm ${ }^{\circledR}$ TrustZone ${ }^{\circledR}$.
- Up to three regions for the code flash
- Up to two regions for the data flash
- Up to three regions for the SRAM
- Individual secure or non-secure security attribution for each peripheral
- Device lifecyle management
- Pin function
- Up to three tamper pins
- Secure pin multiplexing
- System and Power Management
- Low power modes
- Battery backup function (VBATT)
- Realtime Clock (RTC) with calendar and VBATT support
- Event Link Controller (ELC)
- Data Transfer Controller (DTC)
- DMA Controller (DMAC) $\times 8$
- Power-on reset
- Low Voltage Detection (LVD) with voltage settings
- Watchdog Timer (WDT)
- Independent Watchdog Timer (IWDT)

■ Human Machine Interface (HMI)

- Capacitive Touch Sensing Unit (CTSU)

■ Multiple Clock Sources

- Main clock oscillator (MOSC) (8 to 24 MHz)
- Sub-clock oscillator (SOSC) (32.768 kHz)
- High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
- Middle-speed on-chip oscillator (MOCO) (8 MHz)
- Low-speed on-chip oscillator (LOCO) (32.768 kHz)
- IWDT-dedicated on-chip oscillator (15 kHz)
- Clock trim function for HOCO/MOCO/LOCO
- PLL/PLL2
- Clock out support
- General-Purpose I/O Ports
- 5-V tolerance, open drain, input pull-up, switchable driving ability
- Operating Voltage
- VCC: 2.7 to 3.6 V
- Operating Temperature and Packages
- $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- 100-pin LQFP ($14 \mathrm{~mm} \times 14 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$
- 64-pin LQFP ($10 \mathrm{~mm} \times 10 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$
- 48-pin LQFP ($7 \mathrm{~mm} \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch $)$
$-48-\operatorname{pin}$ QFN ($7 \mathrm{~mm} \times 7 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

1. Overview

The MCU integrates multiple series of software- and pin-compatible Arm ${ }^{\circledR}$-based 32-bit cores that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.
The MCU in this series incorporates a high-performance Arm Cortex ${ }^{\circledR}-\mathrm{M} 33$ core running up to 100 MHz with the following features:

- Up to 512 KB code flash memory
- 128 KB SRAM
- Quad Serial Peripheral Interface (QSPI)
- USBFS, SD/MMC Host Interface
- Capacitive Touch Sensing Unit (CTSU)
- Analog peripherals
- Security and safety features

1.1 Function Outline

Table 1.1 Arm core

Feature	Functional description
Arm Cortex-M33 core	- Maximum operating frequency: up to 100 MHz - Arm Cortex-M33 core: - Armv8-M architecture with security extension - Revision: r0p4-00rel0 - Arm Memory Protection Unit (Arm MPU) - Protected Memory System Architecture (PMSAv8) - Secure MPU (MPU_S): 8 regions - Non-secure MPU (MPU_NS): 8 regions - SysTick timer - Embeds two Systick timers: Secure and Non-secure instance - Driven by SysTick timer clock (SYSTICCLK) or system clock (ICLK) - CoreSight ${ }^{\text {TM }}$ ETM-M33

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 512 KB of code flash memory.
Data flash memory	8 KB of data flash memory.
Option-setting memory	The option-setting memory determines the state of the MCU after a reset.
SRAM	On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC).

Table 1.3 System (1 of 2)

Feature	Functional description
Operating modes	Two operating modes: \bullet Single-chip mode \bullet SCI/USB boot mode
Resets	The MCU provides 13 resets.
Low Voltage Detection (LVD)	The Low Voltage Detection (LVD) module monitors the voltage level input to the VCC pin. The detection level can be selected by register settings. The LVD module consists of three separate voltage level detectors (LVD0, LVD1, LVD2). LVD0, LVD1, and LVD2 measure the voltage level input to the VCC pin. LVD registers allow your application to configure detection of VCC changes at various voltage thresholds.

Table 1.3 System (2 of 2)

Feature	Functional description
Clocks	- Main clock oscillator (MOSC) - Sub-clock oscillator (SOSC) - High-speed on-chip oscillator (HOCO) - Middle-speed on-chip oscillator (MOCO) - Low-speed on-chip oscillator (LOCO) - IWDT-dedicated on-chip oscillator - PLL/PLL2 - Clock out support
Clock Frequency Accuracy Measurement Circuit (CAC)	The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock selected as the measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is complete or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated.
Interrupt Controller Unit (ICU)	The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), the DMA Controller (DMAC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts.
Low power modes	Power consumption can be reduced in multiple ways, including setting clock dividers, stopping modules, selecting power control mode in normal operation, and transitioning to low power modes.
Battery backup function	A battery backup function is provided for partial powering by a battery. The battery-powered area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT.
Register write protection	The register write protection function protects important registers from being overwritten due to software errors. The registers to be protected are set with the Protect Register (PRCR).
Memory Protection Unit (MPU)	The MCU has one Memory Protection Unit (MPU).

Table 1.4 Event link

Feature	Functional description
Event Link Controller (ELC)	The Event Link Controller (ELC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request.
DMA Controller (DMAC)	The MCU includes an 8-channel direct memory access controller (DMAC) that can transfer data without intervention from the CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the transfer source address to the transfer destination address.

Table 1.6 External bus interface

Feature	Functional description
External bus	\bullet QSPI area (EQBIU): Connected to the QSPI (external device interface)

Table 1.7 Timers (1 of 2)

Feature	Functional description
General PWM Timer (GPT)	The General PWM Timer (GPT) is a 32-bit timer with GPT32 $\times 4$ channels and a 16-bit timer with GPT16 $\times 4$ channels. PWM waveforms can be generated by controlling the up-counter, down- counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer.
Port Output Enable for GPT (POEG)	The Port Output Enable (POEG) function can place the General PWM Timer (GPT) output pins in the output disable state

Table 1.7 Timers (2 of 2)

Feature	Functional description
Low Power Asynchronous General Purpose Timer (AGT)	The Low Power Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This timer consists of a reload register and a down counter. The reload register and the down counter are allocated to the same address, and can be accessed with the AGT register.
Realtime Clock (RTC)	For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
Watchdog Timer (WDT)	The Watchdog Timer (WDT) is a 14-bit down counter that can be used to reset the MCU when the counter underflows because the system has run out of control and is unable to refresh the WDT. In addition, the WDT can be used to generate a non-maskable interrupt or an underflow interrupt.
Independent Watchdog Timer (IWDT)	The Independent Watchdog Timer (IWDT) consists of a 14-bit down counter that must be serviced periodically to prevent counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-maskable interrupt or an underflow interrupt. Because the timer operates with an independent, dedicated clock source, it is particularly useful in returning the MCU to a known state as a fail-safe mechanism when the system runs out of control. The IWDT can be triggered automatically by a reset, underflow, refresh error, or a refresh of the count value in the registers.

Table 1.8 Communication interfaces (1 of 2)

Feature	Functional description
Serial Communications Interface (SCI)	The Serial Communications Interface $(\mathrm{SCI}) \times 6$ channels have asynchronous and synchronous serial interfaces: - Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter (ACIA)) - 8-bit clock synchronous interface - Simple IIC (master-only) - Simple SPI - Smart card interface - Manchester interface - Extended Serial interface The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCIn ($n=0,3,4,9$) has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator.
${ }^{2} \mathrm{C}$ bus interface (IIC)	The $I^{2} \mathrm{C}$ bus interface (IIC) has 2 channels. The IIC module conforms with and provides a subset of the NXP I ${ }^{2}$ C (Inter-Integrated Circuit) bus interface functions.
Serial Peripheral Interface (SPI)	The Serial Peripheral Interface (SPI) has 1 channel. The SPI provides high-speed full-duplex synchronous serial communications with multiple processors and peripheral devices.
Control Area Network (CAN)	The Controller Area Network (CAN) module uses a message-based protocol to receive and transmit data between multiple slaves and masters in electromagnetically noisy applications. The module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. The CAN module requires an additional external CAN transceiver.
USB 2.0 Full-Speed module (USBFS)	The USB 2.0 Full-Speed module (USBFS) can operate as a host controller or device controller. The module supports full-speed and low-speed (host controller only) transfer as defined in Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be assigned any endpoint number based on the peripheral devices used for communication or based on your system.
Quad Serial Peripheral Interface (QSPI)	The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface.

Table 1.8 Communication interfaces (2 of 2)

Feature	Functional description
Serial Sound Interface Enhanced (SSIE)	The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with digital audio devices for transmitting IS/Monaural/TDM audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven data reception and transmission.
SD/MMC Host Interface (SDHI)	The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to connect a variety of external memory cards to the MCU. The SDHI supports both 1-and 4-bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When developing host devices that are compliant with the SD Specifications, you must comply with the SD Host/Ancillary Product License Agreement (SD HALA). The MMC interface supports 1-bit, and 4-bit MMC buses that provide eMMC 4.51 (JEDEC Standard JESD 84-B451) device access. This interface also provides backward compatibility and supports high-speed SDR transfer modes.

Table 1.9 Analog

Feature	Functional description
12-bit A/D Converter (ADC12)	A 12-bit successive approximation A/D converter (ADC12) is provided. Analog input channels are selectable up to 22. The temperature sensor output and an internal reference voltage are selectable for conversion.
12-bit D/A Converter (DAC12)	A 12-bit D/A converter (DAC12) is provided.
Temperature Sensor (TSN)	The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is fairly linear. The output voltage is provided to the ADC12 for conversion and can be further used by the end application.

Table 1.10 Human machine interfaces

Feature	Functional description
Capacitive Touch Sensing Unit (CTSU)	The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software that enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with an electrical conductor so that a finger does not come into direct contact with the electrode.

Table 1.11 Data processing

Feature	Functional description
Cyclic Redundancy Check (CRC) calculator	The Cyclic Redundancy Check (CRC) generates CRC codes to detect errors in the data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first communication. Additionally, various CRC-generation polynomials are available.
Data Operation Circuit (DOC)	The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. When a selected condition applies, 16-bit data is compared and an interrupt can be generated.

Table $1.12 \quad \mathrm{I} / \mathrm{O}$ ports

Feature	Functional description
Programmable I/O ports	- I/O ports for the 100-pin LQFP - I/O pins: 77 - Input pins: 1 - Pull-up resistors: 78 - N-ch open-drain outputs: 77 - 5-V tolerance: 14 - I/O ports for the 64-pin LQFP - I/O pins: 43 - Input pins: 1 - Pull-up resistors: 44 - N-ch open-drain outputs: 43 - 5-V tolerance: 9 - I/O ports for the 48-pin LQFP, 48-pin QFN - I/O pins: 29 - Input pins: 1 - Pull-up resistors: 30 - N-ch open-drain outputs: 29 - 5-V tolerance: 4

1.2 Block Diagram

Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the features.

Figure 1.1 Block diagram

1.3 Part Numbering

Figure 1.2 shows the product part number information, including memory capacity and package type. Table 1.13 shows a list of products.

R 7 FA 4 M 2 AD $3 C$ FP \# AA 0

Note: Check the order screen for each product on the Renesas website for valid symbols after the \#.

Figure 1.2 Part numbering scheme
Table 1.13 Product list (1 of 2)

Product part number	Package code	Code flash	Data flash	SRAM	Operating temperature
R7FA4M2AD3CFP	PLQP0100KB-B	512 KB	8 KB	128 KB	-40 to $+105^{\circ} \mathrm{C}$
R7FA4M2AD3CFM	PLQP0064KB-C				
R7FA4M2AD3CFL	PLQP0048KB-B				
R7FA4M2AD3CNE	PWQN0048KC-A				
R7FA4M2AC3CFP	PLQP0100KB-B	384 KB	8 KB	128 KB	-40 to $+105^{\circ} \mathrm{C}$
R7FA4M2AC3CFM	PLQP0064KB-C				
R7FA4M2AC3CFL	PLQP0048KB-B				
R7FA4M2AC3CNE	PWQN0048KC-A				

Table 1.13 Product list (2 of 2)

Product part number	Package code	Code flash	Data flash	SRAM	Operating temperature
R7FA4M2AB3CFP	PLQP0100KB-B	256 KB	8 KB	128 KB	-40 to $+105^{\circ} \mathrm{C}$
R7FA4M2AB3CFM	PLQP0064KB-C				
R7FA4M2AB3CFL	PLQP0048KB-B				
R7FA4M2AB3CNE	PWQN0048KC-A				

1.4 Function Comparison

Table 1.14 Function Comparison (1 of 2)

Parts number		R7FA4M2AD3CFP R7FA4M2AC3CFP R7FA4M2AB3CFP	R7FA4M2AD3CFM R7FA4M2AC3CFM R7FA4M2AB3CFM	R7FA4M2AD3CFL R7FA4M2AC3CFL R7FA4M2AB3CFL	R7FA4M2AD3CNE R7FA4M2AC3CNE R7FA4M2AB3CNE
Pin count		100	64	48	48
Package		LQFP			QFN
Code flash memory		$\begin{aligned} & 512 \mathrm{~KB} \\ & 384 \mathrm{~KB} \\ & 256 \mathrm{~KB} \end{aligned}$			
Data flash memory		8 KB			
SRAM		128 KB			
	Parity	64 KB			
	ECC	64 KB			
Standby SRAM		1 KB			
DMA	DTC	Yes			
	DMAC	8			
System	CPU clock	100 MHz (max.)			
	CPU clock sources	MOSC, SOSC, HOCO, MOCO, LOCO, PLL			
	CAC	Yes			
	WDT/IWDT	Yes			
	Backup register	128 B			
Communication	SCI	6			
	IIC	2		1	
	SPI	1			
	CAN	1			
	USBFS	Yes			
	QSPI	Yes			
	SSIE	Yes	No		
	SDHI/MMC	Yes	No		
Timers	GPT32*1	4			
	GPT16*1	4			
	AGT*1	6			
	RTC	Yes			
Analog	ADC12	Unit 0: 13	Unit 0: 9	Unit 0: 7	
	DAC12	2			
	TSN	Yes			
HMI	CTSU	12	7		
Data processing	CRC	Yes			
	DOC	Yes			
Event control	ELC	Yes			
Security		SCE9, TrustZone, and Lifecycle management			

Table 1.14 Function Comparison (2 of 2)

| Parts number | R7FA4M2AD3CFP
 R7FA4M2AC3CFP
 R7FA4M2AB3CFP | R7FA4M2AD3CFM
 R7FA4M2AC3CFM
 R7FA4M2AB3CFM | R7FA4M2AD3CFL
 R7FA4M2AC3CFL
 R7FA4M2AB3CFL | R7FA4M2AD3CNE
 R7FA4M2AC3CNE
 R7FA4M2AB3CNE |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | I/O pins | 77 | 43 | 29 |
| | Input pins | 1 | 1 | 1 |
| | Pull-up resistors | 78 | 44 | 30 |
| | N-ch open-drain
 outputs | 77 | 43 | 29 |
| | 5-V tolerance | 14 | 9 | 4 |

Note 1. Available pins depend on the Pin count, about details see section 1.7. Pin Lists.

1.5 Pin Functions

Table 1.15 Pin functions (1 of 4)

Function	Signal	1/0	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a $0.1-\mu \mathrm{F}$ capacitor. The capacitor should be placed close to the pin.
	VCL	I/O	Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VBATT	Input	Battery Backup power pin
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input through the EXTAL pin.
	EXTAL	Input	
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator between XCOUT and XCIN.
	XCOUT	Output	
	CLKOUT	Output	Clock output pin
Operating mode control	MD	Input	Pin for setting the operating mode. The signal level on this pin must not be changed during operation mode transition on release from the reset state.
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Measurement reference clock input pin
On-chip emulator	TMS	Input	On-chip emulator or boundary scan pins
	TDI	Input	
	TCK	Input	
	TDO	Output	
	TCLK	Output	Output clock for synchronization with the trace data
	TDATA0 to TDATA3	Output	Trace data output
	SWO	Output	Serial wire trace output pin
	SWDIO	I/O	Serial wire debug data input/output pin
	SWCLK	Input	Serial wire clock pin
Interrupt	NMI	Input	Non-maskable interrupt request pin
	IRQn	Input	Maskable interrupt request pins
	IRQn-DS	Input	Maskable interrupt request pins that can also be used in Deep Software Standby mode

Table 1.15 Pin functions (2 of 4)

Function	Signal	1/0	Description
GPT	GTETRGA, GTETRGB, GTETRGC, GTETRGD	Input	External trigger input pins
	GTIOCnA, GTIOCnB	I/O	Input capture, output compare, or PWM output pins
	GTIU	Input	Hall sensor input pin U
	GTIV	Input	Hall sensor input pin V
	GTIW	Input	Hall sensor input pin W
	GTOUUP	Output	3-phase PWM output for BLDC motor control (positive U phase)
	GTOULO	Output	3-phase PWM output for BLDC motor control (negative U phase)
	GTOVUP	Output	3-phase PWM output for BLDC motor control (positive V phase)
	GTOVLO	Output	3-phase PWM output for BLDC motor control (negative V phase)
	GTOWUP	Output	3-phase PWM output for BLDC motor control (positive W phase)
	GTOWLO	Output	3-phase PWM output for BLDC motor control (negative W phase)
AGT	AGTEEn	Input	External event input enable signals
	AGTIOn	I/O	External event input and pulse output pins
	AGTOn	Output	Pulse output pins
	AGTOAn	Output	Output compare match A output pins
	AGTOBn	Output	Output compare match B output pins
RTC	RTCOUT	Output	Output pin for 1-Hz or 64-Hz clock
	RTCICn	Input	Time capture event input pins
SCl	SCKn	I/O	Input/output pins for the clock (clock synchronous mode)
	RXDn	Input	Input pins for received data (asynchronous mode/clock synchronous mode)
	TXDn	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode)
	CTSn_RTSn	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), activelow.
	CTSn	Input	Input for the start of transmission.
	SCLn	I/O	Input/output pins for the IIC clock (simple IIC mode)
	SDAn	I/O	Input/output pins for the IIC data (simple IIC mode)
	SCKn	I/O	Input/output pins for the clock (simple SPI mode)
	MISOn	I/O	Input/output pins for slave transmission of data (simple SPI mode)
	MOSIn	I/O	Input/output pins for master transmission of data (simple SPI mode)
	RXDXn	Input	Input pins for received data (Extended Serial Mode)
	TXDXn	Output	Output pins for transmitted data (Extended Serial Mode)
	SIOXn	I/O	Input/output pins for received or transmitted data (Extended Serial Mode)
	SSn	Input	Chip-select input pins (simple SPI mode), active-low
IIC	SCLn	I/O	Input/output pins for the clock
	SDAn	I/O	Input/output pins for data

Table 1.15 Pin functions (3 of 4)

Function	Signal	1/0	Description
SPI	RSPCKA	I/O	Clock input/output pin
	MOSIA	I/O	Input or output pins for data output from the master
	MISOA	I/O	Input or output pins for data output from the slave
	SSLA0	I/O	Input or output pin for slave selection
	SSLA1 to SSLA3	Output	Output pins for slave selection
CAN	CRXn	Input	Receive data
	CTXn	Output	Transmit data
USBFS	VCC_USB	Input	Power supply pin
	VSS_USB	Input	Ground pin
	USB_DP	I/O	D+ pin of the USB on-chip transceiver. Connect this pin to the D+ pin of the USB bus.
	USB_DM	I/O	D- pin of the USB on-chip transceiver. Connect this pin to the D- pin of the USB bus.
	USB_VBUS	Input	USB cable connection monitor pin. Connect this pin to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a function controller.
	USB_EXICEN	Output	Low-power control signal for external power supply (OTG) chip
	USB_VBUSEN	Output	VBUS (5 V) supply enable signal for external power supply chip
	USB_OVRCURA, USB_OVRCURB	Input	Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected.
	USB_OVRCURA-DS	Input	Overcurrent pins for USBFS that can also be used in Deep Software Standby mode. Connect the external overcurrent detection signals to these pins. Connect the VBUS comparator signals to these pins when the OTG power supply chip is connected.
	USB_ID	Input	Connect the MicroAB connector ID input signal to this pin during operation in OTG mode
QSPI	QSPCLK	Output	QSPI clock output pin
	QSSL	Output	QSPI slave output pin
	QIO0 to QIO3	I/O	Data0 to Data3
SSIE	SSIBCK0	I/O	SSIE serial bit clock pins
	SSILRCK0/SSIFS0	I/O	LR clock/frame synchronization pins
	SSITXD0	Output	Serial data output pin
	SSIRXD0	Input	Serial data input pin
	AUDIO_CLK	Input	External clock pin for audio (input oversampling clock)
SDHI/MMC	SD0CLK	Output	SD/MMC clock output pins
	SD0CMD	I/O	Command output pin and response input signal pins
	SDODAT0 to SD0DAT3	I/O	SD/MMC data bus pins
	SDOCD	Input	SD/MMC card detection pins
	SDOWP	Input	SD/MMC write-protect signals

Table 1.15 Pin functions (4 of 4)

Function	Signal	1/0	Description
Analog power supply	AVCCO	Input	Analog voltage supply pin. This is used as the analog power supply for the respective modules. Supply this pin with the same voltage as the VCC pin.
	AVSS0	Input	Analog ground pin. This is used as the analog ground for the respective modules. Supply this pin with the same voltage as the VSS pin.
	VREFH	Input	Analog reference voltage supply pin for the D/A Converter. Connect this pin to AVCCO when not using the D/A Converter.
	VREFL	Input	Analog reference ground pin for the D/A Converter. Connect this pin to AVSS0 when not using the D/A Converter.
	VREFH0	Input	Analog reference voltage supply pin for the ADC12. Connect this pin to AVCC0 when not using the ADC12.
	VREFLO	Input	Analog reference ground pin for the ADC12. Connect this pin to AVSS0 when not using the ADC12.
ADC12	ANmn	Input	Input pins for the analog signals to be processed by the A/D converter. (m : ADC unit number, n : pin number)
	ADTRGm	Input	Input pins for the external trigger signals that start the A / D conversion, active-low.
DAC12	DAn	Output	Output pins for the analog signals processed by the D/A converter.
CTSU	TSn	Input	Capacitive touch detection pins (touch pins)
	TSCAP	I/O	Secondary power supply pin for the touch driver
I/O ports	Pmn	I/O	General-purpose input/output pins (m : port number, n: pin number)
	P200	Input	General-purpose input pin

1.6 Pin Assignments

The following figures show the pin assignments from the top view.

Figure 1.3 Pin assignment for LQFP 100-pin

Figure 1.4 Pin assignment for LQFP 64-pin

Figure 1.5 Pin assignment for LQFP 48-pin

Figure 1.6 Pin assignment for QFN 48-pin

1.7 Pin Lists

Table 1.16 Pin list (1 of 3)

			Power, System, Clock, Debug, CAC	I/O ports	Ex. Interrupt	SCI/IC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	CTSU
1	1	-	-	P400	IRQ0	SCK4/SCLO_A/AUDIO_CLK	GTIOC6A/AGTIO1	-	-
2	2	-	-	P401	IRQ5-DS	CTS4_RTS4/SS4/SDAO_A/CTX0	GTETRGA/GTIOC6B	-	-
3	3	1	CACREF	P402	IRQ4-DS	CTS4/CRXO/AUDIO_CLK	AGTIOO/AGTIO1/AGTIO2/AGTIO3/ RTCICO	-	-
4	-	-	-	P403	IRQ14-DS	SSIBCKO_A	GTIOC3A/AGTIOO/AGTIO1/AGTIO2/ AGTIO3/RTCIC1	-	-
5	-	-	-	P404	IRQ15-DS	SSILRCKO/SSIFSO_A	GTIOC3B/AGTIOO/AGTIO1/AGTIO2/ AGTIO3/RTCIC2	-	-
6	-	-	-	P405	-	SSITXDO_A	GTIOC1A	-	-
7	-	-	-	P406	-	sSIRXDO_A	GTIOC1B/AGTO5	-	-
8	4	2	VBATT	-	-	-	-	-	-
9	5	3	VCL	-	-	-	-	-	-
10	6	4	XCIN	-	-	-	-	-	-
11	7	5	XCOUT	-	-	-	-	-	-
12	8	6	vSs	-	-	-	-	-	-
13	9	7	XTAL	P213	IRQ2	TXD1/MOSI1/SDA1/TXDX1/SIOX1	GTETRGC/GTIOCOA/AGTEE2	-	-
14	10	8	ExtaL	P212	IRQ3	RXD1/MISO1/SCL1/RXDX1	GTETRGD/GTIOCOB/AGTEE1	-	-
15	11	9	vcc	-	-	-	-	-	-
16	-	-	CACREF	P708	IRQ11	RXD1/MISO1/SCL1/RXDX1/AUDIO_CLK	-	-	TS12
17	-	-	-	P415	IRQ8	USB_VBUSEN/SDOCD	GTIOCOA/AGTIO4	-	TS11
18	-	-	-	P414	IRQ9	CTSO/SDOWP	GTIOCOB/AGTIO5	-	TS10
19	-	-	-	P413	-	CTSO_RTSO/SSO/SDOCLK_A	GTOUUP/AGTEE3	-	TS09
20	-	-	-	P412	-	SCK0/CTS3/SDOCMD_A	GTOULO/AGTEE1	-	TS08
21	12	-	-	P411	IRQ4	TXDO/MOSIO/SDAO/CTS3_RTS3/SS3/SDODATO_A	GTOVUP/AGTOA1	-	TS07
22	13	-	-	P410	IRQ5	RXDO/MISOO/SCLO/SCK3/SDODAT1_A	GTOVLO/AGTOB1	-	TS06
23	14	10	-	P409	IRQ6	TXD3/MOSI3/SDA3/USB_EXICEN	GTOWUP/AGTOA2	-	TS05
24	15	11	-	P408	IRQ7	CTS4/RXD3/MISO3/SCL3/SCLO_B/USB_ID	GTOWLO/GTIOC6B/AGTOB2	-	TS04
25	16	12	-	P407	-	CTS4_RTS4/SS4/SDAO_B/USB_VBUS	GTIOC6A/AGTIOO/RTCOUT	ADTRG0	TS03
26	17	13	VSS_USB	-	-	-	-	-	-
27	18	14	USB_DM	-	-	-	-	-	-
28	19	15	USB_DP	-	-	-	-	-	-
29	20	16	VCC_USB	-	-	-	-	-	-
30	21	17	-	P207	-	TXD4/MOSI4/SDA4/QSSL	-	-	TSCAP
31	22	18	-	P206	IRQO-DS	RXD4/MISO4/SCL4/CTS9/SDA1_B/USB_VBUSEN/ SDODAT2_A	GTIU	-	TS02
32	23	-	CLKOUT	P205	IRQ1-DS	TXD4/MOS14/SDA4/CTS9_RTS9/SS9/SCL1_B/ USB_OVRCURA-DS/SDOD̄AT3_A	GTIV/GTIOC4A/AGTO1	-	TS01
33	-	-	TCLK	P214	-	QSPCLK/SDOCLK_B	GTIU/AGTO5	-	-
34	-	-	tdatao	P211	-	QIOO/SDOCMD_B	GTIV/AGTOA5	-	-
35	-	-	TDATA1	P210	-	Q101/SDOCD	GTIW/AGTOB5	-	-
36	-	-	TDATA2	P209	-	QIO2/SDOWP	GTOVUP/AGTEE5	-	-
37	24	-	tDATA3	P208	-	QIO3/SDODATO_B	GTOVLO	-	-
38	25	19	RES	-	-	-	-	-	-
39	26	20	MD	P201	-	-	-	-	-
40	27	21	-	P200	NMI	-	-	-	-
41	-	-	-	P307	-	Q100	GTOUUP/AGTEE4	-	-
42	-	-	-	P306	-	QSSL	GTOULO/AGTOA2	-	-
43	-	-	-	P305	IRQ8	QSPCLK	GTOWUP/AGTOB2	-	-
44	28	-	-	P304	IRQ9	-	GTOWLO/GTIOC7A/AGTEE2	-	-
45	-	-	vss	-	-	-	-	-	-

Table 1.16 Pin list (2 of 3)

응	$\begin{aligned} & \text { U } \\ & \text { 014 } \\ & \text { O } \end{aligned}$		Power, System, Clock, Debug, CAC	1/0 ports	Ex. Interrupt	SCI/IC/SPI/CAN/USBFS/QSPI/SSIE/SDH/MMC	GPT/AGT/RTC	ADC12/DAC12	CTSU
46	-	-	Vcc	-	-	-	-	-	-
47	29	-	-	P303	-	CTS9	GTIOC7B	-	-
48	30	22	-	P302	IRQ5	TXD2/MOSI2/SDA2/TXDX2/SIOX2/SSLA3	GTOUUP/GTIOC4A	-	-
49	31	23	-	P301	IRQ6	RXD2/MISO2/SCL2/RXDX2/CTS9_RTS9/SS9/SSLA2	GTOULO/GTIOC4B/AGTIOO	-	-
50	32	24	TCK/SWCLK	P300	-	SSLA1	GTOUUP/GTIOCOA	-	-
51	33	25	TMS/SWDIO	P108	-	CTS9_RTS9/SS9/SSLA0	GTOULO/GTIOCOB/AGTOA3	-	-
52	34	26	TDO/SWO/CLKOUT	P109	-	TXD9/MOSI9/SDA9/MOSIA	GTOVUP/GTIOC1A/AGTOB3	-	-
53	35	27	TDI	P110	IRQ3	CTS2_RTS2/SS2/RXD9/MISO9/SCL9/MISOA	GTOVLO/GTIOC1B/AGTEE3	-	-
54	36	28	-	P111	IRQ4	SCK2/SCK9/RSPCKA	GTIOC3A/AGTOA5	-	-
55	37	29	-	P112	-	TXD2/MOSI2/SDA2/TXDX2/SIOX2/SCK1/SSLAO/QSSL/ SSIBCKO_B	GTIOC3B/AGTOB5	-	-
56	38	-	-	P113	-	RXD2/MISO2/SCL2/RXDX2/SSILRCK0/SSIFSO_B	GTIOC2A/AGTEE5	-	-
57	-	-	-	P114	-	CTS9/SSIRXDO_B	GTIOC2B/AGTIO5	-	-
58	-	-	-	P115	-	SSITXDO_B	GTIOC4A	-	-
59	-	-	-	P608	-	-	GTIOC4B	-	-
60	-	-	-	P609	-	-	GTIOC5A/AGTO5	-	-
61	-	-	-	P610	-	-	GTIOC5B/AGTO4	-	-
62	39	30	VCC	-	-	-	-	-	-
63	40	31	vss	-	-	-	-	-	-
64	-	-	-	P603	-	CTS9_RTS9/SS9	GTIOC7A/AGTIO4	-	-
65	-	-	-	P602	-	TXD9/MOSI9/SDA9	GTIOC7B/AGTO3	-	-
66	-	-	-	P601	-	RXD9/MISO9/SCL9	GTIOC6A/AGTEE3	-	-
67	-	-	CACREF/CLKOUT	P600	-	SCK9	GTIOC6B/AGTIO3	-	-
68	41	-	-	P107	-	-	AGTOAO	-	-
69	42	-	-	P106	-	-	AGTOBO	-	-
70	43	-	-	P105	IRQ0	-	GTETRGA/GTIOC1A/AGTO2	-	-
71	44	32	-	P104	IRQ1	Q1O2	GTETRGB/GTIOC1B/AGTEE2	-	-
72	45	33	-	P103	-	CTSO_RTSO/SSO/CTXO/QIO3	GTOWUP/GTIOC2A/AGTIO2	-	-
73	46	34	-	P102	-	SCK0/CRX0/Q1OO	GTOWLO/GTIOC2B/AGTOO	ADTRG0	-
74	47	35	-	P101	IRQ1	TXD0/MOSI0/SDA0/CTS1_RTS1/SS1/QIO1	GTETRGB/GTIOC5A/AGTEEO	-	-
75	48	36	-	P100	IRQ2	RXDO/MISOO/SCL0/SCK1/QSPCLK	GTETRGA/GTIOC5B/AGTIO0	-	-
76	49	37	CACREF	P500	-	USB_VBUSEN/QSPCLK	GTIU/AGTOAO	AN016	-
77	-	-	-	P501	IRQ11	USB_OVRCURA/QSSL	GTIV/AGTOBO	-	-
78	-	-	-	P502	IRQ12	USB_OVRCURB/QIO0	GTIW/AGTOA2	-	-
79	-	-	-	P503	-	USB_EXICEN/QIO1	GTETRGC/AGTOB2	-	-
80	-	-	-	P504	-	USB_ID/QIO2	GTETRGD/AGTOA3	-	-
81	-	-	-	P505	IRQ14	Q1O3	AGTOB3	-	-
82	50	-	VCC	-	-	-	-	-	-
83	51	-	VSS	-	-	-	-	-	-
84	52	38	-	P015	IRQ13	-	-	AN013/DA1	-
85	53	39	-	P014	-	-	-	AN012/DA0	-
86	54	40	-	P013	-	-	-	AN011	-
87	55	41	VREFH	-	-	-	-	-	-
88	56	42	AVCC0	-	-	-	-	-	-
89	57	43	AVSSONREFL	-	-	-	-	-	-
90	58	44	VREFLO	-	-	-	-	-	-
91	59	45	VREFH0	-	-	-	-	-	-
92	-	-	-	P008	IRQ12-DS	-	-	AN008	-
93	-	-	-	P007	-	-	-	AN007	-
94	-	-	-	P006	IRQ11-DS	-	-	AN006	-

Table 1.16 Pin list (3 of 3)

\circ $ㅇ$ 1 0 1	$\begin{aligned} & \text { U } \\ & \text { 014 } \\ & \text { O } \end{aligned}$	告	Power, System, Clock, Debug, CAC	I/O ports	Ex. Interrupt	SCI/IIC/SPI/CAN/USBFS/QSPI/SSIE/SDHI/MMC	GPT/AGT/RTC	ADC12/DAC12	CTSU
95	-	-	-	P005	IRQ10-DS	-	-	AN005	-
96	60	-	-	P004	IRQ9-DS	-	-	AN004	-
97	61	-	-	P003	-	-	-	AN003	-
98	62	46	-	P002	IRQ8-DS	-	-	AN002	-
99	63	47	-	P001	IRQ7-DS	-	-	AN001	-
100	64	48	-	P000	IRQ6-DS	-	-	AN000	-

Note: \quad Several pin names have the added suffix of $A,{ }_{-} B$, and _C. The suffix can be ignored when assigning functionality.

2. Electrical Characteristics

Supported peripheral functions and pins differ from one product name to another.
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

- $\mathrm{VCC}=\mathrm{AVCC} 0=\mathrm{VCC}$ _USB $=\mathrm{VBATT}=2.7$ to 3.6 V
- $2.7 \leq$ VREFH0/VREFH \leq AVCC0
- VSS $=$ AVSS0 $=$ VREFL0/VREFL $=$ VSS_USB $=0 \mathrm{~V}$
- $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {opr }}$

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions
The recommended measurement conditions for the timing specification of each peripheral provided are for the best peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions.

2.1 Absolute Maximum Ratings

Table 2.1 Absolute maximum ratings

Parameter	Symbol	Value	Unit
Power supply voltage	VCC, VCC_USB*2	-0.3 to +4.0	V
VBATT power supply voltage	VBATT	-0.3 to +4.0	V
Input voltage (except for 5 V-tolerant ports*1)	$\mathrm{V}_{\text {in }}$	-0.3 to VCC +0.3	V
Input voltage (5 V-tolerant ports ${ }^{* 1}$)	$\mathrm{V}_{\text {in }}$	-0.3 to $+\mathrm{VCC}+4.0$ (max. 5.8)	V
Reference power supply voltage	VREFH/VREFH0	-0.3 to VCC +0.3	V
Analog power supply voltage	AVCCO*2	-0.3 to +4.0	V
Analog input voltage	$\mathrm{V}_{\text {AN }}$	-0.3 to AVCC0 +0.3	V
Operating temperature*3 ${ }^{* 4}$	$\mathrm{~T}_{\text {opr }}$	-40 to +105	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note 1. Ports P205, P206, P400, P401, P407 to P415, and P708 are 5 V tolerant.
Note 2. Connect AVCCO and VCC_USB to VCC.
Note 3. See section 2.2.1. $\mathrm{Tj} / \mathrm{Ta}$ Definition.
Note 4. Contact a Renesas Electronics sales office for information on derating operation when $\mathrm{Ta}=+85^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. Derating is the systematic reduction of load for improved reliability.

Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded.
Table 2.2 Recommended operating conditions

Parameter	Symbol	Value	Min	Typ	Max	Unit
Power supply voltages	VCC	When USB is not used	2.7	-	3.6	V
		When USB is used	3.0	-	3.6	V
	VSS		-	0	-	V
USB power supply voltages	VCC_USB		-	VCC	-	V
	VSS_USB		-	0	-	V
VBATT power supply voltage	VBATT		$1.65{ }^{*}$	-	3.6	V
Analog power supply voltages	AVCC0*1		-	VCC	-	V
	AVSS0		-	0	-	V

Note 1. Connect AVCCO to VCC. When the A/D converter and the D/A converter are not in use, do not leave the AVCCO, VREFH/VREFH0, AVSS0, and VREFL/VREFLO pins open. Connect the AVCCO and VREFH/VREFH0 pins to VCC, and the AVSS0 and VREFL/ VREFLO pins to VSS, respectively.
Note 2. Low CL crystal cannot be used below VBATT $=1.8 \mathrm{~V}$.

2.2 DC Characteristics

2.2.1 $\mathrm{Tj} / \mathrm{Ta}$ Definition

Table 2.3 DC characteristics
Conditions: Products with operating temperature $\left(\mathrm{T}_{\mathrm{a}}\right)-40$ to $+105^{\circ} \mathrm{C}$

Parameter	Symbol	Typ	Max	Unit	Test conditions
Permissible junction temperature	T_{j}	-	125	${ }^{\circ} \mathrm{C}$	High-speed mode Low-speed mode Subosc-speed mode

Note: \quad Make sure that $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{a}}+\theta \mathrm{ja} \times$ total power consumption (W), where total power consumption $=\left(\mathrm{VCC}-\mathrm{V}_{\mathrm{OH}}\right) \times \Sigma \mathrm{l}_{\mathrm{OH}}+\mathrm{V}_{\mathrm{OL}} \times \Sigma \mathrm{l}_{\mathrm{OL}}+$ Iccmax \times VCC.

2.2.2 $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$

Table $2.4 \quad \mathrm{I} / \mathrm{O}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ (1 of 2)

Parameter			Symbol	Min	Typ	Max	Unit
Input voltage (except for Schmitt trigger input pins)	Peripheral function pin	EXTAL (external clock input), SPI (except RSPCK)	V_{IH}	$\begin{array}{\|l\|} \hline \operatorname{VCC} \times \\ 0.8 \end{array}$	-	-	V
			VIL	-	-	$\mathrm{VCC} \times 0.2$	
		IIC (SMBus)	V_{IH}	2.1	-	$\begin{aligned} & \hline \mathrm{VCC}+3.6 \\ & (\max 5.8) \end{aligned}$	
			VIL	-	-	0.8	

Table $2.4 \quad \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ (2 of 2)

Parameter					Symbol	Min	Typ	Max	Unit
Schmitt trigger input voltage	Peripheral function pin	IIC (except for SMBus)			V_{IH}	$\begin{array}{\|l\|} \hline \operatorname{VCC} \times \\ 0.7 \end{array}$	-	$\begin{aligned} & \hline \mathrm{VCC}+3.6 \\ & (\max 5.8) \end{aligned}$	V
					$\mathrm{V}_{\text {IL }}$	-	-	VCC $\times 0.3$	
					$\Delta \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & \hline \operatorname{VCC} \times \\ & 0.05 \end{aligned}$	-	-	
		5 V -toleran	*1 *5		V_{IH}	$\begin{array}{\|l\|} \hline \text { VCC } \times \\ 0.8 \end{array}$	-	$\begin{aligned} & \mathrm{VCC}+3.6 \\ & (\max 5.8) \end{aligned}$	
					$\mathrm{V}_{\text {IL }}$	-	-	$\operatorname{VCC} \times 0.2$	
					$\Delta \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & \text { VCC } \times \\ & 0.05 \end{aligned}$	-	-	
		RTCICO, RTCIC1, RTCIC2	When using the Battery Backup Function	When VBATT power supply is selected	V_{IH}	$\begin{aligned} & \mathrm{V}_{\text {BATT }} \times \\ & 0.8 \end{aligned}$	-	$\mathrm{V}_{\text {BATT }}+0.3$	
					$\mathrm{V}_{\text {IL }}$	-	-	$\mathrm{V}_{\text {BATT }} \times 0.2$	
					$\Delta \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & \mathrm{V}_{\text {BATT }} \times \\ & 0.05 \end{aligned}$	-	-	
				When VCC power supply is selected	V_{IH}	$\begin{array}{\|l\|} \hline \text { VCC } \times \\ 0.8 \end{array}$	-	Higher voltage either VCC + 0.3 V or $V_{\text {BATT }}+0.3$ V	
					VIL	-	-	VCC $\times 0.2$	
					ΔV_{T}	$\begin{aligned} & \hline \operatorname{VCC} \times \\ & 0.05 \end{aligned}$	-	-	
			When not using Function	Battery Backup	V_{IH}	$\begin{array}{\|l\|} \hline \text { VCC } \times \\ 0.8 \end{array}$	-	$\mathrm{VCC}+0.3$	
					V_{IL}	-	-	$\operatorname{VCC} \times 0.2$	
					$\Delta \mathrm{V}_{\mathrm{T}}$	$\begin{array}{\|l\|} \hline \operatorname{VCC} \times \\ 0.05 \end{array}$	-	-	
		Other inpu			V_{IH}	$\begin{array}{\|l\|} \hline \operatorname{VCC} \times \\ 0.8 \end{array}$	-	-	
					VIL	-	-	$\operatorname{VCC} \times 0.2$	
					$\Delta \mathrm{V}_{\mathrm{T}}$	$\begin{aligned} & \text { VCC × } \\ & 0.05 \end{aligned}$	-	-	
	Ports	5 V -tolerant ports ${ }^{*}$ *5			V_{IH}	$\begin{array}{\|l\|} \hline \operatorname{VCC} \times \\ 0.8 \end{array}$	-	$\begin{array}{\|l\|l\|} \hline \mathrm{VCC}+3.6 \\ (\max 5.8) \end{array}$	V
					VIL	-	-	$\operatorname{VCC} \times 0.2$	
		Other input pins ${ }^{*} 4$			V_{IH}	$\begin{array}{\|l\|} \hline \operatorname{VCC} \times \\ 0.8 \end{array}$	-	-	
					$\mathrm{V}_{\text {IL }}$	-	-	VCC $\times 0.2$	

Note 1. RES and peripheral function pins associated with Ports P205, P206, P400, P401, P407 to P415, and P708 (total 15 pins).
Note 2. All input pins except for the peripheral function pins already described in the table.
Note 3. Ports P205, P206, P400, P401, P407 to P415, and P708 (total 14 pins).
Note 4. All input pins except for the ports already described in the table.
Note 5. When VCC is less than 2.7 V , the input voltage of 5 V -tolerant ports should be less than 3.6 V , otherwise breakdown may occur because 5 V-tolerant ports are electrically controlled so as not to violate the break down voltage.

2.2.3 $\quad \mathrm{I} / \mathrm{O} \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$

Table $2.5 \quad \mathrm{I} / \mathrm{O} \mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$

Parameter			Symbol	Min	Typ	Max	Unit
Permissible output current (average value per pin)	Ports P000 to P008, P013 to P015, P201	-	IOH	-	-	-2.0	mA
			lOL	-	-	2.0	mA
	Ports P205, P206, P407 to P415, P708 (total 12 pins)	Low drive*1	IOH	-	-	-2.0	mA
			l_{OL}	-	-	2.0	mA
		Middle drive*2	$\mathrm{IOH}^{\text {l }}$	-	-	-4.0	mA
			l_{OL}	-	-	4.0	mA
		High drive*3	IOH	-	-	-20	mA
			l_{OL}	-	-	20	mA
	Other output pins*4	Low drive*1	IOH	-	-	-2.0	mA
			lOL	-	-	2.0	mA
		Middle drive*2	IOH	-	-	-4.0	mA
			lol	-	-	4.0	mA
		High drive*3	IOH	-	-	-16	mA
			lol	-	-	16	mA
Permissible output current (max value per pin)	Ports P000 to P008, P013 to P015, P201	-	IOH	-	-	-4.0	mA
			l_{OL}	-	-	4.0	mA
	Ports P205, P206, P407 to P415, P708 (total 12 pins)	Low drive*1	IOH	-	-	-4.0	mA
			$\mathrm{IOL}^{\text {l }}$	-	-	4.0	mA
		Middle drive*2	IOH	-	-	-8.0	mA
			l_{OL}	-	-	8.0	mA
		High drive*3	IOH	-	-	-40	mA
			lOL	-	-	40	mA
	Other output pins*4	Low drive*1	IOH	-	-	-4.0	mA
			lol	-	-	4.0	mA
		Middle drive*2	IOH	-	-	-8.0	mA
			lol	-	-	8.0	mA
		High drive*3	IOH	-	-	-32	mA
			lol	-	-	32	mA
Permissible output current (maxvalue of total of all pins)	Maximum of all output pins		$\Sigma \mathrm{l}_{\mathrm{OH}(\text { max })}$	-	-	-80	mA
			$\Sigma \mathrm{I}_{\mathrm{OL} \text { (max) }}$	-	-	80	mA

Note 1. This is the value when low driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.
Note 2. This is the value when middle driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.
Note 3. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.
Note 4. Except for P200, which is an input port.
Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The average output current indicates the average value of current measured during $100 \mu \mathrm{~s}$.

2.2.4 $\quad \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$, and Other Characteristics

Table 2.6 $\quad \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$, and other characteristics

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions
Output voltage	IIC	V_{OL}	-	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=3.0 \mathrm{~mA}$
		V_{OL}	-	-	0.6		$\mathrm{l}_{\mathrm{OL}}=6.0 \mathrm{~mA}$
	IIC*1	V_{OL}	-	-	0.4		$\mathrm{I}_{\mathrm{OL}}=15.0 \mathrm{~mA}$ (ICFER.FMPE = 1)
		V_{OL}	-	0.4	-		$\mathrm{l}_{\mathrm{OL}}=20.0 \mathrm{~mA}$ (ICFER.FMPE $=1$)
	Ports P205, P206, P407 to P415, P708 (total 12 pins) ${ }^{*}$ 2	V_{OH}	VCC - 1.0	-	-		$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-20 \mathrm{~mA} \\ & \mathrm{VCC}=3.3 \mathrm{~V} \end{aligned}$
		V_{OL}	-	-	1.0		$\begin{aligned} & \mathrm{l} \mathrm{OL}=20 \mathrm{~mA} \\ & \mathrm{VCC}=3.3 \mathrm{~V} \end{aligned}$
	Other output pins	V_{OH}	VCC - 0.5	-	-		$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
		V_{OL}	-	-	0.5		$\mathrm{IOL}=1.0 \mathrm{~mA}$
Input leakage current	RES	$\left\|1{ }_{\text {in }}\right\|$	-	-	5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$
	Port P200		-	-	1.0		$\begin{aligned} & V_{\text {in }}=0 V \\ & V_{\text {in }}=V C C \end{aligned}$
Three-state leakage current (off state)	5 V-tolerant ports	\|ITSII	-	-	5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{in}}=5.5 \mathrm{~V} \end{aligned}$
	Other ports (except for port P200)		-	-	1.0		$\begin{aligned} & V_{\text {in }}=0 \mathrm{~V} \\ & V_{\text {in }}=V C C \end{aligned}$
Input pull-up MOS current	Ports P0 to P7	I_{p}	-300	-	-10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=0 \mathrm{~V} \end{aligned}$
Input capacitance	Ports P014, P015	$\mathrm{C}_{\text {in }}$	-	-	16	pF	$\begin{aligned} & \text { Vbias }=0 \mathrm{~V} \\ & \text { Vamp }=20 \mathrm{mV} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$
	USB_DP and USB_DM		-	-	12		
	Ports P400, P401		-	-	10		
	Other input pins		-	-	8		

Note 1. SCLO_A, SDAO_A (total 2 pins).
Note 2. This is the value when high driving ability is selected in the Port Drive Capability bit in the PmnPFS register. The selected driving ability is retained in Deep Software Standby mode.

2.2.5 Operating and Standby Current

Table 2.7 Operating and standby current (1 of 2)

Parameter					Symbol	Min	Typ	Max	Unit	Test conditions	
Supply current* ${ }^{*}$	High-speed mode	Maximum ${ }^{*}{ }^{\text {*13 }}$			$\mathrm{ICC}^{* 3}$	-	-	65	mA	ICLK = 100	
		CoreMark ${ }^{\text {®*5 }}$ * 6 *12 *14				-	8.1	-		PCLKA $=100$	
		Normal mode	All peripheral clocks enabled, while (1) code executing from flash * ${ }^{* 12}$			-	15.4	-		$\begin{aligned} & \mathrm{PCLKB}=50 \\ & \mathrm{MHz} \\ & \mathrm{PCLKC}=50 \end{aligned}$	
			All peripheral clocks disabled, while (1) code executing from flash *5 *6 *12 *14			-	6.1	-		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{PCLKD}=100 \\ & \mathrm{MHz} \\ & \mathrm{FCLK}=50 \mathrm{MHz} \end{aligned}$	
		Sleep mode*5*14				-	$\begin{aligned} & 4.4^{*} 6 \\ & * 12 \end{aligned}$	$\begin{aligned} & 25^{* 7} \\ & * 13 \end{aligned}$			
		Increase during BGO operation	Data flash P/E			-	6	-			
			Code flash P/E			-	8	-			
	Low-speed mode*5 *10					-	0.8	-		ICLK $=1 \mathrm{MHz}$	
	Subosc-speed mode*5*11					-	0.7	-		$\begin{aligned} & \text { ICLK = } 32.768 \\ & \mathrm{kHz} \end{aligned}$	
	Software Standby mode		SNZCR.RXDREQEN = 1			-	-	14		-	
			SNZCR.RXDREQEN $=0$			-	0.7	-		-	
	Deep Software Standby mode	Power supplied to Standby SRAM and USB resume detecting unit				-	16	96	$\mu \mathrm{A}$	-	
		Power not supplied to SRAM or USB resume detecting unit	Power-on reset circuit low power function disabled			-	12	27		-	
			Power-on reset circuit low power function enabled			-	5	17		-	
		Increase when the RTC and AGT are operating	When the low-speed on-chip oscillator (LOCO) is in use			-	4.4	-		-	
			When a crystal oscillator for low clock loads is in use			-	1.0	-		-	
			When a crystal oscillator for standard clock loads is in use			-	1.6	-		-	
	RTC operating while VCC is off (with the battery backup function, only the RTC and sub-clock oscillator operate)			When a crystal oscillator for low clock loads is in use		-	0.6	-		$\begin{aligned} & \mathrm{V}_{\mathrm{BATT}}=1.8 \mathrm{~V}, \\ & \mathrm{VCC}=0 \mathrm{~V} \end{aligned}$	
				-		1.2	-		$\begin{aligned} & \mathrm{V}_{\mathrm{BATT}}=3.3 \mathrm{~V}, \\ & \mathrm{VCC}=0 \mathrm{~V} \end{aligned}$		
				When a crystal oscillator for standard clock loads is in use		-	1.1	-		$\begin{aligned} & V_{\text {BATT }}=1.8 \mathrm{~V}, \\ & \mathrm{VCC}=0 \mathrm{~V} \end{aligned}$	
				-		1.8	-		$\begin{aligned} & \mathrm{V}_{\mathrm{BATT}}=3.3 \mathrm{~V}, \\ & \mathrm{VCC}=0 \mathrm{~V} \end{aligned}$		
	Inrush current on returning from Deep Software Standby mode				Inrush current*8	IRUSH	-	160	-	mA	
				Energy of inrush current ${ }^{*}$ 8	$\mathrm{E}_{\text {RUSH }}$	-	1.0	-	$\mu \mathrm{C}$		

Table 2.7 Operating and standby current (2 of 2)

Parameter			Symbol	Min	Typ	Max	Unit	Test conditions
Analog power supply current	During 12-bit A/D conversion		$\mathrm{Al}_{\mathrm{CC}}$	-	0.8	1.1	mA	-
	Temperature sensor			-	0.1	0.2	mA	-
	During D/A conversion (per unit)	Without AMP output		-	0.1	0.2	mA	-
		With AMP output		-	0.6	1.1	mA	-
	Waiting for A/D, D/A conversion (all units)			-	0.5	1.0	mA	-
	ADC12, DAC12 in standby modes (all units) ${ }^{*} 9$			-	0.4	4.0	$\mu \mathrm{A}$	-
Reference power supply current (VREFH0)	During 12-bit A/D conversion (unit 0)		Al REFH0	-	70	120	$\mu \mathrm{A}$	-
	Waiting for 12-bit A/D conversion (unit 0)			-	0.07	0.5	$\mu \mathrm{A}$	-
	ADC12 in standby modes (unit 0)			-	0.07	0.5	$\mu \mathrm{A}$	-
Reference power supply current (VREFH)	During D/A conversion (per unit)	Without AMP output	$\mathrm{Al}_{\text {REFH }}$	-	0.1	0.4	mA	-
		With AMP ouput		-	0.1	0.4	mA	-
	Waiting for D/A (all units) conversion			-	0.07	0.8	$\mu \mathrm{A}$	-
USB operating current	Low speed	USB	Iccusbls	-	3.5	6.5	mA	VCC_USB
	Full speed	USB	ICCuSbFs	-	4.0	10.0	mA	VCC_USB
LDO operating current (1 unit)* ${ }^{*} 15$			ICCLDO	-	0.18	-	mA	-
PLL2-LDO operating current			ICCPLL2LDO	-	0.21	-	mA	-

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.
Note 3. I ICC depends on f (ICLK) as follows.
Icc Max. $=0.53 \times f+12$ (max. operation in high-speed mode)
ICC Typ. $=0.05 \times f+1.85$ (normal operation in high-speed mode, all peripheral clocks disabled)
$I_{\text {CC }}$ Typ. $=0.12 \times f+0.69$ (low-speed mode)
$I_{\text {CC }}$ Max. $=0.13 \times f+12$ (sleep mode)
Note 4. This does not include the BGO operation.
Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
Note 6. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (1.563 MHz).
Note 7. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.125 MHz).
Note 8. Reference value
Note 9. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (12-Bit A/D Converter 0 Module Stop bit) and MSTPCRD.MSTPD20 (12-bit D/A converter module stop bit) are in the module-stop state.
Note 10. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (15.6 kHz).
Note 11. PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by $64(512 \mathrm{~Hz})$. FCLK is the same frequency as that of ICLK.
Note 12. PLL output frequency $=100 \mathrm{MHz}$.
Note 13. PLL output frequency $=200 \mathrm{MHz}$.
Note 14. PLL2-LDO disabled.
Note 15. $\mathrm{n}=0,1$
Table 2.8 Coremark and normal mode current

Parameter			Symbol	Typ	Unit	Test conditions
Supply Current* ${ }^{*}$	Coremark*2 *3 *4		I_{CC}	81	$\mu \mathrm{A} / \mathrm{MHz}$	ICLK $=100 \mathrm{MHz}$
	Normal mode	All peripheral clocks disabled, cache on, while (1) code executing from flash*2 *3 *4		60		$\begin{aligned} & =\text { PCLKB } \\ & =\text { PCLKC } \\ & =\text { PCLKD } \\ & =\text { FCLK } \\ & =1.56 \mathrm{MHz} \end{aligned}$
		All peripheral clocks disabled, cache off, while (1) code executing from flash*2 *3 *4		118		

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
Note 2. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
Note 3. PLL output frequency $=100 \mathrm{MHz}$.
Note 4. PLL2-LDO disabled.

Figure 2.2 Temperature dependency in Software Standby mode (reference data)

Figure 2.3 Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and USB resume detecting unit (reference data)

Figure 2.4 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function disabled (reference data)

Figure 2.5 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB resume detecting unit, power-on reset circuit low power function enabled (reference data)

2.2.6 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.9 Rise and fall gradient characteristics

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions
VCC rising gradient	Voltage monitor 0 reset disabled at startup	SrVCC	0.0084	-	20	ms / V	-
	Voltage monitor 0 reset enabled at startup		0.0084	-	-		-
	SCI/USB boot mode*1		0.0084	-	20		-
VCC falling gradient ${ }^{*} 2$		SfVCC	0.0084	-	-	ms / V	-

Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.
Note 2. This applies when VBATT is used.

Table 2.10 Rising and falling gradient and ripple frequency characteristics
The ripple voltage must meet the allowable ripple frequency $\mathrm{f}_{\mathrm{r}(\mathrm{VCC})}$ within the range between the VCC upper limit (3.6 V) and lower limit (2.7 $\mathrm{V})$. When the VCC change exceeds VCC $\pm 10 \%$, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
Allowable ripple frequency	$\mathrm{f}_{\mathrm{r}(\mathrm{VCC})}$		-	-	10	kHz
		-	-	1	Figure 2.6 $\mathrm{~V}_{\mathrm{r}(\mathrm{VCC})} \leq \mathrm{VCC} \times 0.2$	

Figure 2.6 Ripple waveform

2.2.7 Thermal Characteristics

Maximum value of junction temperature (Tj) must not exceed the value of "section 2.2.1. $\mathrm{Tj} / \mathrm{Ta}$ Definition".
Tj is calculated by either of the following equations.

- $\mathrm{Tj}=\mathrm{Ta}+\theta \mathrm{ja} \times$ Total power consumption
- $\mathrm{Tj}=\mathrm{Tt}+\Psi \mathrm{jt} \times$ Total power consumption
- Tj : Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$
- Ta : Ambient Temperature (${ }^{\circ} \mathrm{C}$)
- Tt : Top Center Case Temperature (${ }^{\circ} \mathrm{C}$)
- $\quad \mathrm{ja}$: Thermal Resistance of "Junction"-to-"Ambient" $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
- Yjt : Thermal Resistance of "Junction"-to-"Top Center Case" (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
- Total power consumption $=$ Voltage \times (Leakage current + Dynamic current $)$
- Leakage current of $\mathrm{IO}=\Sigma\left(\mathrm{I}_{\mathrm{OL}} \times \mathrm{V}_{\mathrm{OL}}\right) / \mathrm{Voltage}+\Sigma\left(\left|\mathrm{I}_{\mathrm{OH}}\right| \times\left|\mathrm{VCC}-\mathrm{V}_{\mathrm{OH}}\right|\right) /$ Voltage
- Dynamic current of $\mathrm{IO}=\Sigma \mathrm{IO}\left(\mathrm{C}_{\text {in }}+\mathrm{C}_{\text {load }}\right) \times \mathrm{IO}$ switching frequency \times Voltage
- $\mathrm{C}_{\text {in }}$: Input capacitance
- $\mathrm{C}_{\text {load }}$: Output capacitance

Regarding $\theta \mathrm{ja}$ and $\Psi \mathrm{j} t$, refer to Table 2.11.

Table 2.11 Thermal Resistance

Parameter	Package	Symbol	Value*1	Unit	Test conditions
Thermal Resistance	48-pin QFN (PWQN0048KC-A)	$\theta j a$	23.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$	JESD 51-2 and 51-7 compliant
	48-pin LQFP (PLQP0048KB-B)		62.1		
	64-pin LQFP (PLQP0064KB-C)		54.6		
	100-pin LQFP (PLQP0100KB-B)		55.1		
	48-pin QFN (PWQN0048KC-A)	$\Psi \mathrm{jt}$	0.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$	JESD 51-2 and 51-7 compliant
	48-pin LQFP (PLQP0048KB-B)		2.39		
	64-pin LQFP (PLQP0064KB-C)		1.90		
	100-pin LQFP (PLQP0100KB-B)		1.90		

Note 1. The values are reference values when the 4-layer board is used. Thermal resistance depends on the number of layers or size of the board. For details, refer to the JEDEC standards.

2.2.7.1 Calculation guide of I_{CC} max

Table 2.12 shows the power consumption of each unit.
Table 2.12 Power consumption of each unit (1 of 2)

Dynamic current/ Leakage current	MCU Domain	Category	Item	Frequency [MHz]	Current [uA/MHz]	Current ${ }^{*}{ }^{1}$ [mA]
Leakage current	Analog	LDO and Leak*2	$\mathrm{Ta}=75^{\circ} \mathrm{C}^{*} 3$	-	-	7.82
			$\mathrm{Ta}=85{ }^{\circ} \mathrm{C}{ }^{*}$	-	-	9.13
			$\mathrm{Ta}=95^{\circ} \mathrm{C}^{*} 3$	-	-	11.08
			$\mathrm{Ta}=105^{\circ} \mathrm{C}{ }^{*}$	-	-	14.33

Table 2.12 Power consumption of each unit (2 of 2)

Dynamic current/ Leakage current	MCU Domain	Category	Item	Frequency [MHz]	Current [uA/MHz]	$\begin{aligned} & \text { Current }^{* 1} \\ & {[\mathrm{~mA}]} \end{aligned}$
Dynamic current	CPU	Operation with Flash and SRAM	Coremark	100	55.556	5.56
	Peripheral Unit	Timer	GPT16 (4ch) ${ }^{*} 4$	100	3.575	0.36
			GPT32 (4ch)* ${ }^{*}$	100	4.230	0.42
			POEG (4 Groups)	50	1.361	0.07
			AGT (6ch)* ${ }^{*}$	50	9.228	0.46
			RTC	50	4.277	0.21
			WDT	50	0.764	0.04
			IWDT	50	0.339	0.02
		Communication interfaces	USBFS	50	9.385	0.47
			$\mathrm{SCI}(6 \mathrm{ch})^{*} 4$	100	18.715	1.87
			IIC (2ch)* ${ }^{*}$	50	3.367	0.16
			CAN	50	1.898	0.09
			SPI	100	3.024	0.30
			QSPI	100	2.051	0.21
			SSIE	50	3.208	0.16
			SDHI	50	6.341	0.32
		Analog	ADC12	100	2.287	0.23
			DAC12 (2ch) ${ }^{*} 4$	100	0.869	0.09
			TSN	50	0.166	0.01
		Human machine interfaces	CTSU	50	0.605	0.03
		Event link	ELC	50	0.865	0.04
		Security	SCE9	100	218.100	21.81
		Data processing	CRC	100	0.600	0.06
			DOC	100	0.388	0.04
		System	CAC	50	0.844	0.04
		DMA	DMAC	100	4.479	0.45
			DTC	100	4.274	0.43

Note 1. The values are guaranteed by design.
Note 2. LDO and Leak are internal voltage regulator's current and MCU's leakage current. It is selected according to the temperature of Ta.
Note 3. $\Delta(\mathrm{Tj}-\mathrm{Ta})=20^{\circ} \mathrm{C}$ is considered to measure the current.
Note 4. To determine the current consumption per channel, group or unit, divide Current [mA] by the number of channels, groups or units.
Table 2.13 shows the outline of operation for each unit.
Table 2.13 Outline of operation for each unit (1 of 2)

Peripheral	Outline of operation
GPT	Operating modes is set to saw-wave PWM mode. GPT is operating with PCLKD.
POEG	Only clear module stop bit.
AGT	AGT is operating with PCLKB.
RTC	RTC is operating with LOCO.

Table 2.13 Outline of operation for each unit (2 of 2)

Peripheral	Outline of operation
WDT	WDT is operating with PCLKB.
IWDT	IWDT is operating with IWDTCLK.
USBFS	Transfer types is set to bulk transfer. USBFS is operating using Full-speed transfer (12 Mbps).
SCI	SCl is transmitting data in clock synchronous mode.
IIC	Communication format is set to I2C-bus format. IIC is transmitting data in master mode.
CAN	CAN is transmitting and receiving data in self-test mode 1.
SPI	SPI mode is set to SPI operation (4-wire method). SPI master/slave mode is set to master mode. SPI is transmitting 8-bit width data.
QSPI	QSPI is issuing Fast Read Quad I/O Instruction.
SSIE	Communication mode is set to Master. System word length is set to 32 bits. Data word length is set to 20 bits. SSIE is transmitting data using I2S format.
SDHI	Transfer bus mode is set to 4-bit wide bus mode. SDHI is issuing CMD24 (single-block write).
ADC12	Resolution is set to 12-bit accuracy. Data registers is set to A/D-converted value addition mode. ADC12 is converting the analog input in continuous scan mode.
DAC12	DAC12 is outputting the conversion result while updating the value of data register.
TSN	TSN is operating.
CTSU	CTSU is operating in self-capacitance single scan mode.
ELC	Only clear module stop bit.
SCE9	SCE9 is executing built-in self test.
CRC	CRC is generating CRC code using 32-bit CRC32-C polynomial.
DOC	DOC is operating in data addition mode.
CAC	Measurement target clocks is set to PCLKB. Measurement reference clocks is set to PCLKB. CAC is measuring the clock frequency accuracy.
DMAC	Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DMAC is transferring data from SRAM0 to SRAM0.
DTC	Bit length of transfer data is set to 32 bits. Transfer mode is set to block transfer mode. DTC is transferring data from SRAM0 to SRAMO.

2.2.7.2 Example of T_{j} calculation

Assumption :

- Package 100 -pin LQFP : $\theta \mathrm{ja}=55.1^{\circ} \mathrm{C} / \mathrm{W}$
- $\mathrm{Ta}=100^{\circ} \mathrm{C}$
- $\mathrm{I}_{\mathrm{CC}} \max =40 \mathrm{~mA}$
- $\mathrm{VCC}=3.5 \mathrm{~V}(\mathrm{VCC}=\mathrm{AVCC}=\mathrm{VCC}$ _USB $)$
- $\mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{VCC}-0.5 \mathrm{~V}, 12$ Outputs
- $\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}=1.0 \mathrm{~V}, 8$ Outputs
- $\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}=0.5 \mathrm{~V}, 12$ Outputs
- $\mathrm{C}_{\mathrm{in}}=8 \mathrm{pF}, 16$ pins, Input frequency $=10 \mathrm{MHz}$
- $\mathrm{C}_{\text {load }}=30 \mathrm{pF}, 16$ pins, Output frequency $=10 \mathrm{MHz}$

$$
\begin{aligned}
\text { Leakage current of } I \mathrm{O} & =\Sigma\left(\mathrm{V} \mathrm{OL} \times \mathrm{lOL}_{\mathrm{OL}}\right) / \text { Voltage }+\Sigma\left(\left(\mathrm{VCC}-\mathrm{V}_{\mathrm{OH}}\right) \times \mathrm{I}_{\mathrm{OH}}\right) / \text { Voltage } \\
& =(20 \mathrm{~mA} \times 1 \mathrm{~V}) \times 8 / 3.5 \mathrm{~V}+(1 \mathrm{~mA} \times 0.5 \mathrm{~V}) \times 12 / 3.5 \mathrm{~V}+((\mathrm{VCC}-(\mathrm{VCC}-0.5 \mathrm{~V})) \times 1 \mathrm{~mA}) \times 12 / 3.5 \mathrm{~V} \\
& =45.7 \mathrm{~mA}+1.71 \mathrm{~mA}+1.71 \mathrm{~mA} \\
& =49.1 \mathrm{~mA} \\
\text { Dynamic current of } I \mathrm{O} & =\Sigma \mathrm{O}\left(\mathrm{C}_{\mathrm{in}}+\mathrm{C}_{\mathrm{load}}\right) \times 1 \mathrm{O} \text { switching frequency } \times \text { Voltage } \\
& =((8 \mathrm{pF} \times 16) \times 10 \mathrm{MHz}+(30 \mathrm{pF} \times 16) \times 10 \mathrm{MHz}) \times 3.5 \mathrm{~V} \\
& =21.3 \mathrm{~mA} \\
\text { Total power consumption } & =\text { Voltage } \times(\text { Leakage current }+ \text { Dynamic current }) \\
& =(40 \mathrm{~mA} \times 3.5 \mathrm{~V})+(49.1 \mathrm{~mA}+21.3 \mathrm{~mA}) \times 3.5 \mathrm{~V} \\
& =386 \mathrm{~mW}(0.386 \mathrm{~W})
\end{aligned}
$$

$\mathrm{Tj}=\mathrm{Ta}+\theta \mathrm{ja} \times$ Total power consumption
$=100{ }^{\circ} \mathrm{C}+55.1^{\circ} \mathrm{C} / \mathrm{W} \times 0.386 \mathrm{~W}$
$=121.3^{\circ} \mathrm{C}$

2.3 AC Characteristics

2.3.1 Frequency

Table 2.14 Operation frequency value in high-speed mode

Parameter		Symbol	Min	Typ	Max	Unit
Operation frequency	System clock (ICLK)	f	-	-	100	MHz
	Peripheral module clock (PCLKA)		-	-	100	
	Peripheral module clock (PCLKB)		-	-	50	
	Peripheral module clock (PCLKC)		-*2	-	50	
	Peripheral module clock (PCLKD)		-	-	100	
	Flash interface clock (FCLK)		-*1	-	50	

Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.
Note 2. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz .
Table 2.15 Operation frequency value in low-speed mode

Parameter		Symbol	Min	Typ	Max	Unit
Operation frequency	System clock (ICLK)	f	-	-	1	MHz
	Peripheral module clock (PCLKA)		-	-	1	
	Peripheral module clock (PCLKB)		-	-	1	
	Peripheral module clock (PCLKC) *2		-_*2	-	1	
	Peripheral module clock (PCLKD)		-	-	1	
	Flash interface clock (FCLK)*1		-	-	1	

Note 1. Programming or erasing the flash memory is disabled in low-speed mode.
Note 2. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz .

Table 2.16 Operation frequency value in Subosc-speed mode

Parameter		Symbol	Min	Typ	Max	Unit
Operation frequency	System clock (ICLK)	f	29.4	-	36.1	kHz
	Peripheral module clock (PCLKA)		-	-	36.1	
	Peripheral module clock (PCLKB)		-	-	36.1	
	Peripheral module clock (PCLKC) *2		-	-	36.1	
	Peripheral module clock (PCLKD)		-	-	36.1	
	Flash interface clock (FCLK)**		29.4	-	36.1	

Note 1. Programming or erasing the flash memory is disabled in Subosc-speed mode.
Note 2. The ADC12 cannot be used.

2.3.2 Clock Timing

Table 2.17 Clock timing except for sub-clock oscillator (1 of 2)

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions
EXTAL external clock input cycle time		$\mathrm{t}_{\text {EXcyc }}$	41.66	-	-	ns	Figure 2.7
EXTAL external clock input high pulse width		$t_{\text {EXH }}$	15.83	-	-	ns	
EXTAL external clock input low pulse width		$\mathrm{t}_{\text {EXL }}$	15.83	-	-	ns	
EXTAL external clock rise time		$\mathrm{t}_{\mathrm{EXr}}$	-	-	5.0	ns	
EXTAL external clock fall time		$\mathrm{t}_{\text {EXf }}$	-	-	5.0	ns	
Main clock oscillator frequency		$\mathrm{f}_{\text {MAIN }}$	8	-	24	MHz	-
Main clock oscillation stabilization wait time (crystal)*1		$\mathrm{t}_{\text {MAINOSCWT }}$	-	-	-*1	ms	Figure 2.8
LOCO clock oscillation frequency		floco	29.4912	32.768	36.0448	kHz	-
LOCO clock oscillation stabilization wait time		t LOCOWT	-	-	60.4	$\mu \mathrm{S}$	Figure 2.9
ILOCO clock oscillation frequency		fiLOCO	13.5	15	16.5	kHz	-
MOCO clock oscillation frequency		$\mathrm{f}_{\mathrm{MOCO}}$	6.8	8	9.2	MHz	-
MOCO clock oscillation stabilization wait time		$\mathrm{t}_{\text {MOCOWT }}$	-	-	15.0	$\mu \mathrm{s}$	-
HOCO clock oscillator oscillation frequency	Without FLL	$\mathrm{f}_{\mathrm{HOCO} 16}$	15.78	16	16.22	MHz	$-20 \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$
		$\mathrm{f}_{\mathrm{HOCO} 18}$	17.75	18	18.25		
		$\mathrm{f}_{\mathrm{HOCO} 20}$	19.72	20	20.28		
		$\mathrm{f}_{\mathrm{HOCO}} 6$	15.71	16	16.29		$-40 \leq \mathrm{Ta} \leq-20^{\circ} \mathrm{C}$
		$\mathrm{f}_{\mathrm{HOCO} 18}$	17.68	18	18.32		
		$\mathrm{f}_{\mathrm{HOCO} 20}$	19.64	20	20.36		
	With FLL	$\mathrm{f}_{\mathrm{HOCO} 16}$	15.960	16	16.040		$-40 \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$ Sub-clock frequency accuracy is $\pm 50 \mathrm{ppm}$.
		$\mathrm{f}_{\mathrm{HOCO} 18}$	17.955	18	18.045		
		$\mathrm{f}_{\mathrm{HOCO} 20}$	19.950	20	20.050		
HOCO clock oscillation stabilization wait time*2		$\mathrm{t}_{\text {Hocowt }}$	-	-	64.7	$\mu \mathrm{s}$	-
HOCO period jitter		-	-	± 85	-	ps	-
FLL stabilization wait time		$t_{\text {FLLW }}$	-	-	1.8	ms	-
PLL clock frequency		$\mathrm{f}_{\mathrm{PLL}}$	100	-	200	MHz	-
PLL2 clock frequency		$\mathrm{f}_{\mathrm{PLL2}}$	120	-	240	MHz	-
PLL/PLL2 clock oscillation stabilization wait time		tplewt	-	-	174.9	$\mu \mathrm{s}$	Figure 2.10

Table 2.17 Clock timing except for sub-clock oscillator (2 of 2)

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions	
PLL/PLL2 period jitter	$\mathrm{f}_{\mathrm{PLL}}, \mathrm{f}_{\mathrm{PLL} 2} \geq 120 \mathrm{MHz}$	-	-	± 100	-	ps	-
	$\mathrm{f}_{\mathrm{PLL},}, \mathrm{f}_{\mathrm{PLL} 2}<120 \mathrm{MHz}$	-	-	± 120	-	ps	-
	-	-	± 300	-	ps	Term: $1 \mu \mathrm{~s}, 10 \mu \mathrm{~s}$	

Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation, and use the results as the recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended value.
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm that it is 1 , and then start using the main clock oscillator.
Note 2. This is the time from release from reset state until the HOCO oscillation frequency ($\mathrm{f}_{\mathrm{HOCO}}$) reaches the range for guaranteed operation.

Table 2.18 Clock timing for the sub-clock oscillator

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
Sub-clock frequency	$\mathrm{f}_{\text {SUB }}$	-	32.768	-	kHz	-
Sub-clock oscillation stabilization wait time	$\mathrm{t}_{\text {SUBOScwT }}$	-	-	$-{ }^{* 1}$	s	Figure 2.11

Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the recommended oscillation stabilization time.
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization time elapses with an adequate margin. A value that is two times the value shown is recommended.

Figure 2.7 EXTAL external clock input timing

Figure 2.8 Main clock oscillation start timing

Figure 2.9 LOCO clock oscillation start timing

Figure 2.10 PLL/PLL2 clock oscillation start timing

Figure 2.11 Sub-clock oscillation start timing

2.3.3 Reset Timing

Table 2.19 Reset timing (1 of 2)

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions
RES pulse width	Power-on	$t_{\text {RESWP }}$	0.7	-	-	ms	Figure 2.12
	Deep Software Standby mode	$t_{\text {RESWD }}$	0.6	-	-	ms	Figure 2.13
	Software Standby mode, Subosc-speed mode	$t_{\text {RESWS }}$	0.3	-	-	ms	
	All other	$\mathrm{t}_{\text {RESW }}$	200	-	-	$\mu \mathrm{s}$	
Wait time after RES cancellation		treswt	-	37.3	41.2	$\mu \mathrm{s}$	Figure 2.12

Table 2.19 Reset timing (2 of 2)

Parameter	Symbol	Min	Typ	Max	Unit
Test conditions					
Wait time after internal reset cancellation (IWDT reset, WDT reset, software reset, SRAM parity error reset, SRAM ECC error reset, bus master MPU error reset, TrustZone error reset)	tresw2	-	324	397.7	$\mu \mathrm{~s}$

Figure 2.12 RES pin input timing under the condition that VCC exceeds $\mathrm{V}_{\mathrm{POR}}$ voltage threshold
\square
Figure 2.13 Reset input timing

2.3.4 Wakeup Timing

Table 2.20 Timing of recovery from low power modes (1 of 2)

Parameter			Symbol	Min	Typ	Max	Unit	Test conditions
Recovery time from Software Standby mode*1	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator*2	$t_{\text {SBYMC }}{ }^{* 13}$	-	2.1	2.4	ms	Figure 2.14 The division ratio of all oscillators is 1 .
		System clock source is PLL with main clock oscillator ${ }^{*}{ }^{3}$	$\mathrm{t}_{\text {SBYPC }}{ }^{* 13}$	-	2.2	2.6	ms	
	External clock input to main clock oscillator	System clock source is main clock oscillator ${ }^{*} 4$	tsbyex*13	-	45	125	$\mu \mathrm{s}$	
		System clock source is PLL with main clock oscillator*5	$\mathrm{t}_{\text {SBYPE }}{ }^{* 13}$	-	170	255	$\mu \mathrm{s}$	
	System clock source is sub-clock oscillator*6 *11		$\mathrm{t}_{\text {SBYSC }}{ }^{* 13}$	-	0.7	0.8	ms	
	System clock source is LOCO*7 *11		$\mathrm{t}_{\text {SBYLO* }}{ }^{13}$	-	0.7	0.9	ms	
	System clock source is HOCO clock oscillator*8		$\mathrm{t}_{\text {SBYHO }}{ }^{* 13}$	-	55	130	$\mu \mathrm{s}$	
	System clock source is PLL with HOCO*9		$\mathrm{t}_{\text {SBYPH }}{ }^{* 13}$	-	175	265	$\mu \mathrm{s}$	
	System clock source is MOCO clock oscillator*10		$\mathrm{t}_{\text {SBYMO }}{ }^{\text {*13 }}$	-	35	65	$\mu \mathrm{s}$	

Table 2.20 Timing of recovery from low power modes (2 of 2)

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions
Recovery time from Deep Software Standby mode	DPSBYCR.DEEPCUT[1] = 0 and DPSWCR.WTSTS[5:0] = 0x0E	$t_{\text {DSBY }}$	-	0.38	0.54	ms	Figure 2.15
	DPSBYCR.DEEPCUT[1] = 1 and DPSWCR.WTSTS[5:0] = 0x19	$t_{\text {DSBY }}$	-	0.55	0.73	ms	
Wait time after cancellation of Deep Software Standby mode		t ${ }_{\text {DSBYWT }}$	56	-	57	$\mathrm{t}_{\text {cyc }}$	
Recovery time from Software Standby mode to Snooze mode	High-speed mode when system clock source is HOCO (20 MHz)	$t_{\text {SNZ }}$	-	$35^{* 12}$	$70^{* 12}$	$\mu \mathrm{s}$	Figure 2.16
	High-speed mode when system clock source is MOCO (8 MHz)	tsNZ	-	$11^{* 12}$	$14^{* 12}$	$\mu \mathrm{s}$	

Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined with the following equation:
Total recovery time $=$ recovery time for an oscillator as the system clock source + the longest tSBYOSCWT in the active oscillators tSBYOSCWT for the system clock +2 LOCO cycles (when LOCO is operating) + Subosc is oscillating and MSTPC0 $=0$ (CAC module stop))
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0×05) and the greatest value of the internal clock division setting is 1 .
Note 3. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x05) and the greatest value of the internal clock division setting is 4 .
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest value of the internal clock division setting is 1.
Note 5. When the frequency of PLL is 200 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 0x00) and the greatest value of the internal clock division setting is 4.
Note 6. The Sub-clock oscillator frequency is 32.768 KHz and the greatest value of the internal clock division setting is 1 .
Note 7. The LOCO frequency is 32.768 kHz and the greatest value of the internal clock division setting is 1.
Note 8. The HOCO frequency is 20 MHz and the greatest value of the internal clock division setting is 1 .
Note 9. The PLL frequency is 200 MHz and the greatest value of the internal clock division setting is 4.
Note 10. The MOCO frequency is 8 MHz and the greatest value of the internal clock division setting is 1 .
Note 11. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
Note 12. When the SNZCR.RXDREQEN bit is set to 0 , the following time is added as the power supply recovery time: $16 \mu \mathrm{~s}$ (typical), $48 \mu \mathrm{~s}$ (maximum).
Note 13. The recovery time can be calculated with the equation of tSBYOSCWT + tSBYSEQ. And they can be determined with the following value and equation. For n, the greatest value is selected from among the internal clock division settings.

Wakeup time	TYP		MAX		Unit
	tSBYOSCWT	tSBYSEQ	tSBYOSCWT	tSBYSEQ	
tSBYMC	$\begin{aligned} & (\text { MSTS[7:0]*32 + 3)/ } \\ & 0.262 \end{aligned}$	$35+18 /$ flCLK $+4 n /$ fMAIN	$\begin{aligned} & \text { (MSTS[7:0]*32 + } 14 \text { / } \\ & 0.236 \end{aligned}$	62 + $18 /$ fICLK $+4 n /$ fMAIN	$\mu \mathrm{S}$
tSBYPC	$\begin{aligned} & (\text { MSTS[7:0]*32 + 34) / } \\ & 0.262 \end{aligned}$	$35+18 /$ flCLK + 4n/fPLL	$\begin{aligned} & (\text { MSTS[7:0]*32 + 45) / } \\ & 0.236 \end{aligned}$	$62+18 /$ flCLK + 4n / fPLL	$\mu \mathrm{S}$
tSBYEX	10	$35+18 /$ flCLK + 4n / fEXMAIN	62	62 + $18 /$ fICLK $+4 \mathrm{n} /$ fEXMAIN	$\mu \mathrm{S}$
tSBYPE	135	$35+18 /$ flCLK + 4n / fPLL	192	62 + 18 / flCLK + 4n / fPLL	$\mu \mathrm{S}$
tSBYSC	0	$35+18 /$ fICLK + 4n / fSUB	0	62 + $18 /$ fICLK + 4n / fSUB	$\mu \mathrm{S}$
tSBYLO	0	35 + 18 / flCLK + 4n / fLOCO	0	62 + $18 /$ flCLK + 4n/fLOCO	$\mu \mathrm{S}$
tSBYHO	20	35 + $18 / \mathrm{fICLK}+4 \mathrm{n} / \mathrm{fHOCO}$	67	62 + 18 / fICLK + 4n / fHOCO	$\mu \mathrm{S}$
tSBYPH	140	$35+18 /$ flCLK + 4n / fPLL	202	$62+18 /$ flCLK + 4n / fPLL	$\mu \mathrm{S}$
tSBYMO	0	35 + 18 / fICLK + 4n / fMOCO	0	62 + $18 /$ fICLK + 4n / fMOCO	$\mu \mathrm{s}$

When stabilization of the system clock oscillator is slower

When stabilization of an oscillator other than the system clock is slower

Figure 2.14 Software Standby mode cancellation timing

Figure 2.15 Deep Software Standby mode cancellation timing

Note 1. When SNZCR.SNZDTCEN bit is set to 1 , ICLK is supplied to DTC and SRAM.

Figure 2.16 Recovery timing from Software Standby mode to Snooze mode

2.3.5 NMI and IRQ Noise Filter

Table 2.21 NMI and IRQ noise filter

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions	
NMI pulse width	$\mathrm{t}_{\text {NMIW }}$	200	-	-	ns	NMI digital filter disabled	$\mathrm{t}_{\text {Pcyc }} \times 2 \leq 200 \mathrm{~ns}$
		$t_{\text {Pcyc }} \times 2^{* 1}$	-	-			$\mathrm{t}_{\text {Pcyc }} \times 2>200 \mathrm{~ns}$
		200	-	-		NMI digital filter enabled	$\mathrm{t}_{\text {NMICK }} \times 3 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {NMICK }} \times 3.5 * 2$	-	-			$\mathrm{t}_{\text {NMICK }} \times 3>200 \mathrm{~ns}$
IRQ pulse width	$\mathrm{t}_{\text {RQW }}$	200	-	-	ns	IRQ digital filter disabled	$\mathrm{t}_{\text {Pcyc }} \times 2 \leq 200 \mathrm{~ns}$
		$t_{\text {Pcyc }} \times 2^{* 1}$	-	-			$\mathrm{t}_{\text {Pcyc }} \times 2>200 \mathrm{~ns}$
		200	-	-		IRQ digital filter enabled	$\mathrm{t}_{\text {IRQCK }} \times 3 \leq 200 \mathrm{~ns}$
		$\mathrm{t}_{\text {IRQCK }} \times 3.5 * 3$	-	-			$\mathrm{t}_{\text {IRQCK }} \times 3>200 \mathrm{~ns}$

Note: $\quad 200 \mathrm{~ns}$ minimum in Software Standby mode.
Note: If the clock source is switched, add 4 clock cycles of the switched source.
Note 1. $t_{\text {Pcyc }}$ indicates the PCLKB cycle.
Note 2. $\mathrm{t}_{\text {NMICK }}$ indicates the cycle of the NMI digital filter sampling clock.
Note 3. $\mathrm{t}_{\text {IRQCK }}$ indicates the cycle of the IRQi digital filter sampling clock.

Figure 2.17 NMI interrupt input timing

Figure 2.18 IRQ interrupt input timing

2.3.6 I/O Ports, POEG, GPT, AGT, and ADC12 Trigger Timing

Table 2.22 I/O ports, POEG, GPT, AGT, and ADC12 trigger timing
GPT32 Conditions:
High drive output is selected in the Port Drive Capability bit in the PmnPFS register
AGT Conditions:
Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register

Parameter			Symbol	Min	Max	Unit	Test conditions
I/O ports	Input data pulse width		tPRW	1.5	-	$t_{\text {Pcyc }}$	Figure 2.19
POEG	POEG input trigger pulse width		tpoew	3	-	$t_{\text {Pcyc }}$	Figure 2.20
GPT	Input capture pulse width	Single edge	$t_{\text {GTICW }}$	1.5	-	$t_{\text {PDcyc }}$	Figure 2.21
		Dual edge		2.5	-		
	GTIOCxY output skew ($\mathrm{x}=0$ to $3, \mathrm{Y}=\mathrm{A}$ or B)	Middle drive buffer	$\mathrm{t}_{\mathrm{GTISK}}{ }^{* 1}$	-	4	ns	Figure 2.22
		High drive buffer		-	4		
	GTIOCxY output skew ($\mathrm{x}=4$ to $7, \mathrm{Y}=\mathrm{A}$ or B)	Middle drive buffer		-	4		
		High drive buffer		-	4		
	GTIOCxY output skew ($\mathrm{x}=0$ to $7, \mathrm{Y}=\mathrm{A}$ or B)	Middle drive buffer		-	6		
		High drive buffer		-	6		
	OPS output skew GTOUUP, GTOULO, GTOVUP, GTOVLO, GTOWUP, GTOWLO		$\mathrm{t}_{\text {GTOSK }}$	-	5	ns	Figure 2.23
AGT	AGTIO, AGTEE input cycle		$\mathrm{t}_{\text {ACYC }}{ }^{*}{ }^{2}$	100	-	ns	Figure 2.24
	AGTIO, AGTEE input high width, low width		$\mathrm{t}_{\text {ACKWh, }}, \mathrm{t}_{\text {ACKWL }}$	40	-	ns	
	AGTIO, AGTO, AGTOA, AGTOB output cycle		$\mathrm{t}_{\text {ACYC2 }}$	62.5	-	ns	
ADC12	ADC12 trigger input pulse width		${ }_{\text {t }}$ TRGW	1.5	-	$t_{\text {Pcyc }}$	Figure 2.25

Note: $\quad t_{\text {Pcyc }}:$ PCLKB cycle, $t_{\text {PDcyc }}$: PCLKD cycle.
Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not guaranteed.
Note 2. Constraints on input cycle:
When not switching the source clock: $\mathrm{t}_{\mathrm{Pcyc}} \times 2<\mathrm{t}_{\mathrm{ACYC}}$ should be satisfied.

When switching the source clock: $t_{\text {Pcyc }} \times 6<t_{A C Y C}$ should be satisfied.

Figure 2.19 I/O ports input timing

Figure 2.20 POEG input trigger timing
\square
Figure 2.21 GPT input capture timing

Figure 2.22 GPT output delay skew

Figure 2.23 GPT output delay skew for OPS

Figure 2.24 AGT input/output timing

Figure 2.25 ADC12 trigger input timing

2.3.7 CAC Timing

Table 2.23 CAC timing

Parameter			Symbol	Min	Typ	Max	Unit	Test conditions
CAC	CACREF input pulse width	$\mathrm{t}_{\text {PBcyc }} \leq \mathrm{t}_{\text {cac }}{ }^{* 1}$	tCACREF	$4.5 \times \mathrm{t}_{\mathrm{cac}}+3 \times \mathrm{t}_{\text {PBcyc }}$	-	-	ns	-
		$\mathrm{tPBcyc}>\mathrm{t}_{\text {cac }}{ }^{* 1}$		$5 \times \mathrm{t}_{\mathrm{cac}}+6.5 \times \mathrm{t}_{\text {PBcyc }}$	-	-	ns	

Note: $\quad t_{\text {PBcyc }}$ PCLKB cycle.
Note 1. $t_{\text {cac }}$: CAC count clock source cycle.

2.3.8 SCI Timing

Table 2.24 SCI timing (1)
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter			Symbol	Min	Max	Unit	Test conditions
SCI	Input clock cycle	Asynchronous	$\mathrm{t}_{\text {Scyc }}$	4	-	$t_{\text {Pcyc }}$	Figure 2.26
		Clock synchronous		6	-		
	Input clock pulse width		tsCKw	0.4	0.6	$\mathrm{t}_{\text {Scyc }}$	
	Input clock rise time		$\mathrm{t}_{\text {SCKr }}$	-	5	ns	
	Input clock fall time		$\mathrm{t}_{\text {SCKf }}$	-	5	ns	
	Output clock cycle	Asynchronous	$\mathrm{t}_{\text {Scyc }}$	6 (other than SCI1, SCl2) 8 (SCl1, SCl2)	-	$t_{\text {Pcyc }}$	
		Clock synchronous		4	-		
	Output clock pulse width		tsckw	0.4	0.6	$\mathrm{t}_{\text {Scyc }}$	
	Output clock rise time		$\mathrm{t}_{\text {SCKr }}$	-	5	ns	
	Output clock fall time		tsckf	-	5	ns	
	Transmit data delay	Clock synchronous master mode (internal clock)	$\mathrm{t}_{\text {TXD }}$	-	5	ns	Figure 2.27
		Clock synchronous slave mode (external clock)	$\mathrm{t}_{\text {TXD }}$	-	25	ns	
	Receive data setup time	Clock synchronous master mode (internal clock)	$t_{R X S}$	15	-	ns	
		Clock synchronous slave mode (external clock)	$t_{R X S}$	5	-	ns	
	Receive data hold time	Clock synchronous	$\mathrm{t}_{\mathrm{RXH}}$	5	-	ns	

Note: $\quad t_{\text {Pcyc }}$: PCLKA cycle.

Note: $\quad \mathrm{n}=0$ to 4,9

Figure 2.26 SCK clock input/output timing

Note: $\quad \mathrm{n}=0$ to 4,9

Figure 2.27 SCI input/output timing in clock synchronous mode
Table 2.25 SCI timing (2)
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter			Symbol	Min	Max	Unit	Test conditions
Simple SPI	SCK clock cycle output (master)		$t_{\text {SPcyc }}$	4	65536	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.28
	SCK clock cycle input (slave)			6	65536		
	SCK clock high pulse width		$\mathrm{t}_{\text {SPCKW }}$	0.4	0.6	$t_{\text {SPcyc }}$	
	SCK clock low pulse width		tspCKWL	0.4	0.6	tspcyc	
	SCK clock rise and fall time		$\mathrm{t}_{\text {SPCKr }}, \mathrm{t}_{\text {SPCKf }}$	-	5	ns	
	Data input setup time	master	t_{SU}	15	-	ns	Figure 2.29 to Figure 2.32
		slave		5	-	ns	
	Data input hold time		t_{H}	5	-	ns	
	SS input setup time		tead	1	-	$\mathrm{t}_{\text {SPcyc }}$	
	SS input hold time		tLAG	1	-	$t_{\text {SPcyc }}$	
	Data output delay	master	t_{OD}	-	5	ns	
		slave		-	25	ns	
	Data output hold time		$\mathrm{tOH}^{\text {l }}$	-5	-	ns	
	Data rise and fall time		$t_{\text {Dr }}, t_{\text {df }}$	-	5	ns	
	SS input rise and fall time		$\mathrm{t}_{\text {SSLr }}$, $\mathrm{t}_{\text {SSLf }}$	-	5	ns	
	Slave access time		$\mathrm{t}_{\text {SA }}$	-	$3 \times t_{\text {Pcyc }}+25$	ns	Figure 2.32
	Slave output release time		$t_{\text {REL }}$	-	$3 \times \mathrm{t}_{\text {Pcyc }}+25$	ns	

Note: \quad tpcyc: PCLKA cycle.

$\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{OL}}=0.3 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{IH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{IL}}=0.3 \times \mathrm{VCC}$
Note: $\quad \mathrm{n}=0$ to 4,9

Figure 2.28 SCI simple SPI mode clock timing

Note: $\quad \mathrm{n}=0$ to 4,9

Figure 2.29 SCI simple SPI mode timing for master when CKPH = 1

Note: $n=0$ to 4,9

Figure 2.30 SCI simple SPI mode timing for master when CKPH = 0

Figure 2.31 SCI simple SPI mode timing for slave when CKPH = 1

Note: $n=0$ to 4,9

Figure 2.32 SCI simple SPI mode timing for slave when CKPH = 0
Table 2.26 SCI timing (3)
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Max	Unit	Test conditions
Simple IIC (Standard mode)	SDA input rise time	t_{Sr}	-	1000	ns	Figure 2.33
	SDA input fall time	$\mathrm{t}_{\text {Sf }}$	-	300	ns	
	SDA input spike pulse removal time	$\mathrm{t}_{\text {SP }}$	0	$4 \times t_{\text {IICcyc }}$	ns	
	Data input setup time	$\mathrm{t}_{\text {SDAS }}$	250	-	ns	
	Data input hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns	
	SCL, SDA capacitive load	$\mathrm{C}_{\mathrm{b}}{ }^{\text {1 }}$	-	400	pF	
Simple IIC (Fast mode)	SDA input rise time	t_{Sr}	-	300	ns	Figure 2.33
	SDA input fall time	t_{Sf}	-	300	ns	
	SDA input spike pulse removal time	$t_{\text {SP }}$	0	$4 \times t_{\text {IICcyc }}$	ns	
	Data input setup time	$t_{\text {SDAS }}$	100	-	ns	
	Data input hold time	$t_{\text {SDAH }}$	0	-	ns	
	SCL, SDA capacitive load	$\mathrm{Cb}^{*}{ }^{*}$	-	400	pF	

Note: $\quad \mathrm{t}_{\text {IICcyc }}$: IIC internal reference clock (IIC φ) cycle.
Note 1. C_{b} indicates the total capacity of the bus line.

Note: $\quad \mathrm{n}=0$ to 4,9
Note 1. S, P, and Sr indicate the following conditions:
S: Start condition
P: Stop condition
Sr: Restart condition

Figure 2.33 SCI simple IIC mode timing

2.3.9 SPI Timing

Table 2.27 SPI timing
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter			Symbol	Min	Max	Unit	Test conditions
SPI	RSPCK clock cycle	Master	$t_{\text {SPcyc }}$	2	4096	$\mathrm{t}_{\text {Pcyc }}$	Figure 2.34
		Slave		4	4096		
	RSPCK clock high pulse width	Master	$\mathrm{t}_{\text {SPCKWH }}$	$\begin{aligned} & \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\mathrm{t}_{\mathrm{SPCKf}}\right) / \\ & 2-3 \end{aligned}$	-	ns	
		Slave		0.4	0.6	$\mathrm{t}_{\text {SPcyc }}$	
	RSPCK clock low pulse width	Master	$\mathrm{t}_{\text {SPCKWL }}$	$\begin{aligned} & \left(\mathrm{t}_{\mathrm{SPcyc}}-\mathrm{t}_{\mathrm{SPCKr}}-\mathrm{t}_{\mathrm{SPCKf}}\right) / \\ & 2-3 \end{aligned}$	-	ns	
		Slave		0.4	0.6	$\mathrm{t}_{\text {SPcyc }}$	
	RSPCK clock rise and fall time	Master	$\mathrm{t}_{\text {SPCKr }}, \mathrm{t}_{\text {SPCKf }}$	-	5	ns	
		Slave		-	1	$\mu \mathrm{S}$	
	Data input setup time	Master	$\mathrm{t}_{\text {Su }}$	4	-	ns	Figure 2.35 to Figure 2.40
		Slave		5	-		
	Data input hold time	Master (PCLKA division ratio set to $1 / 2$)	t_{HF}	0	-	ns	
		Master (PCLKA division ratio set to a value other than 1/2)	t_{H}	$\mathrm{t}_{\text {Pcyc }}$	-		
		Slave	t_{H}	20	-		
	SSL setup time	Master	tlead	$\mathrm{N} \times \mathrm{t}_{\text {SPcyc }}-10^{* 1}$	$\begin{aligned} & \mathrm{N} \times \mathrm{t}_{\mathrm{SPcyc}}{ }^{+} \\ & 100^{* 1} \end{aligned}$	ns	
		Slave		$4 \times t_{\text {Pcyc }}$	-	ns	
	SSL hold time	Master	tLAG	$\mathrm{N} \times \mathrm{t}_{\text {SPcyc }}-10^{*} 2$	$\begin{aligned} & \mathrm{N} \times \mathrm{t}_{\text {SPcyc }}+ \\ & 100^{*} 2 \end{aligned}$	ns	
		Slave		$4 \times t_{\text {Pcyc }}$	-	ns	
	Data output delay	Master	$\mathrm{t}_{\text {OD1 }}$	-	6.3	ns	
			$\mathrm{t}_{\text {OD2 }}$	-	6.3		
		Slave	t_{OD}	-	20		
	Data output hold time	Master	t_{OH}	0	-	ns	
		Slave		0	-		
	Successive transmission delay	Master	$t_{\text {TD }}$	$\mathrm{t}_{\text {SPcyc }}+2 \times \mathrm{t}_{\text {Pcyc }}$	$\begin{aligned} & 8 \times \mathrm{t}_{\mathrm{SPcyc}}+2 \\ & \times \mathrm{t}_{\mathrm{Pcyc}} \end{aligned}$	ns	
		Slave		$4 \times t_{\text {Pcyc }}$			
	MOSI and MISO rise and fall time	Output	$t_{\text {Dr }}, t_{\text {df }}$	-	5	ns	
		Input		-	1	$\mu \mathrm{s}$	
	SSL rise and fall time	Output	$\mathrm{t}_{\text {SSLr }}$ tsSLf	-	5	ns	
		Input		-	1	$\mu \mathrm{s}$	
	Slave access time		$\mathrm{t}_{\text {SA }}$	-	25	ns	Figure 2.39 and Figure 2.40
	Slave output release time		$t_{\text {REL }}$	-	25		

Note: $\quad \mathrm{t}_{\text {pcyc }}$: PCLKA cycle.

Note: Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the SPI interface, the AC portion of the electrical characteristics is measured for each group.
Note 1. N is set to an integer from 1 to 8 by the SPCKD register.
Note 2. N is set to an integer from 1 to 8 by the SSLND register.

RSPCKn
master select
output

$\mathrm{V}_{\mathrm{OH}}=0.7 \times \mathrm{VCC}, \mathrm{VoL}_{\mathrm{ol}}=0.3 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{IH}}=0.7 \times \mathrm{VCC}, \mathrm{V}_{\mathrm{IL}}=0.3 \times \mathrm{VCC}$
Note: $\quad \mathrm{n}=\mathrm{A}$

Figure 2.34 SPI clock timing

Note: $n=A$

Figure 2.35 SPI timing for master when CPHA = 0

Figure 2.36 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

Figure 2.37 SPI timing for master when CPHA =1

Figure 2.38 SPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2

Figure 2.39 SPI timing for slave when CPHA = 0

Figure 2.40 SPI timing for slave when CPHA = 1

2.3.10 QSPI Timing

Table 2.28 QSPI timing
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter		Symbol	Min	Max	Unit	Test conditions
QSPI	QSPCK clock cycle	$\mathrm{t}_{\text {QScyc }}$	2	48	$t_{\text {Pcyc }}$	Figure 2.41
	QSPCK clock high pulse width	$\mathrm{t}_{\text {QSWH }}$	$\mathrm{t}_{\text {QScyc }} \times 0.4$	-	ns	
	QSPCK clock low pulse width	$\mathrm{t}_{\text {QSWL }}$	$\mathrm{t}_{\text {QScyc }} \times 0.4$	-	ns	
	Data input setup time	$t_{\text {Su }}$	10	-	ns	Figure 2.42
	Data input hold time	t_{H}	0	-	ns	
	QSSL setup time	$t_{\text {LEAD }}$	$(N+0.5) \times t_{\text {Qscyc }}-5^{* 1}$	$\begin{aligned} & (\mathrm{N}+0.5) \times \mathrm{t}_{\mathrm{Qscyc}}+ \\ & 100^{* 1} \end{aligned}$	ns	
	QSSL hold time	tıAG	$(N+0.5) \times t_{\text {Qscyc }}-5^{* 2}$	$\begin{aligned} & (\mathrm{N}+0.5) \times \mathrm{t}_{\mathrm{Qscyc}}+ \\ & 100^{*} 2 \end{aligned}$	ns	
	Data output delay	t_{OD}	-	4	ns	
	Data output hold time	t_{OH}	-3.3	-	ns	
	Successive transmission delay	$t_{\text {TD }}$	1	16	$\mathrm{t}_{\text {QScyc }}$	

Note: $\quad t_{\text {Pcyc }}$: PCLKA cycle.
Note 1. N is set to 0 or 1 in SFMSLD.
Note 2. N is set to 0 or 1 in SFMSHD

QSPCLK output

Figure 2.41 QSPI clock timing

Figure 2.42 Transmit and receive timing

2.3.11 IIC Timing

Table 2.29 IIC timing (1) (1 of 2)
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,

SCLO_B, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCLO_A, SDAO_A.
(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

Parameter		Symbol	Min	Max	Unit	Test conditions
IIC (Standard mode, SMBus) ICFER.FMPE $=0$	SCL input cycle time	$\mathrm{t}_{\text {SCL }}$	$6(12) \times t_{\text {IICcyc }}+1300$	-	ns	Figure 2.43
	SCL input high pulse width	$\mathrm{t}_{\text {SCLH }}$	$3(6) \times t_{\text {IICcyc }}+300$	-	ns	
	SCL input low pulse width	$\mathrm{t}_{\text {SCLL }}$	$3(6) \times t_{\text {IICcyc }}+300$	-	ns	
	SCL, SDA rise time	t_{Sr}	-	1000	ns	
	SCL, SDA fall time	$t_{\text {Sf }}$	-	300	ns	
	SCL, SDA input spike pulse removal time	t_{SP}	0	$1(4) \times t_{\text {IICcyc }}$	ns	
	SDA input bus free time when wakeup function is disabled	$t_{\text {BUF }}$	$3(6) \times t_{I I C c y c}+300$	-	ns	
	SDA input bus free time when wakeup function is enabled	$t_{\text {BUF }}$	$\begin{aligned} & 3(6) \times t_{I I C c y c}+4 \times t_{\text {Pcyc }}+ \\ & 300 \end{aligned}$	-	ns	
	START condition input hold time when wakeup function is disabled	$\mathrm{t}_{\text {STAH }}$	$t_{\text {IICcyc }}+300$	-	ns	
	START condition input hold time when wakeup function is enabled	$\mathrm{t}_{\text {Stah }}$	$1(5) \times t_{I I C c y c}+t_{\text {Pcyc }}+300$	-	ns	
	Repeated START condition input setup time	$\mathrm{t}_{\text {STAS }}$	1000	-	ns	
	STOP condition input setup time	tstos	1000	-	ns	
	Data input setup time	$\mathrm{t}_{\text {SDAS }}$	$t_{\text {IICcyc }}+50$	-	ns	
	Data input hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns	
	SCL, SDA capacitive load	$\mathrm{Cb}^{*}{ }^{*}$	-	400	pF	

Table 2.29 IIC timing (1) (2 of 2)
(1) Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register for the following pins: SDA0_B,

SCL0_B, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCLO_A, SDAO_A.
(3) Use pins that have a letter appended to their names, for instance "_A" or "_B", to indicate group membership. For the IIC interface, the AC portion of the electrical characteristics is measured for each group.

Parameter		Symbol	Min	Max	Unit	Test conditions	
$\begin{aligned} & \text { IIC } \\ & \text { (Fast mode) } \end{aligned}$	SCL input cycle time	$\mathrm{t}_{\text {SCL }}$	$6(12) \times t_{\text {IICcyc }}+600$	-	ns	Figure 2.43	
	SCL input high pulse width	$\mathrm{t}_{\text {SCLH }}$	$3(6) \times t_{I I C c y c}+300$	-	ns		
	SCL input low pulse width	${ }^{\text {tSCLL }}$	$3(6) \times t_{I I C c y c}+300$	-	ns		
	SCL, SDA rise time	t_{Sr}	$20 \times$ (external pullup voltage $/ 5.5 \mathrm{~V})^{* 1}$	300	ns		
	SCL, SDA fall time	t_{sf}	$20 \times$ (external pullup voltage $/ 5.5 \mathrm{~V})^{* 1}$	300	ns		
	SCL, SDA input spike pulse removal time	$\mathrm{t}_{\text {SP }}$	0	$1(4) \times t_{\text {IICcyc }}$	ns		
	SDA input bus free time when wakeup function is disabled	$t_{\text {BUF }}$	$3(6) \times t_{I I C c y c}+300$	-	ns		
	SDA input bus free time when wakeup function is enabled	$t_{\text {BUF }}$	$\begin{aligned} & 3(6) \times t_{\\| C c y c}+4 \times t_{\text {Pcyc }}+ \\ & 300 \end{aligned}$	-	ns		
	START condition input hold time when wakeup function is disabled	$\mathrm{t}_{\text {STAH }}$	$t_{\text {IICcyc }}+300$	-	ns		
	START condition input hold time when wakeup function is enabled	$\mathrm{t}_{\text {Stah }}$	$1(5) \times t_{\text {IICcyc }}+t_{\text {Pcyc }}+300$	-	ns		
	Repeated START condition input setup time	$\mathrm{t}_{\text {STAS }}$	300	-	ns		
	STOP condition input setup time	$\mathrm{t}_{\text {Stos }}$	300	-	ns		
	Data input setup time	$\mathrm{t}_{\text {SDAS }}$	$t_{\text {IICcyc }}+50$	-	ns		
	Data input hold time	$\mathrm{t}_{\text {SDAH }}$	0	-	ns		
	SCL, SDA capacitive load	$\mathrm{Cb}^{*}{ }^{\text {2 }}$	-	400	pF		

Note: $\quad t_{\text {IICcyc }}$: IIC internal reference clock (IIC φ) cycle, $\mathrm{t}_{\text {Pcyc }}$: PCLKB cycle.
Note: Values in parentheses apply when ICMR3.NF[1:0] is set to 11 b while the digital filter is enabled with ICFER.NFE set to 1.
Note: Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the IIC interface, the $A C$ portion of the electrical characteristics is measured for each group.
Note 1. Only supported for SCLO_A and SDA0_A.
Note 2. Cb indicates the total capacity of the bus line.

Table 2.30 IIC timing (2)
Setting of the SCLO_A, SDAO_A pins is not required with the Port Drive Capability bit in the PmnPFS register.

| Parameter |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| lIC
 (Fast-mode+
 ICFER.FMPE |

Note: $\quad t_{\text {IICcyc }}$: IIC internal reference clock (IIC φ) cycle, $\mathrm{t}_{\text {Pcyc }}$: PCLKB cycle.
Note: Values in parentheses apply when ICMR3.NF[1:0] is set to 11 b while the digital filter is enabled with ICFER.NFE set to 1.
Note 1. Cb indicates the total capacity of the bus line.

Figure $2.43 \quad I^{2} \mathrm{C}$ bus interface input/output timing

2.3.12 SSIE Timing

Table 2.31 SSIE timing
(1) High drive output is selected with the Port Drive Capability bit in the PmnPFS register.
(2) Use pins that have a letter appended to their names, for instance "_A" or "_B" to indicate group membership. For the SSIE interface, the AC portion of the electrical characteristics is measured for each group.

Parameter			Symbol	Target specification		Unit	Comments	
			Min.	Max.				
SSIBCKO	Cycle	Master		to	80	-	ns	Figure 2.44
		Slave	t_{1}	80	-	ns		
	High level/ low level	Master	$\mathrm{t}_{\mathrm{HC}} / \mathrm{t}_{\text {LC }}$	0.35	-	to		
		Slave		0.35	-	t_{1}		
	Rising time/ falling time	Master	$\mathrm{t}_{\mathrm{RC}} / \mathrm{t}_{\mathrm{FC}}$	-	0.15	t_{0} / t_{1}		
		Slave		-	0.15	t_{0} / t_{1}		
$\begin{aligned} & \text { SSILRCK0/ } \\ & \text { SSIFS0, } \\ & \text { SSITXD0, } \\ & \text { SSIRXD0 } \end{aligned}$	Input set up time	Master	$t_{\text {SR }}$	12	-	ns	Figure 2.46, Figure 2.47	
		Slave		12	-	ns		
	Input hold time	Master	$t_{H R}$	8	-	ns		
		Slave		15	-	ns		
	Output delay time	Master	$t_{\text {DTR }}$	-10	5	ns		
		Slave		0	20	ns	Figure 2.46, Figure 2.47	
	Output delay time from SSILRCKO/ SSIFS0 change	Slave	$t_{\text {DTRW }}$	-	20	ns	Figure 2.48*1	
GTIOC2A, AUDIO_CLK	Cycle		$t_{\text {EXcyc }}$	20	-	ns	Figure 2.45	
	High level/ low level		$\mathrm{t}_{\text {EXL }} / \mathrm{t}_{\text {EXH }}$	0.4	0.6	$\mathrm{t}_{\text {EXcyc }}$		

Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK0/SSIFS0 pin is used to generate transmit data, and the transmit data is logically output to the SSITXD0 pin.

Figure 2.44
SSIE clock input/output timing

GTIOC2A, AUDIO_CLK (input)

Figure 2.45 Clock input timing

Figure 2.46 SSIE data transmit and receive timing when SSICR.BCKP =0

Figure 2.47 SSIE data transmit and receive timing when SSICR.BCKP = 1

Figure 2.48 SSIE data output delay after SSILRCK0/SSIFS0 change

2.3.13 SD/MMC Host Interface Timing ($\mathrm{m}=0$ to 3)

Table 2.32 SD/MMC Host Interface signal timing
Conditions: High drive output is selected in the Port Drive Capability bit in the PmnPFS register. Clock duty ratio is 50%.

Parameter	Symbol	Min	Max	Unit	Test conditions
SD0CLK clock cycle	$T_{\text {SDCYC }}$	20	-	ns	Figure 2.49
SD0CLK clock high pulse width	$T_{\text {SDWH }}$	6.5	-	ns	
SD0CLK clock low pulse width	$T_{\text {SDWL }}$	6.5	-	ns	
SD0CLK clock rise time	$T_{\text {SDLH }}$	-	3	ns	
SD0CLK clock fall time	$T_{\text {SDHL }}$	-	3	ns	
SD0CMD/SDODATm output data delay	$T_{\text {SDODLY }}$	-7	4	ns	
SD0CMD/SDODATm input data setup	$T_{\text {SDIS }}$	4.5	-	ns	
SD0CMD/SDODATm input data hold	$T_{\text {SDIH }}$	1.5	-	ns	

Note: Must use pins that have a letter appended to their name, for instance "_A", "_B", to indicate group membership. For the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group.

Figure 2.49 SD/MMC Host Interface signal timing

2.4 USB Characteristics

2.4.1 USBFS Timing

Table 2.33 USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics)
Conditions: VCC $=\mathrm{AVCCO}=\mathrm{VCC}$ USB $=$ VBATT $=3.0$ to $3.6 \mathrm{~V}, 2.7 \leq$ VREFHO/VREFH $\leq \mathrm{AVCCO}$, USBCLK $=48 \mathrm{MHz}$

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions	
Input characteristics	Input high voltage	V_{IH}	2.0	-	-	V	-	
	Input low voltage	VIL	-	-	0.8	V	-	
	Differential input sensitivity	$V_{\text {DI }}$	0.2	-	-	V	\| USB_DP - USB_DM	
	Differential common-mode range	V_{CM}	0.8	-	2.5	V	-	
Output characteristics	Output high voltage	V_{OH}	2.8	-	3.6	V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	
	Output low voltage	V_{OL}	0.0	-	0.3	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	
	Cross-over voltage	$\mathrm{V}_{\text {CRS }}$	1.3	-	2.0	V	Figure 2.50	
	Rise time	$t_{\text {LR }}$	75	-	300	ns		
	Fall time	t_{LF}	75	-	300	ns		
	Rise/fall time ratio	$t_{L R} / t_{L F}$	80	-	125	\%	$t_{\text {LR }} / t_{\text {LF }}$	
Pull-up and pull-down characteristics	USB_DP and USB_DM pull-down resistance in host controller mode	R_{pd}	14.25	-	24.80	$\mathrm{k} \Omega$	-	

Figure 2.50 USB_DP and USB_DM output timing in low-speed mode

Figure 2.51 Test circuit in low-speed mode
Table 2.34 USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)
Conditions: VCC $=$ AVCCO $=$ VCC_USB $=$ VBATT $=3.0$ to $3.6 \mathrm{~V}, 2.7 \leq$ VREFHO/VREFH \leq AVCCO, USBCLK $=48 \mathrm{MHz}$

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions	
Input characteristics	Input high voltage	V_{IH}	2.0	-	-	V	-	
	Input low voltage	$\mathrm{V}_{\text {IL }}$	-	-	0.8	V	-	
	Differential input sensitivity	V_{DI}	0.2	-	-	V	\| USB_DP - USB_DM	
	Differential common-mode range	V_{CM}	0.8	-	2.5	V	-	
Output characteristics	Output high voltage	V_{OH}	2.8	-	3.6	V	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	
	Output low voltage	V_{OL}	0.0	-	0.3	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	
	Cross-over voltage	$\mathrm{V}_{\text {CRS }}$	1.3	-	2.0	V	Figure 2.52	
	Rise time	$t_{\text {LR }}$	4	-	20	ns		
	Fall time	$t_{\text {LF }}$	4	-	20	ns		
	Rise/fall time ratio	$\mathrm{t}_{\text {LR }} / \mathrm{t}_{\text {LF }}$	90	-	111.11	\%	$\mathrm{t}_{\mathrm{FR}} / \mathrm{t}_{\mathrm{FF}}$	
	Output resistance	$Z_{\text {DRV }}$	28	-	44	Ω	USBFS: Rs = 27Ω included	
Pull-up and pull-down characteristics	DM pull-up resistance in device controller mode	R_{pu}	0.900	-	1.575	$k \Omega$	During idle state	
			1.425	-	3.090	$k \Omega$	During transmission and reception	
	USB_DP and USB_DM pull-down resistance in host controller mode	R_{pd}	14.25	-	24.80	$k \Omega$	-	

Figure 2.52 USB_DP and USB_DM output timing in full-speed mode

Figure 2.53 Test circuit in full-speed mode
Table 2.35 USBFS characteristics (USB_DP and USB_DM pin characteristics)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to $3.6 \mathrm{~V}, 2.7 \leq$ VREFHO/VREFH \leq AVCC0, USBCLK $=48 \mathrm{MHz}$

Parameter		Symbol	Min	Typ	Max	Unit	Test conditions
Battery Charging Specification	D+ sink current	IDP_SINK	25	-	175	$\mu \mathrm{A}$	-
	D- sink current	IDM_SINK	25	-	175	$\mu \mathrm{A}$	-
	DCD source current	IDP_SRC	7	-	13	$\mu \mathrm{A}$	-
	Data detection voltage	V DAT_REF	0.25	-	0.4	V	-
	D+ source voltage	V ${ }_{\text {DP_SRC }}$	0.5	-	0.7	V	Output current $=250 \mu \mathrm{~A}$
	D- source voltage	V ${ }_{\text {DM_SRC }}$	0.5	-	0.7	V	Output current $=250 \mu \mathrm{~A}$

2.5 ADC12 Characteristics

Table 2.36 A/D conversion characteristics for unit 0 (1 of 2)
Conditions: PCLKC $=1$ to 50 MHz

Parameter			Min	Typ	Max	Unit	Test conditions
Frequency			1	-	50	MHz	-
Analog input capacitance			-	-	30	pF	-
Quantization error			-	± 0.5	-	LSB	-
Resolution			-	-	12	Bits	-
High-precision high-speed channels (ANOOO to ANOO2)	Conversion time*1 (operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. $=1 \mathrm{k} \Omega$	$0.52(0.26)^{* 2}$	-	-	$\mu \mathrm{s}$	Sampling in 13 states
		Max. $=400 \Omega$	$0.40(0.14)^{* 2}$	-	-	$\mu \mathrm{s}$	Sampling in 7 states $\begin{aligned} & \mathrm{VCC}=\mathrm{AVCCO}= \\ & 3.0 \text { to } 3.6 \mathrm{~V} \\ & 3.0 \mathrm{~V} \leq \mathrm{VREFHO} \leq \\ & \mathrm{AVCCO} \end{aligned}$
	Offset error		-	± 1.0	± 2.5	LSB	-
	Full-scale error		-	± 1.0	± 2.5	LSB	-
	Absolute accuracy		-	± 2.0	± 4.5	LSB	-
	DNL differential nonlinearity error		-	± 0.5	± 1.5	LSB	-
	INL integral nonlinearity error		-	± 1.0	± 2.5	LSB	-

Table 2.36 A/D conversion characteristics for unit 0 (2 of 2)
Conditions: PCLKC = 1 to 50 MHz

Parameter			Min	Typ	Max	Unit	Test conditions
High-precision normal-speed channels (AN003 to AN008, AN011 to AN013)	Conversion time*1 (Operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. $=1 \mathrm{k} \Omega$	$0.92(0.66)^{*}$	-	-	$\mu \mathrm{S}$	Sampling in 33 states
	Offset error		-	± 1.0	± 2.5	LSB	-
	Full-scale error		-	± 1.0	± 2.5	LSB	-
	Absolute accuracy		-	± 2.0	± 4.5	LSB	-
	DNL differential nonlinearity error		-	± 0.5	± 1.5	LSB	-
	INL integral nonlinearity error		-	± 1.0	± 2.5	LSB	-
Normal-precision normal-speed channels (AN016)	Conversion time*1 (Operation at PCLKC = 50 MHz)	Permissible signal source impedance Max. $=1 \mathrm{k} \Omega$	$0.92(0.66)^{*}{ }^{2}$	-	-	$\mu \mathrm{S}$	Sampling in 33 states
	Offset error		-	± 1.0	± 5.5	LSB	-
	Full-scale error		-	± 1.0	± 5.5	LSB	-
	Absolute accuracy		-	± 2.0	± 7.5	LSB	-
	DNL differential nonlinearity error		-	± 0.5	± 4.5	LSB	-
	INL integral nonlinearity error		-	± 1.0	± 5.5	LSB	-

Note: These specification values apply when there is no access to the external memory during A/D conversion. If access occurs during A/D conversion, values might not fall within the indicated ranges.
The use of PORT0 as digital outputs is not allowed when the 12-Bit A/D converter is used.
The characteristics apply when AVCCO, AVSSO, VREFHO, VREFLO, and 12-bit A/D converter input voltage are stable.
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test conditions.
Note 2. Values in parentheses indicate the sampling time.
Table 2.37 A/D internal reference voltage characteristics

Parameter	Min	Typ	Max	Unit	Test conditions
A/D internal reference voltage	1.13	1.18	1.23	V	-
Sampling time	4.15	-	-	$\mu \mathrm{s}$	-

Figure 2.54 Illustration of ADC12 characteristic terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A / D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference voltage VREFH0 $=3.072 \mathrm{~V}$, then the $1-\mathrm{LSB}$ width becomes 0.75 mV , and $0 \mathrm{mV}, 0.75 \mathrm{mV}$, and 1.5 mV are used as the analog input voltages. If the analog input voltage is 6 mV , an absolute accuracy of $\pm 5 \mathrm{LSB}$ means that the actual A / D conversion result is in the range of $0 x 003$ to $0 x 00 \mathrm{D}$, though an output code of 0×008 can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 DAC12 Characteristics

Table 2.38 D/A conversion characteristics

Parameter	Min	Typ	Max	Unit	Test conditions
Resolution	-	-	12	Bits	-
Without output amplifier					
Absolute accuracy	-	-	± 24	LSB	Resistive load $2 \mathrm{M} \Omega$
INL	-	± 2.0	± 8.0	LSB	Resistive load $2 \mathrm{M} \Omega$
DNL	-	± 1.0	± 2.0	LSB	-
Output impedance	-	8.5	-	$\mathrm{k} \Omega$	-
Conversion time	-	-	3	$\mu \mathrm{s}$	Resistive load 2 M , Capacitive load 20 pF
Output voltage range	0	-	VREFH	V	-
With output amplifier					
INL	-	± 2.0	± 4.0	LSB	-
DNL	-	± 1.0	± 2.0	LSB	-
Conversion time	-	-	4.0	$\mu \mathrm{s}$	-
Resistive load	5	-	-	$\mathrm{k} \Omega$	-
Capacitive load	-	-	50	pF	-
Output voltage range	0.2	-	VREFH - 0.2	V	-

2.7 TSN Characteristics

Table 2.39 TSN characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
Relative accuracy	-	-	± 1.0	-	${ }^{\circ} \mathrm{C}$	-
Temperature slope	-	-	4.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	-
Output voltage (at $25^{\circ} \mathrm{C}$)	-	-	1.24	-	V	-
Temperature sensor start time	tsTART	-	-	30	$\mu \mathrm{~s}$	-
Sampling time	-	4.15	-	-	-	

2.8 OSC Stop Detect Characteristics

Table 2.40 Oscillation stop detection circuit characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
Detection time	t_{dr}	-	-	1	ms	Figure 2.55

Figure 2.55 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Table 2.41 Power-on reset circuit and voltage detection circuit characteristics (1)

Parameter			Symbol	Min	Typ	Max	Un it	Test conditions
Voltage detection level	Power-on reset (POR)	DPSBYCR.DEEPCUT[1:0] = 00b or 01b.	$V_{\text {POR }}$	2.5	2.6	2.7	V	Figure 2.56
		DPSBYCR.DEEPCUT[1:0] = 11b.		1.8	2.25	2.7		
	Voltage detection circuit (LVD0)		$\mathrm{V}_{\text {det0_1 }}$	2.84	2.94	3.04		Figure 2.57
			$\mathrm{V}_{\text {det0_2 }}$	2.77	2.87	2.97		
			$\mathrm{V}_{\text {det0_3 }}$	2.70	2.80	2.90		
	Voltage detection circuit (LVD1)		$\mathrm{V}_{\text {det1_1 }}$	2.89	2.99	3.09		Figure 2.58
			$\mathrm{V}_{\text {det1_2 }}$	2.82	2.92	3.02		
			$\mathrm{V}_{\text {det1_3 }}$	2.75	2.85	2.95		
	Voltage detection circuit (LVD2)		$\mathrm{V}_{\text {det2_1 }}$	2.89	2.99	3.09		Figure 2.59
			$\mathrm{V}_{\text {det2_2 }}$	2.82	2.92	3.02		
			$\mathrm{V}_{\text {det2_3 }}$	2.75	2.85	2.95		
Internal reset time	Power-on reset time		tPOR	-	4.5	-	ms	Figure 2.56
	LVD0 reset time		$\mathrm{t}_{\text {LVDO }}$	-	0.51	-		Figure 2.57
	LVD1 reset time		tLVD1	-	0.38	-		Figure 2.58
	LVD2 reset time		t LVD2	-	0.38	-		Figure 2.59
Minimum VCC down time*1			tVoff	200	-	-	$\mu \mathrm{s}$	Figure 2.56, Figure 2.57
Response delay			$\mathrm{t}_{\text {det }}$	-	-	200	$\mu \mathrm{s}$	Figure 2.57 to Figure 2.59
LVD operation stabilization time (after LVD is enabled)			$\mathrm{t}_{\mathrm{d}(\mathrm{E}-\mathrm{A})}$	-	-	10	$\mu \mathrm{s}$	Figure 2.58, Figure 2.59
Hysteresis width (LVD1 and LVD2)			V ${ }_{\text {LVH }}$	-	70	-	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~V} \end{aligned}$	

Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels $\mathrm{V}_{\mathrm{P} O \mathrm{R}}, \mathrm{V}_{\mathrm{det}}$, $V_{\text {det1 }}$, and $V_{\text {det2 }}$ for POR and LVD.

Figure 2.56 Power-on reset timing

Figure $2.57 \quad$ Voltage detection circuit timing $\left(\mathbf{V}_{\text {det } 0}\right)$

Figure 2.58 Voltage detection circuit timing ($\mathbf{V}_{\text {det1 }}$)

Figure 2.59 Voltage detection circuit timing ($\mathbf{V}_{\text {det2 }}$)

$2.10 \quad$ VBATT Characteristics

Table 2.42 Battery backup function characteristics
Conditions: VCC = AVCCO = VCC_USB = 2.7 to $3.6 \mathrm{~V}, 2.7 \leq \mathrm{VREFH} 0 / \mathrm{VREFH} \leq \mathrm{AVCCO}, \mathrm{VBATT}=1.65$ to $3.6 \mathrm{~V}^{* 1}$

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
Voltage level for switching to battery backup	$V_{\text {DETBATT }}$	2.50	2.60	2.70	V	Figure 2.60
Lower-limit VBATT voltage for power supply switching caused by VCC voltage drop	V ${ }_{\text {BATTSW }}$	2.70	-	-	V	
VCC-off period for starting power supply switching	$t_{\text {VOFFBATT }}$	200	-	-	$\mu \mathrm{s}$	
VBATT low voltage detection level	$V_{\text {battldet }}$	1.8	1.9	2.0	V	Figure 2.61
Minimum VBATT down time	$\mathrm{t}_{\text {BATtOFF }}$	200	-	-	$\mu \mathrm{s}$	
Response delay	$t_{\text {BATTdet }}$	-	-	200	$\mu \mathrm{s}$	
VBATT monitor operation stabilization time (after VBATTMNSELR.VBATTMNSEL is changed to 1)	$\mathrm{t}_{\mathrm{d}(\mathrm{E}-\mathrm{A})}$	-	-	20	$\mu \mathrm{s}$	
VBATT current increase (when VBATTMNSELR.VBATTMNSEL is 1 compared to the case that VBATTMNSELR.VBATTMNSEL is 0)	$l_{\text {VBATTSEL }}$	-	140	350	nA	

Note: \quad The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup ($\mathrm{V}_{\text {DETBATT }}$).
Note 1. Low CL crystal cannot be used below VBATT $=1.8 \mathrm{~V}$.

Figure 2.60 Battery backup function characteristics

Figure 2.61 Battery backup function characteristics

2.11 CTSU Characteristics

Table 2.43 CTSU characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
External capacitance connected to TSCAP pin	C $_{\text {tscap }}$	9	10	11	nF	-
TS pin capacitive load	$\mathrm{C}_{\text {base }}$	-	-	50	pF	-
Permissible output high current	$\Sigma_{\text {loH }}$	-	-	-40	mA	When the mutual capacitance method is applied

2.12 Flash Memory Characteristics

2.12.1 Code Flash Memory Characteristics

Table 2.44 Code flash memory characteristics (1 of 2)
Conditions: Program or erase: FCLK $=4$ to 50 MHz
Read: FCLK $\leq 50 \mathrm{MHz}$

Parameter		Symbol	FCLK $=4 \mathrm{MHz}$			$\mathbf{2 0} \mathbf{M H z} \leq$ FCLK $\leq 50 \mathrm{MHz}$			Unit	Test conditions	
		Min	Typ ${ }^{*}$	Max	Min	Typ ${ }^{*}$	Max				
Programming time $\mathrm{N}_{\text {PEC }} \leq 100$ times	128-byte		$t_{\text {P128 }}$	-	0.75	13.2	-	0.34	6.0	ms	
	8-KB	$\mathrm{t}_{\mathrm{P} 8 \mathrm{~K}}$	-	49	176	-	22	80	ms		
	32-KB	$\mathrm{t}_{\text {P32K }}$	-	194	704	-	88	320	ms		

Table 2.44 Code flash memory characteristics (2 of 2)
Conditions: Program or erase: FCLK $=4$ to 50 MHz
Read: FCLK $\leq 50 \mathrm{MHz}$

Parameter		Symbol	FCLK $=4 \mathrm{MHz}$			$\mathbf{2 0} \mathbf{M H z} \leq$ FCLK $\leq 50 \mathrm{MHz}$			Unit	Test conditions	
		Min	Typ* ${ }^{*}$	Max	Min	Typ* ${ }^{\text {\% }}$	Max				
Programming time NPEC > 100 times	128-byte		$t_{\text {P128 }}$	-	0.91	15.8	-	0.41	7.2	ms	
	8-KB	$\mathrm{t}_{\mathrm{P} 8 \mathrm{~K}}$	-	60	212	-	27	96	ms		
	32-KB	$\mathrm{t}_{\text {P32K }}$	-	234	848	-	106	384	ms		
Erasure time $\mathrm{N}_{\text {PEC }} \leq 100$ times	8-KB	$\mathrm{t}_{\text {E8K }}$	-	78	216	-	43	120	ms		
	32-KB	$\mathrm{t}_{\text {E }}$ 2K	-	283	864	-	157	480	ms		
Erasure time NPEC > 100 times	8-KB	$\mathrm{t}_{\text {E8K }}$	-	94	260	-	52	144	ms		
	32-KB	$\mathrm{t}_{\text {E32K }}$	-	341	1040	-	189	576	ms		
Reprogramming/erasure cycle*4		$\mathrm{N}_{\text {PEC }}$	10000*1	-	-	$10000^{* 1}$	-	-	Times		
Suspend delay during programming		$t_{\text {SPD }}$	-	-	264	-	-	120	$\mu \mathrm{s}$		
Programming resume time		$t_{\text {PRT }}$	-	-	110	-	-	50	$\mu \mathrm{s}$		
First suspend delay during erasure in suspend priority mode		tSESD1	-	-	216	-	-	120	$\mu \mathrm{s}$		
Second suspend delay during erasure in suspend priority mode		tSESD2	-	-	1.7	-	-	1.7	ms		
Suspend delay during erasure in erasure priority mode		$\mathrm{t}_{\text {SEED }}$	-	-	1.7	-	-	1.7	ms		
First erasing resume time during erasure in suspend priority mode ${ }^{*} 5$		$\mathrm{t}_{\text {REST1 }}$	-	-	1.7	-	-	1.7	ms		
Second erasing resume time during erasure in suspend priority mode		$\mathrm{t}_{\text {REST2 }}$	-	-	144	-	-	80	$\mu \mathrm{s}$		
Erasing resume time during erasure in erasure priority mode		$t_{\text {REET }}$	-	-	144	-	-	80	$\mu \mathrm{s}$		
Forced stop command		$t_{\text {FD }}$	-	-	32	-	-	20	$\mu \mathrm{s}$		
Data hold time*2		$t_{\text {DRP }}$	$10^{* 2}$ *3	-	-	$10^{* 2}$ *	-	-	Years		

Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
Note 3. This result is obtained from reliability testing
Note 4. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times $(n=10,000)$, erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different addresses in $8-K B$ blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.
Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.
Note 6. The reference value at $\mathrm{VCC}=3.3 \mathrm{~V}$ and room temperature.

Figure 2.62 Suspension and forced stop timing for flash memory programming and erasure

2.12.2 Data Flash Memory Characteristics

Table 2.45 Data flash memory characteristics (1 of 2)
Conditions: Program or erase: FCLK = 4 to 50 MHz
Read: FCLK $\leq 50 \mathrm{MHz}$

Parameter		Symbol	FCLK $=4 \mathrm{MHz}$			$20 \mathrm{MHz} \leq$ FCLK $\leq 50 \mathrm{MHz}$			Unit	Test conditions	
		Min Typ ${ }^{*}$. Max	Min	Typ* ${ }^{*}$	Max						
Programming time	4-byte		$t_{\text {DP4 }}$	-	0.36	3.8	-	0.16	1.7	ms	
	8-byte	tDP8	-	0.38	4.0	-	0.17	1.8			
	16-byte	$\mathrm{t}_{\text {DP16 }}$	-	0.42	4.5	-	0.19	2.0			
Erasure time	64-byte	$\mathrm{t}_{\mathrm{DE} 64}$	-	3.1	18	-	1.7	10	ms		
	128-byte	$t_{\text {DE128 }}$	-	4.7	27	-	2.6	15			
	256-byte	$\mathrm{t}_{\text {DE256 }}$	-	8.9	50	-	4.9	28			
Blank check time	4-byte	tobc4	-	-	84	-	-	30	$\mu \mathrm{s}$		
Reprogramming/erasure cycle*1		$\mathrm{N}_{\text {DPEC }}$	$125000^{* 2}$	-	-	$125000{ }^{*}$	-	-	-		
Suspend delay during programming	4-byte	tospd	-	-	264	-	-	120	$\mu \mathrm{s}$		
	8-byte		-	-	264	-	-	120			
	16-byte		-	-	264	-	-	120			
Programming resume time		tmprt	-	-	110	-	-	50	$\mu \mathrm{s}$		
First suspend delay during erasure in	64-byte	tosesd1	-	-	216	-	-	120	$\mu \mathrm{s}$		
suspend priority mode	128-byte		-	-	216	-	-	120			
	256-byte		-	-	216	-	-	120			

Table 2.45 Data flash memory characteristics (2 of 2)
Conditions: Program or erase: FCLK = 4 to 50 MHz
Read: FCLK $\leq 50 \mathrm{MHz}$

Parameter		Symbol	FCLK $=4 \mathrm{MHz}$			$\mathbf{2 0} \mathbf{M H z} \leq$ FCLK $\leq 50 \mathbf{M H z}$			Unit	Test conditions	
		Min	Typ* ${ }^{*}$	Max	Min	Typ* ${ }^{*}$	Max				
Second suspend delay during erasure in suspend priority mode	64-byte		$\mathrm{t}_{\text {DSESD2 }}$	-	-	300	-	-	300	$\mu \mathrm{s}$	
	128-byte	-		-	390	-	-	390			
	256-byte	-		-	570	-	-	570			
Suspend delay during erasing in erasure priority mode	64-byte	$t_{\text {DSEED }}$	-	-	300	-	-	300	$\mu \mathrm{S}$		
	128-byte		-	-	390	-	-	390			
	256-byte		-	-	570	-	-	570			
First erasing resume time during erasure in suspend priority mode*5		torest1	-	-	300	-	-	300	$\mu \mathrm{s}$		
Second erasing resume time during erasure in suspend priority mode		tDREST2	-	-	126	-	-	70	$\mu \mathrm{s}$		
Erasing resume time during erasure in erasure priority mode		$t_{\text {DREET }}$	-	-	126	-	-	70	$\mu \mathrm{s}$		
Forced stop command		$t_{\text {FD }}$	-	-	32	-	-	20	$\mu \mathrm{s}$		
Data hold time*3		$\mathrm{t}_{\text {DRP }}$	$10^{* 3 * 4}$	-	-	$10^{* 3}$ *4	-	-	Year		

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times ($n=125,000$), erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address several times as one erasure is not enabled. Overwriting is prohibited.
Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.
Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
Note 4. This result is obtained from reliability testing.
Note 5. Time for resumption includes time for reapplying the erasing pulse (up to one full pulse) that was cut off at the time of suspension.
Note 6. The reference value at $\mathrm{VCC}=3.3 \mathrm{~V}$ and room temperature.

2.12.3 Option Setting Memory Characteristics

Table 2.46 Option setting memory characteristics
Conditions: Program: FCLK = 4 to 50 MHz
Read: FCLK $\leq 50 \mathrm{MHz}$

Parameter	Symbol	FCLK $=4 \mathrm{MHz}$			$\mathbf{2 0 ~ M H z ~} \leq$ FCLK $\leq 50 \mathrm{MHz}$			Unit	Test conditions
		Min	Typ ${ }^{*}{ }^{4}$	Max	Min	Typ* ${ }^{*}$	Max		
Programming time $\mathrm{N}_{\text {OPC }} \leq 100$ times	t_{OP}	-	83	309	-	45	162	ms	
Programming time Nopc > 100 times	t_{OP}	-	100	371	-	55	195	ms	
Reprogramming cycle	$\mathrm{N}_{\text {OPC }}$	20000*1	-	-	20000*1	-	-	Times	
Data hold time*2	tDRP	$10^{*} 2$ *3	-	-	$10^{* 2}$ *	-	-	Years	

Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1 to the minimum value.
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
Note 3. This result is obtained from reliability testing.
Note 4. The reference value at $\mathrm{VCC}=3.3 \mathrm{~V}$ and room temperature.

2.13 Boundary Scan

Table 2.47 Boundary scan characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
TCK clock cycle time	$\mathrm{t}_{\text {TCKcyc }}$	100	-	-	ns	Figure 2.63
TCK clock high pulse width	$\mathrm{t}_{\text {TCKH }}$	45	-	-	ns	
TCK clock low pulse width	$\mathrm{t}_{\text {TCKL }}$	45	-	-	ns	
TCK clock rise time	$\mathrm{t}_{\text {TCKr }}$	-	-	5	ns	
TCK clock fall time	$\mathrm{t}_{\text {TCKf }}$	-	-	5	ns	
TMS setup time	$\mathrm{t}_{\text {TMSS }}$	20	-	-	ns	
TMS hold time	$\mathrm{t}_{\text {TMSH }}$	20	-	-	ns	Figure 2.64
TDI setup time	$\mathrm{t}_{\text {TDIS }}$	20	-	-	ns	
TDI hold time	$\mathrm{t}_{\text {TDIH }}$	20	-	-	ns	
TDO data delay	$\mathrm{t}_{\text {TDOD }}$	-	-	40	ns	
Boundary scan circuit startup time ${ }^{* 1}$	$\mathrm{~T}_{\text {BSSTUP }}$	$\mathrm{t}_{\text {RESWP }}$	-	-	-	Figure 2.65

Note 1. Boundary scan does not function until the power-on reset becomes negative.

Figure 2.63 Boundary scan TCK timing

Figure 2.64 Boundary scan input/output timing

Figure 2.65 Boundary scan circuit startup timing

2.14 Joint Test Action Group (JTAG)

Table 2.48 JTAG

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
TCK clock cycle time	$\mathrm{t}_{\text {TCKıyc }}$	40	-	-	ns	Figure 2.66
TCK clock high pulse width	$\mathrm{t}_{\text {TCKH }}$	15	-	-	ns	
TCK clock low pulse width	${ }_{\text {t }}$ CKL	15	-	-	ns	
TCK clock rise time	$\mathrm{t}_{\text {TCKK }}$	-	-	5	ns	
TCK clock fall time	${ }_{\text {t }}$ TCKf	-	-	5	ns	
TMS setup time	${ }^{\text {t }}$ MSS	8	-	-	ns	Figure 2.67
TMS hold time	$\mathrm{t}_{\text {TMSH }}$	8	-	-	ns	
TDI setup time	${ }^{\text {t }}$ TIS	8	-	-	ns	
TDI hold time	${ }^{\text {T }}$ (DIH	8	-	-	ns	
TDO data delay time	${ }_{\text {t }}$ ${ }^{\text {dod }}$	-	-	20	ns	

Figure 2.66 JTAG TCK timing

Figure 2.67 JTAG input/output timing

2.15 Serial Wire Debug (SWD)

Table 2.49 SWD

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
SWCLK clock cycle time	$\mathrm{t}_{\text {SWCKcyc }}$	40	-	-	ns	Figure 2.68
SWCLK clock high pulse width	$\mathrm{t}_{\text {SWCKH }}$	15	-	-	ns	
SWCLK clock low pulse width	$\mathrm{t}_{\text {SWCKL }}$	15	-	-	ns	
SWCLK clock rise time	$\mathrm{t}_{\text {SWCKr }}$	-	-	5	ns	
SWCLK clock fall time	$\mathrm{t}_{\text {SWCKf }}$	-	-	5	ns	
SWDIO setup time	$\mathrm{t}_{\text {SWDS }}$	8	-	-	ns	Figure 2.69
SWDIO hold time	$\mathrm{t}_{\text {SWDH }}$	8	-	-	ns	
SWDIO data delay time	$\mathrm{t}_{\text {SWDD }}$	2	-	28	ns	

Figure 2.68 SWD SWCLK timing

Figure 2.69 SWD input/output timing

2.16 Embedded Trace Macro Interface (ETM)

Table 2.50 ETM (1 of 2)
Conditions: High speed high drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
TCLK clock cycle time	$\mathrm{t}_{\text {TCLKcyc }}$	40	-	-	ns	Figure 2.70
TCLK clock high pulse width	$\mathrm{t}_{\text {TCLKH }}$	17	-	-	ns	
TCLK clock low pulse width	$\mathrm{t}_{\text {TCLKL }}$	17	-	-	ns	
TCLK clock rise time	$\mathrm{t}_{\text {TCLKr }}$	-	-	3	ns	
TCLK clock fall time	$\mathrm{t}_{\text {TCLKf }}$	-	-	3	ns	

Table 2.50 ETM (2 of 2)
Conditions: High speed high drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter	Symbol	Min	Typ	Max	Unit	Test conditions
TDATA[3:0] output setup time	$\mathrm{t}_{\text {TRDS }}$	3.5	-	-	ns	Figure 2.71
TDATA[3:0] output hold time	$\mathrm{t}_{\text {TRDH }}$	2.5	-	-	ns	

Figure 2.70 ETM TCLK timing

Figure 2.71 ETM output timing

Appendix 1. Port States in Each Processing Mode

Function	Pin function	Reset	Software Standby mode	Deep Software Standby mode	After Deep Software Standby mode is canceled (return to startup mode)	
					IOKEEP $=0$	IOKEEP $=1{ }^{* 1}$
Mode	MD	Pull-up	Keep-O	Keep	Hi-Z	Keep
JTAG	TCK/TMS/TDI	Pull-up	Keep-O	Keep	Hi-Z	Keep
	TDO	output	Keep-O	Keep	TDO output	Keep
IRQ	IRQx	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep
	IRQx-DS	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep
AGT	AGTIOn	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep
	AGTIOn ($\mathrm{n}=1,3$)	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep
SCl	RXD0	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep
IIC	SCLn/SDAn	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep
USBFS	USB_OVRCURx	Hi-Z	Keep-O*2	Keep	Hi-Z	Keep
	USB_OVRCURx-DS/ USB_VBUS	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep
	USB_DP/USB_DM	Hi-Z	Keep-O*4	Keep*3	Hi-Z	Keep
RTC	RTCICx	Hi-Z	Keep-O*2	Keep*3	Hi-Z	Keep
	RTCOUT	Hi-Z	[RTCOUT selected] RTCOUT output	Keep	Hi-Z	Keep
CLKOUT	CLKOUT	Hi-Z	[CLKOUT selected] CLKOUT output	Keep	Hi-Z	Keep
DAC	DAn	Hi-Z	[DAn output (DAOE = 1)] D/A output retained	Keep	Hi-Z	Keep
Others	-	Hi-Z	Keep-O	Keep	Hi-Z	Keep

Note: H: High-level
L: Low-level
Hi-Z: High-impedance
Keep-O: Output pins retain their previous values. Input pins go to high-impedance.
Keep: Pin states are retained during periods in Software Standby mode.
Note 1. Retains the I/O port state until the DPSBYCR.IOKEEP bit is cleared to 0
Note 2. Input is enabled if the pin is specified as the Software Standby canceling source while it is used as an external interrupt pin.
Note 3. Input is enabled if the pin is specified as the Deep Software Standby canceling source.
Note 4. Input is enabled while the pin is used as an input pin.

Appendix 2. Package Dimensions

Information on the latest version of the package dimensions or mountings is displayed in "Packages" on the Renesas Electronics Corporation website.

Figure 2.1 LQFP 100-pin

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-LFQFP64-10x10-0.50	PLQP0064KB-C	-	0.3

Unit: mm

NOTE)

1. DIMENSIONS "*1" AND "*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET,
2. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE

LOCATED WITHIN THE HATCHED AREA
CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

Detail F

Reference Symbol	Dimensions in millimeters		
	Min	Nom	Max
D	9.9	10.0	10.1
E	9.9	10.0	10.1
$\mathrm{~A}_{2}$	-	1.4	-
H_{D}	11.8	12.0	12.2
H_{E}	11.8	12.0	12.2
A	-	-	1.7
$\mathrm{~A}_{1}$	0.05	-	0.15
$\mathrm{~b}_{\mathrm{p}}$	0.15	0.20	0.27
c	0.09	-	0.20
θ	0°	3.5°	8°
e	-	0.5	-
x	-	-	0.08
y	-	-	0.08
$\mathrm{~L}_{\mathrm{p}}$	0.45	0.6	0.75
$\mathrm{~L}_{1}$	-	1.0	-

Figure 2.2 LQFP 64-pin

Figure 2.3 LQFP 48-pin

Figure 2.4 QFN 48-pin

Appendix 3. I/O Registers

This appendix describes I/O register address and access cycles by function.

3.1 Peripheral Base Addresses

This section provides the base addresses for peripherals described in this manual. Table 3.1 shows the name, description, and the base address of each peripheral.

Table 3.1 Peripheral base address (1 of 2)

Name	Description	Base address
RMPU	Renesas Memory Protection Unit	0x4000_0000
TZF	TrustZone Filter	0x4000_0E00
SRAM	SRAM Control	0x4000_2000
BUS	BUS Control	0x4000_3000
DMAC0	Direct memory access controller 0	0x4000_5000
DMAC1	Direct memory access controller 1	0x4000_5040
DMAC2	Direct memory access controller 2	0x4000_5080
DMAC3	Direct memory access controller 3	0x4000_50C0
DMAC4	Direct memory access controller 4	0x4000_5100
DMAC5	Direct memory access controller 5	0x4000_5140
DMAC6	Direct memory access controller 6	0x4000_5180
DMAC7	Direct memory access controller 7	0x4000_51C0
DMA	DMAC Module Activation	0x4000_5200
DTC	Data Transfer Controller	0x4000_5400
ICU	Interrupt Controller	0x4000_6000
CPSCU	CPU System Security Control Unit	0x4000_8000
DBG	Debug Function	0x400_1B000
FCACHE	Flash Cache	0x400_1C100
SYSC	System Control	0x4001_E000
PORT0	Port 0 Control Registers	0x4008_0000
PORT1	Port 1 Control Registers	0x4008_0020
PORT2	Port 2 Control Registers	0x4008_0040
PORT3	Port 3 Control Registers	0x4008_0060
PORT4	Port 4 Control Registers	0x4008_0080
PORT5	Port 5 Control Registers	0x4008_00A0
PORT6	Port 6 Control Registers	0x4008_00C0
PORT7	Port 7 Control Registers	0x4008_00E0
PFS	Pmn Pin Function Control Register	0x4008_0800
ELC	Event Link Controller	0x4008_2000
RTC	Realtime Clock	0x4008_3000
IWDT	Independent Watchdog Timer	0x4008_3200
WDT	Watchdog Timer	0x4008_3400
CAC	Clock Frequency Accuracy Measurement Circuit	0x4008_3600
MSTP	Module Stop Control A, B, C, D	0x4008_4000
POEG	Port Output Enable Module for GPT	0x4008_A000

Table 3.1 Peripheral base address (2 of 2)

Name	Description	Base address
USBFS	USB 2.0 FS Module	0x4009_0000
SDHIO	SD Host Interface 0	0x4009_2000
SSIE0	Serial Sound Interface Enhanced (SSIE)	0x4009_D000
IIC0	Inter-Integrated Circuit 0	0x4009_F000
IICOWU	Inter-Integrated Circuit 0 Wake-up Unit	0x4009_F014
IIC1	Inter-Integrated Circuit 1	0x4009_F100
CAN0	CAN0 Module	0x400A_8000
CTSU	Capacitive Touch Sensing Unit	0x400D_0000
PSCU	Peripheral Security Control Unit	0x400E_0000
AGT0	Low Power Asynchronous General purpose Timer 0	0x400E_8000
AGT1	Low Power Asynchronous General purpose Timer 1	0x400E_8100
AGT2	Low Power Asynchronous General purpose Timer 2	0x400E_8200
AGT3	Low Power Asynchronous General purpose Timer 3	0x400E_8300
AGT4	Low Power Asynchronous General purpose Timer 4	0x400E_8400
AGT5	Low Power Asynchronous General purpose Timer 5	0x400E_8500
TSN	Temperature Sensor	0x400F_3000
CRC	CRC Calculator	0x4010_8000
DOC	Data Operation Circuit	0x4010_9000
SCIO	Serial Communication Interface 0	0x4011_8000
SCl1	Serial Communication Interface 1	0x4011_8100
SCl2	Serial Communication Interface 2	0x4011_8200
SCl3	Serial Communication Interface 3	0x4011_8300
SCl4	Serial Communication Interface 4	0x4011_8400
SCI9	Serial Communication Interface 9	0x4011_8900
SPI0	Serial Peripheral Interface 0	0x4011_A000
SCE9	Secure Cryptographic Engine	0x4016_1000
GPT320	General PWM 32-Bit Timer 0	0x4016_9000
GPT321	General PWM 32-Bit Timer 1	0x4016_9100
GPT322	General PWM 32-Bit Timer 2	0x4016_9200
GPT323	General PWM 32-Bit Timer 3	0x4016_9300
GPT164	General PWM 16-Bit Timer 4	0x4016_9400
GPT165	General PWM 16-Bit Timer 5	0x4016_9500
GPT166	General PWM 16-Bit Timer 6	0x4016_9600
GPT167	General PWM 16-Bit Timer 7	0x4016_9700
GPT_OPS	Output Phase Switching Controller	0x4016_9A00
ADC120	12bit A/D Converter 0	0x4017_0000
DAC12	12-bit D/A converter	0x4017_1000
FLAD	Data Flash	0x407F_C000
FACI	Flash Application Command Interface	0x407F_E000
QSPI	Quad-SPI	0x6400_0000

Note: \quad Name $=$ Peripheral name
Description = Peripheral functionality
Base address = Lowest reserved address or address used by the peripheral

3.2 Access Cycles

This section provides access cycle information for the I/O registers described in this manual.

- Registers are grouped by associated module.
- The number of access cycles indicates the number of cycles based on the specified reference clock.
- In the internal I/O area, reserved addresses that are not allocated to registers must not be accessed, otherwise operations cannot be guaranteed.
- The number of I/O access cycles depends on bus cycles of the internal peripheral bus, divided clock synchronization cycles, and wait cycles of each module. Divided clock synchronization cycles differ depending on the frequency ratio between ICLK and PCLK.
- When the frequency of ICLK is equal to that of PCLK, the number of divided clock synchronization cycles is always constant.
- When the frequency of ICLK is greater than that of PCLK, at least 1 PCLK cycle is added to the number of divided clock synchronization cycles.
- The number of write access cycles indicates the number of cycles obtained by non-bufferable write access.

Note: This applies to the number of cycles when access from the CPU does not conflict with the instruction fetching to the external memory or bus access from other bus masters such as DTC or DMAC.

Table 3.2 Access cycles (1 of 3)

Peripherals	Address		Number of access cycles					
			ICLK = PCLK		ICLK > PCLK*1		Cycle Unit	Related function
	From	To	Read	Write	Read	Write		
RMPU, TZF, SRAM, BUS, DMACn, DMA, DTC, ICU	0x4000_0000	0x4000_6FFF	2	2	2	2	ICLK	Renesas Memory Protection Unit, TrustZone Filter, SRAM Control, BUS Control, Direct memory access controller n, DMAC Module Activation, DTC Control Register, Interrupt Controller
$\begin{aligned} & \text { CPSCU, DBG, } \\ & \text { FCACHE } \end{aligned}$	0x4000_8000	0x4001_CFFF	4	3	4	3	ICLK	CPU System Security Control Unit, Debug Function, Flash Cache
SYSC	0x4001_E000	0x4001_E3FF	5	4	5	4	ICLK	System Control
SYSC	0x4001_E400	0x4001_E5FF	9	8	5 to 8	5 to 8	PCLKB	System Control
PORTn, PFS	0x4008_0000	0x4008_0FFF	5	4	2 to 5	2 to 4	PCLKB	Port n Control Registers, Pmn Pin Function Control Register
ELC, RTC, IWDT, WDT, CAC	0x4008_2000	0x4008_3FFF	5	4	3 to 5	2 to 4	PCLKB	Event Link Controller, Realtime Clock, Independent Watchdog Timer, Watchdog Timer, Clock Frequency Accuracy Measurement Circuit
MSTP	0x4008_4000	0x4008_4FFF	5	4	2 to 5	2 to 4	PCLKB	Module Stop Control
POEG	0x4008_A000	0x4008_AFFF	5	4	3 to 5	2 to 4	PCLKB	Port Output Enable Module for GPT
USBFS	0x4009_0000	0x4009_03FF	6	5	3 to 6	3 to 5	PCLKB	USB 2.0 FS Module
USBFS	0x4009_0400	0x4009_04FF	4	3	1 to 4	1 to 3	PCLKB	USB 2.0 FS Module

Table 3.2 Access cycles (2 of 3)

Peripherals	Address		Number of access cycles					
			ICLK = PCLK		ICLK > PCLK*1		Cycle Unit	Related function
	From	To	Read	Write	Read	Write		
SDHIO, SSIEO, IICn, IICOWU	0x4009_2000	0x4009_FFFF	5	4	2 to 5	2 to 4	PCLKB	SD Host Interface 0, Serial Sound Interface Enhanced, InterIntegrated Circuit n, Inter-Integrated Circuit 0 Wake-up Unit
CANn	0x400A_8000	0x400A_9FFF	5	4	2 to 5	2 to 4	PCLKB	CANn Module
CTSU	0x400D_0000	0x400D_FFFF	4	3	1 to 4	1 to 3	PCLKB	Capacitive Touch Sensing Unit
PSCU	0x400E_0000	0x400E_0FFF	5	4	2 to 5	2 to 4	PCLKB	Peripheral Security Control Unit
AGTn	0x400E_8000	0x400E_8FFF	7	4	5 to 7	2 to 4	PCLKB	Low Power Asynchronous General purpose Timer n
TSN	0x400F_3000	0x400F_3FFF	5	4	2 to 5	2 to 4	PCLKB	Temperature Sensor
CRC, DOC	0x4010_8000	0x4010_9FFF	5	4	2 to 5	2 to 4	PCLKA	CRC Calculator, Data Operation Circuit
SCIn	0x4011_8000	0x4011_8FFF	$5^{* 2}$	$4^{* 2}$	2 to 5^{*}	2 to 4*2	PCLKA	Serial Communication Interface n
SPIn	0x4011_A000	0x4011_AFFF	$5^{* 3}$	$4^{* 3}$	2 to $5^{* 3}$	2 to $4^{* 3}$	PCLKA	Serial Peripheral Interface n
SCE9	0x4016_1000	0x4016_1FFF	6	4	3 to 6	2 to 4	PCLKA	Secure Cryptographic Engine
GPT32n, GPT16n, GPT_OPS	0x4016_9000	0x4016_9FFF	7	4	4 to 7	2 to 4	PCLKA	General PWM 32-Bit Timer n, General PWM 16-Bit Timer n, Output Phase Switching Controller
ADC12n, DAC12	0x4017_0000	0x4017_2FFF	5	4	2 to 5	2 to 4	PCLKA	12bit A/D Converter n, 12-bit D/A converter
QSPI	0x6400_0000	0x6400_000F	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0010	0x6400_0013	25 to *4	6 to *4	25 to *4	5 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0014	0x6400_0037	5	14 to *4	2 to 5	14 to *4	PCLKA	Quad-SPI
QSPI	0x6400_0804	0x6400_0807	4	3	1 to 4	1 to 3	PCLKA	Quad-SPI

Table 3.2 Access cycles (3 of 3)

Peripherals	Address		Number of access cycles					
			ICLK = FCLK		ICLK > FCLK*1		Cycle Unit	Related function
	From	To	Read	Write	Read	Write		
FLAD, FACI	0x407F_C000	0x407F_EFFF	3	3	2 to 3	2 to 3	FCLK	Data Flash, Flash Application Command Interface

Note 1. If the number of PCLK or FCLK cycles is non-integer (for example 1.5), the minimum value is without the decimal point, and the maximum value is rounded up to the decimal point. For example, 1.5 to 2.5 is 1 to 3 .
Note 2. When accessing a 16 -bit register (FTDRHL, FRDRHL, FCR, FDR, LSR, and CDR), access is 2 cycles more than the value shown in Table 3.2. When accessing an 8-bit register (including FTDRH, FTDRL, FRDRH, and FRDRL), the access cycles are as shown in Table 3.2.
Note 3. When accessing the 32 -bit register (SPDR), access is 2 cycles more than the value in Table 3.2. When accessing an 8 -bit or 16 -bit register (SPDR_HA), the access cycles are as shown in Table 3.2.
Note 4. The access cycles depend on the QSPI bus cycles.

Revision History

Revision 1.00 - Aug 28, 2020

First edition, issued

Revision 1.10 - Jan 27, 2021

1. Overview:

- Added note to Figure 1.1 Block diagram
- Changed pin name in Table 1.15 Pin functions.

2. Electrical Characteristics

- Added information about supported functions and pins.
- Changed LDO to LDOn in Table 2.7 Operating and standby current.
- added Note 15 to PLL2-LDO operating current in Table 2.7 Operating and standby current
- Removed ADTRG1 in Figure 2.25 ADC12 trigger input timing.

Revision 1.20 - May 31, 2023

1. Overview:

- Fixed 1.1 Function Outline.
- Fixed 1.3 Part Numbering.
- Fixed 1.5 Pin Functions.
- Fixed 1.6 Pin Assignments.

2. Electrical Characteristics:

- Fixed 2.2.1 Tj/Ta Definition.
- Fixed Table 2.7 Operating and standby current.

Appendix 3. I/O Registers:

- Fixed Table 3.2 Access cycles.

Revision 1.30 - Jul 28, 2023

1. Overview

- Fixed Figure 1.2 Part numbering scheme.

2. Electrical Characteristics:

- Fixed Table 2.6 I/O VOH, VOL, and other characteristics.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{I L}$ (Max.) and $V_{I H}$ (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{I L}$ (Max.) and $V_{I H}$ (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

