FINAL

Am386™DX/DXL

High-Performance, Low-Power, 32-Bit Microprocessor

e

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS
B Ideal for portable PCs
—True static design for long battery life
(Am386DXL microprocessor)

—Typical standby lcc <20 pA at DC (0 MHz)
(Am386DXL microprocessor)

—Typical operating lcc=210 mA at 33 MHz

—Lower power consumption than Intel i386DX or
Intel i386SX

—Small footprint 132-pin PQFP package

—Wide range of chip sets and BIOS available to
support standby mode capabilities

—Performance on demand (0 to 40 MHz)
B Ideal for desktop PCs
—40-, 33-, 25-, and 20-MHz operating speeds
—Lower heat dissipation facilitates fan reduction or
elimination for cost savings and noise reduction
—Pin-for-pin replacement for Intel i386DX
B Compatible with 386DX systems and software

B Supports 387DX-compatible math
coprocessors

B AMD advanced 0.8 micron CMOS technology

GENERAL DESCRIPTION

The Am386DX/DXL microprocessor is a high-speed,
true static implementation of the Intel i386DX micropro-
cessor. ltis ideal for both desktop and battery-powered
portable personal computers. For desktop PCs, the
Am386DXL microprocessor offers a 21% increase in
the maximum operating speed from 33 to 40 MHz. Also,
this device offers lower heat dissipation, allowing sys-
tem designers to remove or reduce the size and cost of
the system cooling fan.

For portables, the Am386DXL microprocessor's true
static design offers longer battery lite with low operating
power consumption and standby mode. At 33 MHz, this

device has 40% lower operating lcc than the Intel
i386DX. Standby mode allows the Am386DXL micro-
processor to be clocked down to 0 MHz (DC) and retain
full register contents. in standby mode, typical current
draw is less than 20 pA, nearly a 1000x reduction in
power consumption versus the Intei i386DX or Intel
i386SX.

Additionally, the Am386DXL microprocessor is avail-
able in a small footprint 132-pin plastic quad flat pack
(PQFP) package. This surface-mount package is 40%
smaller than PGA, allowing smaller, lower-cost board
designs without the need for a socket.

Typical lec
250 -1~
200 'r O Inteli386DX @ 5.0V
A Am386DX/DXL CPU @ 5.0 V
lec (MA) 150 =+~ O Am386DXLVCPU@3.3V
100 —L
501
0 —]] [
1 I J I
0 2 16 20 33

Frequency (MHz)
Note: Inputs at Vcc or Vss.

Typical Power Consumption

Publication #: 15021 Rev.D Amendment: /0
Issue Date: October 1992

n AMD

BLOCK DIAGRAM
Segmentation Unit Paging Unit Bus Control
HOLD, INTR,
- / 3-Input <i‘> Request NMI, ERROR,
Effective Address Bus | V| Adder Adder % Prioritizer [€® BUSY, RESET,
HLDA, FLT
—N] Descript 32 p :
" escriptor age @ 5
Efioctivo AdcressBus [7 Registers Cache £ £
32 . 3
g
—~] Limitand > C‘;’r“gm \I/t— g
i a
i Atglt)xte Attribute
2 PLA ::> Address BE3-BE0
@ A A Driver A31-A2
g
E
@© =
Protection 8 5
Test Unit & E 'z o
° g 8 Pipeline/ M/‘O'—D/C'
h 4 @ — —
Internal Control Bus k] %) Bus Size \21%2’ %'
< 4 Control oS, EeTs,
3 [NA, READY
e °
5 8
y \ 4
MUX/
Barrel
P - ‘—’ —]
Shifter, Decode 1 ; © Trans- D31-Do
Add :\J> d Instruction f|> fetcher/ a5 | ceivers
er s and — Decoder Limit
Status eqUenClng Checker
X Flags
Multiply/
Divide
3-Decoded | code | 16-Byte
CSSI'LIOI Instruction | gtream| Code
Register L | <:: Queue Queue
File
ALU c | Instruction 32 8it Instruction
t
G Control ontre Predecode Prefetch s
ALU Dedicated ALU Bus /
32
15021B-001

Ama386 Microprocessors for Personal Computers

AMD a

FUNCTIONAL DESCRIPTION

True Static Operation (Am386DXL CPU)

The Am386DXL microprocessor incorporates a true
static design. Unlike dynamic circuit design, the
Am386DXL device eliminates the minimum operating
frequency restriction. It may be clocked from its maxi-
mum speed of 40 MHz all the way down to 0 MHz (DC).
System designers can use this feature to design true
32-bit battery-powered portable PCs with long battery
life.

Standby Mode (Am386DXL CPU)

This true static design allows for a standby mode. At any
of its operating speeds (40 MHz to DC), the Am386DXL
microprocessor will retain its state (i.e., the contents of
all of its registers). By shutting off the clock completely,
the device enters standby mode. Since power con-
sumption is a function of clock trequency, operating
power consumption is reduced as the frequency is low-
ered. In standby mode, typical current draw is reduced
to less than 20 pA at DC.

Not only does this feature save battery life, but it also
simplifies the design of power-conscious notebook
computers in the following ways:

1. Eliminates the need for software in BIOS to save
and restore the contents of registers.

2. Allows simpler circuitry to control stopping of the
clock since the system does not need to know
the processor state.

Lower Operating lcc

True static design also allows lower operating lcc when
operating at any speed. See the following graph for typi-
cal current at operating speeds.

Performance On Demand

The Am386DXL microprocessor retains its state at any
speedfrom 0 MHz (DC) to its maximum operating speed
(20, 25, 33, or 40 MHz). With this feature, system de-
signers may vary the operating speed of the system to
extend the battery life in portable systems.

For example, the system could operate at low speeds
during inactivity or polling operations. However, uponin-
terrupt, the system clock can be increased up to its
maximum speed. After a user-defined time-out period,
the systemcan be returnedto alow (or 0 MHz) operating
speed without losing its state. This design maximizes
lite while achieving optimal performance.

Am386DX/DXL Microprocessor Data Sheet 3

14
13
12
10

11

202020202080 208020808080£080
B0 505020508080 208080£20£05080
50 #0 £0 £0 20 80 #0 080 E0 £0 080 §0O
80 80 £0 g§go3iogo
20 80 50 808080
80 f0 20 202080
80 5080 z0z0%z0
mowomo 202030
komomo 202020
Bo g0 o $02030
30 50 20 o 2020%0
;00 $0 #0300 5020204030 20%020
f0o o200 0% osoMoTocovocvoono
soBoo8 3030

132-Lead Ceramic Pin Grid Array (PGA) Package — Top Side View

a AMD

CONNECTION DIAGRAMS

14
13
12
10
9
8
7
6
5
4
3
2
1

Am386 Microprocessors for Personal Computers

shippings of the Am386DX/DXL microprocessor.

Note: NC = Not connected; connection of any NC pin may cause a malfunction or incompatability with future

AMD l"l

CONNECTION DIAGRAMS (continued)

132-Lead Ceramic Pin Grid Array (PGA) Package — Pin Side View

1

2

3

4

5

6

7

8

9

10

11

12
13
14

A23 A26 A27 A30

O O O O

A16 A17 A20 A21

A15

A14

O O O O O

VCC

Vss Ve

A13

OO O O0OO0OO0OO0OO0OO0OO0

A18 Vss A22 A24 A29 A31

O
D30
@)

D29

O O
D27 D26
O O O

D28 D25

A19 Vss A25 A28 Ve

O O O 0O O

Vss
O

VCC

Vss Vee
O O

@)
D31

Vss

0 O O
D24
OO O O

VCC

Voo

Vs D23 Voo
O O O
D20 D21

D22

0 O O

Vss D17 D19
0 O O

D15 D16 D18

O O O

Metal Lid

NC NC
O O O

Vss

INTR NC
O O O

Vee

NMI PEREQ

O O O

ERROR

Vss BUSY RESET

O O O

g0 20 20O
s0fo¢ofo
s0 80200 20

BEO

Dio D12 D14
D13
@)
Vs
O

VCC

D7 VCC
D5 D8 D11
o O
D6 HLDA D9

Do

CLK2 Vee
NC READY

NC

Vss
OO OO0OO0OO0OO0OO0OO0OO0OO
OO OO0 OO0 O0O0
D2

Vee
NA
BS16 HOLD ADS

Vs
O O OO0 OO0 OO0 O0

Vss

3

8

o
poet

-~
—

o ™
-~ -

14

Not connected; connection of any NC pin may cause a maifunction or incompatability with future

shippings of the Am386DX/DXL microprocessor.

Note: NC =

Am386DX/DXL Microprocessor Data Sheet

n AMD

CONNECTION DIAGRAMS (continued)
PGA Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee Vss
Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.
A2 C4 Do H12 ADS E14 A4 Al A2
A3 A3 D1 H13 BEO E12 B4 A5 A6
A4 B3 D2 H14 BET C13 B6 A7 A9
A5 B2 D3 J14 BEZ B13 B12 A10 B1
A8 c3 D4 K14 BE3 A13 Cé Al4 B85
A7 c2 Ds K13 BS16 C14 c7 Cs B11
A8 C1 D6 L14 BUSY B9 E13 Cc12 B4
A9 D3 D7 K12 CLK2 F12 F13 D12 Cc11
A10 D2 D8 L13 DT Al1 G2 F2
A1 D1 D9 N14 ERROR A8 G3 F3
A12 E3 D10 M12 HLDA M14 G12 F14
A13 E2 D11 N13 HOLD D14 G14 J2
A14 E1 D12 N12 INTR B7 L12 J3
A15 F1 D13 P13 LOCK c1o0 M3 J12
A16 G1 D14 P12 MO A12 M7 J13
A17 H1 D15 M11 NA D13 M13 M4
A18 H2 D16 N11 NMI B8 N4 M8
A19 H3 D17 N10 PEREQ [oF:} N7 M10
A20 JH D18 P11 READY G13 P2 N3
A21 K1 D19 P10 RESET c9 P8 P86
A22 K2 D20 M9 W/R B10 P14
A23 L1 D21 N9
A24 L2 D22 P9
A25 K3 D23 N8
A26 M1 D24 P7
A27 N1 D25 N6
A28 L3 D26 P5
A29 M2 D27 N5
A30 P1 D28 M6
A31 N2 D29 P4
D30 P3
D31 M5

6 Am386 Microprocessors for Personal Computers

AMD I‘J

CONNECTION DIAGRAMS (continued)
PGA Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name | No. Name | No. Name | No. Name | No. Name
Al Veo B9 BUSY D3 A9 H1 A7 L13 D8 N7 Vee
A2 Vss B10 WAR D12 Ve He A18 L14 D6 N8 D23
A3 A3 Bt Vs DI3 NA H3 A19 M1 A26 N9 D21
A4 NC B2 NC D14 HOLD Hi2 Do M2 A29 N10 D17
A5 Vee B13 BEZ Et Al4 H13 D1 M3 Veo N11 D16
A6 Vss B14 Vs E2 A13 H14 D2 M4 Vss N12 D12
A7 Veo c1 A8 E3 A12 J1 A20 M5 D31 Ni3 DN
A8 ERROR | C2 A7 Ei2 BEO J2 Vss M6 D28 N14 D9
A9 Vss c3 A6 E13 NC J3 Vss M7 Vee P1 A30
A10 Ve c4 A2 E14 ADS J12 Vss M8 Vss P2 Vee
A1 D/C cs5 Ve F1 A15 J13 Ve M9 D20 P3 D30
A2 MO C6 NC F2 Vss J14 D3 M10 Vss P4 D29
A13 BE3 Cc7 NC F3 Vss K1 A21 M11 D15 Ps D26
Al4 Vee c8 PEREQ | F12 CLK2 K2 A22 M12 D10 P6 Vss
B1 Vss cse RESET | F13 NC K3 A25 M13 Vee P7 D24
B2 A5 c10 LOCK F14 Vss Kt2 D7 M14 HLDA P8 Vee
B3 Ad Ci1 Vs Gt Al6 K13 D5 N1 A27 P9 D22
B4 NC C12 Ve G2 Vee Ki4 D4 N2 A31 P10 D19
B85 Vss Cc13 BET G3 Vee L1 A23 N3 Vss P11 D18
B6 NC Ci4 BST6 G12 Ve L2 A24 N4 Vee P12 D14
B7 INTR D1 A1 Gi3 READY| L3 A28 N5 D27 P13 D13
B8 NMI D2 Al0 G14 Ve 112 Ve N6 D25 P14 Vss

Am386DX/DXL Microprocessor Data Sheet

n AMD

CONNECTION DIAGRAMS (continued)
132-Lead Plastic Quad Flat Pack (PQFP) Package —Top Side View

Ves] 1@ 99
Vo T 2 98
D13 [3 97
D12 [4 96
D11 1 s 95
D10 [6 94
Do [7 93
HLDA [] 8 92
Ds] 9 91
Vee [10 90
Ves [11 89
D7 3 12 88
De] 13 87
Ds [14 86
D4 [15 85
Voo] 16 84
D3 4 17 83
D2] 18 82
D1 19 81
Do] 20 80
Ves] 21 79
Voo [22 78
Ves] 23 77
CLk2] 24 76
Vs [] 25 75
READY [] 26 74
ADS [27 73
HOLD [28 72
BSis [29 71
NA] 30 70
BE0 [31 69
BET [32 68
BEz [} 33 67
3885333792395 99383508388353B838883388
gubttbgotguututuouoouofyodouuodud

S22 SRR ESLBPS g SSER S 202082 NS

a1 W o | w -
T o

Notes: Pin 1 is marked for orientation.
NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future
shippings of the Am386DX/DXL microprocessor.

gooooooooooooooodiouauboybutuuooh

Am386 Microprocessors for Personal Computers

AMD a

CONNECTION DIAGRAMS (continued)
132-Lead Plastic Quad Flat Pack (PQFP) Package — Pin Side View

- E e}
o 10 |§|g %Eo & = &

$20oBo B R s sl s hus s 500900898

HIHNNNNNNNNNNnnnnnnnnnnnnnninnnmm

8858333923995 9I3oT9R3IBELBRIEBIETES
BEz [33 67 A2
TzTEaz 68 [A3
BEO 31 69 [A4
NA [30 701 As
Bs16 [29 71 £ A6
HOLD] 28 723 A7
ADS [27 73 3 Ve
READY [286 74 [A8
Ves T 25 75 1 A9
CLK2] 24 76 [A10
Vss [23 77 23 A1t
Voo [22 78 23 a1z
Vss [21 79 [A13
Do [20 80 [Vss
D1] 19 81 | A4
D2] 18 823 A5
D3 [17 83 1 Vss
Vo [16 84 3 Ale
D4] 15 85 1 Ve
D5] 14 86 [C1 A17
Ds [] 13 87| A1s
D7] 12 88 [A19
Ves [11 89 [A20
Vss [T 10 90] Vss
D8] o 91 [Vs
HLDA] s 92 [Vs
Do 7 93 |3 A2t
DIc] s 94] A22
DIt [5 95] A23
D12 1 4 96 [A24
D13 [] 3 9723 azs
Vo [2 98 1 A26
Vs [1 99 [Vee

BEBRRGRRIRNNR22 222 r288588388568

Hudyuuuduiuuggdgddouguiuiutduuuud

~— a2 b -
R R L R R L E L R L R Y

Notes: Pin 1 is marked for orientation.

NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future
shippings of the Am386DX/DXL microprocessor.

Am386DX/DXL Microprocessor Data Sheet 9

u AMD

CONNECTION DIAGRAMS (continued)
PQFP Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee Vss
Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.
A2 67 DO 20 ADS 27 36 2 1
A3 68 D1 19 BEO 31 37 16 10
A4 69 D2 18 BET 32 39 22 11
A5 70 D3 17 BEZ 33 59 34 21
A6 71 D4 15 BE3 38 60 49 23
A7 72 D5 14 BS16 29 61 56 25
A8 74 D6 13 BUSY 46 62 58 35
A9 75 D7 12 CLK2 24 63 73 44
Al10 76 D8 9 D/C 41 85 48
Al 77 D9 7 ERROR 47 99 51
A12 78 D10 6 FLT 54 106 55
A13 79 D11 5 HLDA 8 110 57
A4 81 b12 4 HOLD 28 117 64
A15 82 D13 3 INTR 53 128 65
At6 84 D14 131 LOCK 42 127 66
A17 86 D15 130 MG 40 80
A18 87 D16 129 NA 30 83
A19 88 D17 128 NMI 52 90
A20 89 D18 126 PEREQ 50 91
A21 a3 D19 125 READY 26 92
A22 94 D20 124 RESET 45 105
A23 95 D21 121 W/R 43 111
A24 96 D22 120 114
A25 97 D23 119 122
A26 98 D24 118 132
A27 100 D25 116
A28 101 D26 115
A29 102 D27 113
A30 103 D28 112
A3t 104 D29 109
D30 108
D31 107
10 Am386 Microprocessors for Personal Computers

AMD a

CONNECTION DIAGRAMS (continued)
PQFP Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name | No. Name | No. Name | No. Name | No. Name
1 Vss 23 Vss 45 RESET | 67 A2 89 A20 111 Vss
2 Voo 24 CLK2 46 BUSY 68 A3 90 Vss 112 D28
3 D13 25 Vss 47 ERROR| 69 A4 9 Vss 113 D27
4 D12 26 READY | 48 Vss 70 A5 92 Vss 114 Vs
5 D11 27 ADS 49 Vee 71 A8 93 A21 115 D26
6 Dio 28 HOLD | 50 PEREQ] 72 A7 94 A22 116 D25
7 D9 29 BSi6 51 Vss 73 Voe 95 A23 117 Vee
8 HLDA 30 NA 52 NMI 74 A8 96 A24 118 D24
9 D8 31 BED 53 INTR 75 A9 97 A25 119 D23
10 Vss 32 BET 54 FLT 76 A10 98 A26 120 D22
1 Vss 33 BE2 55 Vss 77 Al1 99 Voo 121 D21
12 D7 34 Vee 56 Vee 78 A12 100 A27 122 Vss
13 D6 35 Vss 57 Vss 79 A13 101 A28 123 Vee
14 D5 36 NC 58 Vee 80 Vss 102 A29 124 D20
15 D4 37 NC 59 NC 81 Al4 102 A30 125 D19
16 Voo 38 BE3 60 NC 82 A15 104 A31 126 D18
17 D3 39 NC 61 NC 83 Vss 105 Vs 127 Ve
18 D2 40 MAS 62 NC 84 A16 106 Vee 128 D17
19 D1 41 DiC 63 NC 85 Ve 107 D31 129 D16
20 Do 42 LOCK 64 Vss 86 A17 108 D30 130 D15
21 Vss 43 W/R 65 Vss 87 A18 109 D29 131 D14
22 Veo 44 Vss 66 Vss 88 A19 110 Ve 132 Vs

Am386DX/DXL Microprocessor Data Sheet

"

n AMD

LOGIC SYMBOL
2XClock ———# CLK2 D31-Do <:z> Data Bus
<I A31-A2
Addrgﬁz FLT [¢&——— Float
L
RESET ¢——
NM| j¢—— Interrupt
EETE Control
—*|Bste INTR [¢——
Bus | ¢———ADS
Cycle i
Control » NA
——»| READY
PEREQ [¢&— Math
+— WA BUSY [¢&— Coprocessor
— Control
Bus | ¥ D/C ERROR [¢——
Cycle __
Definition ¢ Mio
44— LOCK
HOLD HLDA

I

Bus Arbitration
Control

15021B-003

12 Am386 Microprocessors for Personal Computers

AMD a

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

A 80386DXL 33

T—— OPTIONAL PROCESSING (PQFP Only)

None = Trimmed and Formed PQFP in High Temp Trays
/F =Ringed PQFP in Horizontal Tubes

TEMPERATURE RANGE

Blank = Commercial (Tease = 0°C to +85°C for PGA)
(Tease = 0°C to +100°C for PQFP)

SPEED OPTION
—40 =40 MHz
-33=33 MHz
—25=25MHz
—20=20 MHz

DEVICE NUMBER/DESCRIPTION

80386DX/DXL
Am386DX/DXL High-Performance, Low-Power, 32-Bit Microprocessor

PACKAGE TYPE

A = 132-Lead Ceramic Pin Grid Array (CGX 132)
NG = 132-Lead Plastic Quad Flat Pack (PQB 132)

Valid Combinations

Valid Combinations
Valid Combinations lists configurations planned to
be supported in volume tor this device. All speeds
may not be available in all package combinations.

Consult the local AMD sales office to confirm
availability of specific valid combinations and to

—40
-33
A80386DX/DXL
-25
-20
NG80386DX —40, —40/F
—33, -33/F
NG80386DX/DXL 25, —25/F

check on newly released combinations.

Am386DX/DXL Microprocessor Data Sheet 13

a AMD

PIN DESCRIPTION

A31-A2

Address Bus (Outputs)

Outputs physical memory or port I/O addresses.

ADS

Address Status (Active Low; Output)

Indicates that a valid bus cycle definition and address
(W/R, D/C, M/IO, BEO, BET, BE2, BE3, and A31-A2)
are being driven at the Am386DX/DXL microprocessor
pins.

BE3-BEO

Byte Enables (Active Low; Outputs)

Indicate which data bytes of the data bus take part in a
bus cycle.

BS16

Bus Size 16 (Active Low; Input)

Allows direct connection of 32-bit and 16-bit data buses.
BUSY

Busy (Active Low; Input)

Signals a busy condition from a processor extension.
CLK2

Clock (Input)

Provides the fundamental timing for the Am386DX/DXL
MICroprocessor.

D31-D0O

Data Bus (inputs/Outputs)

inputs data during memory, I/O, and interrupt acknow-
ledge read cycles and outputs data during memory and
1/0 write cycles.

D/C

Data/Control (Output)

A bus cycle definition pin that distinguishes data cycles,
either memory or 1/O, from control cycles which are:
interrupt acknowledge, halt, and instruction fetching.
ERROR

Error (Active Low; Input)

Signals an error condition from a processor extension.
FLT

Float (Active Low; input)

An input signal which forces all bidirectional and output
signals, including HLDA, to the three-state condition.

FLT has aninternal pull-up resistor, and if it is not used it
should be unconnected.

HLDA

Bus Hold Acknowledge (Active High; Output)
Indicates that the Am386DX/DXL microprocessor has
surrendered control of its local bus to another bus
master.

HOLD

Bus Hold Request (Active High; Input)

Allows another bus master to request control of the local
bus.

INTR

Interrupt Request (Active High; input)

A maskable input that signals the Am386DX/DXL micro-
processor to suspend execution of the current program
and execute an interrupt acknowledge function.
LOCK

Bus Lock (Active Low; Output)

A bus cycle definition pin that indicates that other sys-
tem bus masters are denied access to the system bus
while it is active.

Mo

Memory I/O (Output)

A bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

NA

Next Address (Active Low; Input)

Used to request address pipelining.

NC

No Connect

Should always remain unconnected. Connection of a
NC pin may cause the processor to malfunction or be
incompatible with future steppings of the Am386DX/
DXL microprocessor.

NMI

Non-Maskable Interrupt Request

(Active High; Input)

A non-maskable input that signals the Am386DX/DXL
microprocessor to suspend execution of the current pro-
gram and execute an interrupt acknowledge function.
PEREQ

Processor Extension Request (Active High; Input)
indicates that the processor extension has data to be
transferred by the Am386DX/DXL microprocessor.
READY

Bus Ready (Active Low; Input)

Terminates the bus cycle.

RESET

Reset (Active High; Input)

Suspends any operation in progress and places the
Am386DX/DXL microprocessor in a known reset state.

Vee

System Power (Input)

Provides the +5-V nominal DC supply input.

Vss

System Ground (Input)

Provides 0-V connection from which all inputs and out-
puts are measured.

W/R

Write/Read (Output)

A bus cycle definition pin that distinguishes write cycles
from read cycles.

14 Am386 Microprocessors for Personal Computers

AMD a

BASE ARCHITECTURE

Introduction

The Am386DX/DXL microprocessor consists of a
central processing unit, a memory management unit,
and a bus interface.

The central processing unit consists of the execution
unit and instruction unit. The execution unit contains
the eight 32-bit general purpose registers that are used
for both address calculation, data operations, and a
64-bit barrel shifter used to speed shiit, rotate, multiply,
and divide operations. The multiply and divide logic
uses a 1-bit per cycle algorithm. The multiply algorithm
stops the iteration when the most significant bits of
the multiplier are ail zero. This allows typical 32-bit
muttiplies to be executed in under 1 ms. The instruction
unit decodes the instruction op-codes and stores them
in the decoded instruction queue for immediate use by
the execution unit.

The Memory Management Unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
aliows easy code and data relocatability and efficient
sharing. The paging mechanism operates beneath and
is transparent to the segmentation process to allow
management of the physical address space. Each
segment is divided into one or more 4-Kb pages. To
implement avirtual memory system, the Am386DX/DXL
microprocessor supports full restartability for all page
and segment faults.

Memory is organized into one or more variable length
segments, each up to 4 Gb in size. A given region of the
linear address space, a segment, can have attributes
associated with it. These attributes include its location,
size, type (i.e., stack, code, or data), and protection
characteristics. Each task on an Am386DX/DXL micro-
processor can have a maximum of 16,381 segments of
up to 4 Gb each, thus providing 64 tb (trillion bytes) or
virtual memory to each task.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the
operating system from each other. The hardware
enforced protection allows the design of system with a
high degree of integrity.

The Am386DX/DXL microprocessor has two modes of
operation: Real Address Mode (Real Mode) and Pro-
tected Virtual Address Mode (Protected Mode). In Real
Mode, the Am386DX/DXL device operates as a very
fast 8086 but with 32-bit extensions, if desired. Real
Mode is required primarily to setup the processor for
Protected Mode operation. Protected Mode provides

address to the sophisticated memory management,
paging, and privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086
semantics, thus allowing 8086 software (an application
program or an entire operating system) to execute. The
Virtual 8086 tasks can be isolated and protected from
one another and the host Am386DX/DXL microproces-
sor operating system by the use of paging and the I/0
Permission Bitmap.

Finally, to facilitate high-performance system hardware
designs, the Am386DX/DXL microprocessor bus inter-
tace ofters address pipelining, dynamic data bus sizing,
and direct Byte Enable signals for each byte of the
data bus. These hardware features are described fully
beginning in the Functional Data section.

Register Overview

The Am386DX/DXL microprocessor has 32 register re-
sources in the following categories.

o General Purpose Registers

e Segment Registers

s Instruction Pointer and Flags

« Control Registers

* System Address Registers

* Debug Registers

o Test Registers

The registers are a superset of the 8086, 80186, and
80286 registers, so all 16-bit 80186 and 80286

registers are contained within the 32-bit Am386DX/DXL
Microprocessor.

Figure 1 shows all the Am386DX/DXL microprocessor
base architecture registers that include the general ad-
dress and data registers, the instruction pointer, and the
flags register. The contents of these registers are task-
specitic, so these registers are automatically loaded
with a new context upon a task switch operation.

The base architecture also includes six directly accessi-
ble segments, each up to 4 Gb in size. The segments
are indicated by the selector values placed in
Am386DX/DXL CPU segment registers of Figure 1.
Various selector values can be loaded as a program
executes, if desired.

The selectors are also task specific, so the segment reg-
isters are automatically loaded with new context upon a
task switch operation.

The other types of registers Control, System Address,
Debug, and Test are primarily used by system software.

Am386DX/DXL Microprocessor Data Sheet 15

n AMD

General Data and Address Registers

31 16 16 0
AX EAX
BX EBX
CX ECX
DX EDX
Sl ESI
DI EDI
BP EBP
SP ESP
Segment Selector Registers
15 0
CS Code
gs Stack
DS
ES Data
FS
GS
Instruction Pointer and Flags Registers
31 16 15 0
IP EiP
FLAGS EFLAGS
15021B-004

Figure 1. Base Architecture Registers

Register Descriptions
General-Purpose Registers

The eight general-purpose registers of 32 bits hold data
or address quantities. The general registers, Figure 2,
support data operands of 1, 8, 16, 32, and 64 bits and bit
fields of 1 to 32 bits. They support address operands of
16 and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be ac-
cessed separately. This is done by using the 16-bit
names of the registers AX, BX, CX, DX, SI, DI, BP, and
SP. When accessed as a 16-bit operand, the upper
16 bits of the register are neither used nor changed.

Finally, 8-bit operations can individually access the
lower byte (bits 7-0) and the higher byte (bits 15-8) of
general purpose registers AX, BX, CX, and DX. The
lower bytes are named AL, BL, CL, and DL, respec-
tively. The higher bytes are named AH, BH, CH, and DH,
respectively. The individual byte accessibility offers
additional flexibility for data operations, but is not used
for effective address calculation.

31 1615 87 0
AH_A[X AL EAX
BH B|X BL EBX
CH C|X CL ECX
DH D|X DL EDX
sl ES!
DI EDI
BP EBP
SP ESP
31 1615 0
{ EIP
IP
15021B-005

Figure 2. General Registers
and Instruction Pointer

Instruction Pointer

The instruction pointer, Figure 2, is a 32-bit register
named EIP. EIP holds the offset of the next instruction
to be executed. The offset is always relative to the base
of the code segment (CS). The lower 16 bits (bits 15-0)
of EIP contain the 16-bit instruction pointer named IP,
which is used by 16-bit addressing.

Flags Register

The Flags Register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS, shown in
Figure 3, control certain operations and indicate status
of the Am386DX/DXL microprocessor. The lower 16 bits
(bits 15-0) of EFLAGS contain the 16-bit flag register
named FLAGS, which is most useful when executing
8086 and 80286 code.

Note in the following descriptions, set means set to 1
and reset means reset to 0.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Am386DX/DXL
microprocessor is in Protected Mode, the
Am386DX/DXL microprocessor will switch to Vir-
tual 8086 operation, handling segment loads as
the 8086 does, but generating Exception 13 fauits
onprivileged op-codes. The VM bit can be set only
in Protected Mode by the IRET instruction (if cur-
rent privilege level = 0) and by task switches at any
privilege level. The VM bit is unaffected by POPF.
PUSHF always pushes a 0 in this bit, even if exe-
cuting in Virtual 8086 Mode. The EFLAGS image
pushed during interrupt processing or saved dur-
ing task switches will contain a 1 in this bit if the in-
terrupted code was executing as a Virtual 8086
task.

16 Am386 Microprocessors for Personal Computers

AMD n

RF

NT

(Resume Flag, bit 16)

The RF flag is used in conjunction with the debug
register breakpoints. It is checked at instruction
boundaries betore breakpoint processing. When
RF is set, it causes any debug fault to be ignored
on the next instruction. RF is then automatically
reset at the successful completion of every in-
struction (no faults are signaled) except the IRET
instruction and the POPF instruction. (JMP,
CALL, and INT instructions causing atask switch.)
These instructions set RF to the value specified by
the memory image. For example, at the end of the
breakpoint service routine, the IRET instruction
can pop an EFLAGS image having the RF bit set
and resume the program’s execution at the break-
point address without generating another break-
point fault on the same location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set to
indicate that the execution of this task is nested
within another task. If set, it indicates that the cur-
rent nested task’s Task State Segment (TSS) has
a valid back link to the previous task’s TSS. This
bit is set or reset by control transfers to other
tasks. The value of NT in EFLAGS is tested by the
IRET instruction to determine whether to do an
inter-task return or an intra-task return. A POPF
or an IRET instruction will affect the setting of this
bit according to the image popped at any privilege
level.

IOPL (Input/Output Privilege Level, bits 12-13)

OF

DF

This two-bit field applies to Protected Mode. IOPL
indicates the numerically maximum CPL (current
privilege level) value permitted to execute 1/O
instructions without generating an Exception 13
fault or consulting the I/O Permission Bitmap. It
also indicates the maximum CPL value allowing
alteration of the IF (INTR Enable Flag) bit when
new values are popped into the EFLAGS register.
POPF and IRET instruction can alter the 10PL
field when executed at CPL=0. Task switches
can always alter the IOPL field when the new flag
image is loaded from the incoming task’s TSS.

(Overtlow Flag, bit 11)

OD is set if the operation resufted in a signed over-
flow. Signed overflow occurs when the operation
resulted in carry/borrow into the sign bit (high-
order bit) of the result but did not result in a carry/
borrow out of the high-order bit or vice-versa. For
8-, 16-, and 32-bit operations, OF is set according
to overfiow at bits 7, 15, and 31, respectively.

(Direction Flag, bit 10}

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the sg

TF

SF

ZF

AF

PF

CF

instructions. Postincrement occurs if DF is reset.
Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of exter-
nal interrupts signaled onthe INTR pin. When IF is
reset, externalinterrupts signaled onthe INTR are
not recognized. IOPL indicates the maximum CPL
value allowing alteration of the IF bit when new
values are popped into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of Exception 1 trap
when single-stepping through code. When TF is
set, the Am386DX/DXL microprocessor gener-
ates an Exception 1 trap after the next instruction
is executed. When TF is reset, Exception 1 traps
occur only as a function of the breakpoint ad-
dresses loaded into debug register DR3-DRO.

(Sign Flag, bit 7)

SF is set if the high-order bit of the result is set; itis
reset otherwise. For 8-, 16-, and 32-bit oper-
ations, SF reflects the state of bits 7, 15, and 31,
respectively.

(Zero Flag, bit 6)

ZF is set if all bits of the result are 0. Otherwise itis
reset.

(Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addition
and subtraction of packed BCD quantities. AF is
set if the operation resulted in a carry out of bit
3 (addition) or a borrow into bit 3 (subtraction).
Otherwise, AF is reset. AF is affected by carry out
of, or borrow into, bit 3 only; regardless of overall
operand length: 8, 16, or 32 bits.

(Parity flags, bit 2)

PF is set if the low-order 8 bits of the operation
contain an even number of 1s (even parity). PF is
reset if the low-order 8 bits have odd parity. PFis a
function of only the low-order 8 bits, regardless of
operand size.

(Carry Flag, bit 0)

CF is set if the operation resulted in a carry out
of (addition) or a borrow into (subtraction) the
high-order bit. Otherwise, CF is reset. For 8-, 16-,
or 32-bit operations, CF is set according to carry/
borrow at bits 7, 15, or 31, respectively.

Am386DX/DXL Microprocessor Data Sheet 17

n AMD

Flags
A
- ~
332222222222111 1111111
109876543210987 654321098765 43210
VIR NllOP|O|D| LIT|S]|Z A P o]
EFLAGS Reserved for Future Use miFlolTI L IEIFIFIEIEIFlo|FlolF]1]E
Virtual Mode —T T | T— Carry Flag
Resume Flag Parity Flag
Nested Task Flag Auxiliary Carry
1/O Privilege Level Zero Flag
Overflow Sign Flag
Direction Flag Trap Flag
Interrupt Enable
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
15021B-006
Figure 3. Flags Registers
Segment
Registers Descriptor Registers (Loaded Automatically)
Other
. Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector S5 — —
Selector DS- — ==
Selector ES- — ==
Selector FS— — - |-
Selector GS- —|—1—
15021B-007

Figure 4. Segment Registers and Associated Descriptor Registers

Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 4. In
Protected Mode, each segment may range in size from
one byte up to the entire linear and physical space of the
machine, 4 Gb (2*bytes). If a maximum sized segment
is used (limit = FFFFFFFFH), it should be Dword aligned
(i.e., the least two significant bits of the segment base
should be zero). This alignment will avoid a segment
limit violation (Exception 13) caused by the wrap
around. In Real Address Mode, the maximum segment
size is fixed at 64 Kb (2'° bytes).

The six segments addressable at any given moment are
defined by the segment registers: CS, SS, DS, ES, FS,
and GS. The selector in SS indicates the current stack

segment; the selectors in DS, ES, FS, and GS indicate
the current data segments.

Segment Descriptor Registers

The segment descriptor registers are not programmer
visible, yet it is very useful to understand their content.
Inside the Am386DX/DXL microprocessor, a descriptor
register (programmer invisible) is associated with each
programmer-visible segment register, as shown by
Figure 4. Each descriptor register holds a 32-bit seg-
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment register,
the associated descriptor register is automatically up-
dated with the correct information. In Real Address
Mode, only the base address is updated directly (by

18

Am386 Microprocessors for Personal Computers

AMD n

shifting the selector value four bits to the left), since the R (Reserved, bit 4)
segment maximum limit and attributes are fixed in Real This bit is Reserved for Future Use. When loading
Mode. In Protected Mode, the base address, the limit, CRO care should be taken to not alter the value of
andthe attributes are ali updated per the contents of the this bit.
segment descriptor indexed by the selector. . .
TS (Task Switched, bit 3)
Whenever amemory reference occurs, the segment de- .) .
scriptor register associated with the segment being TS is automatically set whenever a task switch
used is automatically involved with the memory refer- operation is performed. If TS is set, a coprocessor
ence. The 32-bit segment base address becomes a Esqlag? otpcodg will gaﬁsg a1c_:hoprtorcesior Q:Ot
component of the linear address calculation, the 32-bit vailable trap (Exception 7). The trap handler
limit is used for the limit-check operation, and the attrib- typically saves a 387[»-(math coprocessor con-
. ’ text belonging to a previous task, loads a 387DX
utes are checked against the type of memory reference math coprocessor state belonging to the current
requested. task, and clears the TS bit before retuming to the
Control Registers faulting coprocessor op-code.
The AM386DX/DXL microprocessor has three control EM (Emulate Coprocessor, bit 2)
registers of 32 bits: CR0, CR2, and CR3 to hold machine The Emulate coprocessor bit is set to cause all
state of a global nature (not specific to an individual coprocessor op-codes to generate a Coprocessor
task). These registers, along with System Address Reg- Not Available fault (Exception 7). Itis reset to aliow
isters described in the next section, hold machine state coprocessor op-codes to be executed on an ac-
that affects all tasks in the system. To access the Con- tual 387DX math coprocessor (this is the defauit
trol Registers, load and store instructions are defined. case after reset). Note that the WAIT op-code is
CRO: Machine Control Register (Includes 80286 not affected by the EM bt setting.
Machine Status Word) MP (Monitor Coprocessor, bit 1)
CRO, shown in Figure 5, contains six defined bits for The MP bit is used in conjunction with the TS bit to
control and status purposes. The low-order 16 bits of determine it the WAIT op-code will generate a
CRO are aiso known as the Machine Status Word Coprocessor Not Available fault (Exception 7)
(MSW) for compatibility with 80286 Protected Mode. when TS=1. When both MP=1 and TS=1, the
LMSW and SMSW instructions are taken as special ali- WAIT op-code generates a trap. Otherwise,
ases of the load and store CRO operations, where only the WAIT op-code does not generate a trap. Note
the low-order 16 bits of CRO are involved. For compati- that TS is autornatically set whenever a task
bility with 80286 operating systems, the Am386DX/DXL switch operation is performed.
microprocessor LMSW instructions work in an identical PE (Protection Enable, bit 0)
fashion to the LMSW instruction on t.he 80286 i.e., .'t The PE bit is set to enable the Protected Mode. If
only operates on the low-order 16 bits of CR0 and it PE is reset, the processor operates again in Real
. o . , gain in Real
ignores the new bits in CR0). New Am386DX/DXL mi- Mode. PE may be set by loading MSW or CRO. PE
croprocessor operating systems should use the MOV can be reset only by a load into CRO. Resetting
CRO, Reg instruction. the PE bit is typically part of a longer instruction
The defined CRO bits are described below. sequence needed for proper transition from Pro-
tected Mode to Real Mode. Note that for strict
PG (Paging Enable, bit 31) 80286 compatibility, PE cannot be reset by the
The PG bit is set to enable the on-chip paging unit. LMSW instruction.
It is reset to disable the on-chip paging unit.
31 24123 1615 817 0
Elololo]o]o]o|o|ofofofo]o]a]o|afo]o ofolofofoo]ofo(r|L{GI¥]|E]| cRro
MSW
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
Figure 5. Control Register 0 150218008
Am386DX/DXL Microprocessor Data Sheet 19

n AMD

CR1: Reserved
CR1 is reserved for future processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 6, holds the 32-bit linear address
that caused the last page fault detected. The error code
pushed onto the page fault handler's stack when it is in-
voked provides additional status information on this
page fault.

CR3: Page Directory Base Address

CRS3, shown in Figure 6, contains the physical base
address of the page directory table. The Am386DX/DXL
microprocessor page directory table is always page-
aligned (4-Kb aligned). Therefore, the lowest 12 bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS that changes the value in
CR3, or an explicit load into CR3 with any value, will in-
validate all cached page table entries in the paging unit
cache. Note that if the value in CR3 does not change
during the task switch, the cached page table entries are
not flushed.

System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU and
Am386DX/DXL microprocessor protection model.

These tables or segments are:
GDT (Global Descriptor Table)
IDT (Interrupt Descriptor Table)
LDT (Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are stored
in special registers, the System Address and System
Segment Registers illustrated in Figure 7. These
registers are named GDTR, IDTR, LDTR, and TR, re-
spectively. The Protected Mode Architecture section
describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address and
16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is en-
abled) and 16-bit limit values.

LDTRand TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values stored
in the system segment registers. Note that a segment
descriptor register (programmer-invisible) is associated
with each system segment register.

31 24 |23 16]15 8 |7 0
Page Fautlt Linear Address Register CR2
Page Directory Base Register | 0|0|0|0|0I0|0| 0| 0|0|Ol 0| CR3
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
15021B-009
Figure 6. Control Registers 2 and 3
System Address Registers
47 32-Bit Linear Base Address 1615 Limit 0
GDTR
IDTR
System Segment i . i
Registers Descriptor Registers (Automatically Loaded)
15 o 32BitLinear Base Address 32-Bit Segment Limit Attributes
TR Selector
LDTR Selector
15021B-010

Figure 7. System Address and System Segment Registers

20 Am386 Microprocessors for Personal Computers

Debug and Test Registers

Debug Registers: The six programmer accessible de-
bug registers provide on-chip support for debugging.
Debug Registers DR3-DR0O specify the four linear
breakpoints. The Debug Control Register DR7 is used
to set the breakpoints, and the Debug Status Register
DR6 displays the current state of the breakpoints. The
use of the debug registers is described in the Debugging
Support section.

Test Registers: Two registers are used to control the
testing of the RAM/CAM (Content Addressable Memo-
ries) in the Translation Look-Aside Buffer portion of the
Am386DX/DXL microprocessor. TR6 is the command
test register, and TR7 is the data register that contains
the data of the Translation Look-Aside buffer test. Their
use is discussed in the Testability section. Figure 8
shows the Debug and Test registers.

Debug Registers

31 Q
Linear Breakpoint Address 0 DRo
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3
Reserved for Future use. Do not define. DR4
Reserved for Future use. Do not define. DR5
Breakpoint Status DRé
Breakpoint Control DR7

a1 Test Registers (For Page Cache) o
Test Control TR6
Test Status TR7

150218011

Figure 8. Debug and Test Registers

AMD Zl
Register Accessibility

There are a few differences regarding the accessibility
of the registers in Real and Protected Mode. Table 1
summarizes these differences. See the Protected Mode
Architecture section for further details.

Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note certain
Am386DX/DXL microprocessor register bits are Re-
served for Future Use. When reserved bits are called
out, treat them as fully undefined. This is essential for
software compatibility with future processors! Follow the
guidelines below:

1. Do not depend on the state of any undefined bits
when testing the values of defined register bits.
Mask them out when testing.

2. Do not depend on the state of any undefined bits
when storing them to memory or another register.

3. Do not depend on the ability to retain information
written into any undefined bits.

4. When loading registers, always load the undefined
bits as zeros.

5. However, registers that have been previously stored
may be reloaded without masking.

Depending upon the values of undefined register bits
will make your software dependent upon the unspeci-
fied Am386DX/DXL microprocessor handling of these
bits. Depending on undefined values risks making soft-
ware incompatible with future processors that define us-
ages for the Am386DX/DXL CPU undefined bits. Avoid
any software dependence upon the state of undefined
Am386DX/DXL CPU register bits.

Table 1. Register Usage

Use In Use In Use In

Real Mode Protected Mode Virtuai 8086 Mode

Register Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yeos Yeos Yes Yeos Yes

Flag Registers Yes Yes Yes Yes 10PL 10PL
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=0 No No

Notes: PL = 0: The registers can be accessed only when the current privilege level is zero.
IOPL: The PUSHF and POPF instructions are made /O Privilege Level sensitive in Virtual 8086 Mode.

Am386DX/DXL Microprocessor Data Sheet

21

n AMD

Instruction Set
Instruction Set Overview

The instruction set is divided into nine categories of
operations.

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transter

High Level Language Support
Operating System Support
Processor Control

These Am386DX/DXL microprocessor instructions are
listed in Table 2.

All Am386DX/DXL microprocessor instructions operate
on either 0, 1, 2, or 3 operands where an operand re-
sides in a register in the instruction itself or in memory.
Most zero operand instructions (e.g., CLI, STI) take only
one byte. One operand instructions generaily are two
bytes long. The average instruction is 3.2-bytes long.
Since the Am386DX/DXL device has a 16-byte instruc-
tion queue, an average of 5 instructions wili be
prefetched. The use of two operands permits the follow-
ing types ot common instructions.

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be either 8-, 16-, or 32-bits long. As a
general rule, when executing code written for the
Am386DX/DXL microprocessor (32-bit code), operands
are 8 or 32 bits; when executing existing 80286 or 8086
code (16-bit code), operands are 8 or 16 bits. Prefixes
can be added to instructions that override the default
length of the operands (i.e., use 32-bit operands for
16-bit code or 16-bit operands for 32-bit code).

Addressing Modes
Addressing Modes Overview

The Am386DX/DXL microprocessar provides a total of
11 addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow the
efficient execution of high-level languages such as C
and FORTRAN, and they cover the vast majority of data
references needed by high-level languages.

Register and Immediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands:

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operand is included in
the instruction as part of the op-code.

32-Bit Memory Addressing Modes

The remaining nine modes provide a mechanism for
specifying the effective address of an operand. The lin-
ear address consists of two components: the segment
base address and an effective address. The effective
address is calculated by using combinations of the fol-
lowing four address elements.

Displacement: An 8- or 32-bit immediate value follow-
ing the instruction.

Base: The contents ot any general-purpose register.
The Base registers are generally used by compilers to
point to the start of the local variable area.

Index: The contents of any general-purpose register ex-
ceptfor ESP. The Index registers are used to access the
elements of an array, or a string of characters.

Scale: The index register’s value can be multiplied by a
scale factor of either 1, 2, 4, or 8. Scaled index mode is
especially useful for accessing arrays or structures.

Combinations of these four components make up the
nine additional addressing modes. There is no perform-
ance penalty for using any of these addressing combi-
nations, since the effective address calculation is
pipelined with the execution of other instructions.

The one exception is the simultaneous use of Base and
Index components that requires one additional clock.

As shown in Figure 9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA =Base Reg + (Index Reg - Scaling) + Displacement
Direct Mode: The operand’s offset is contained as part
of the instruction as an 8-, 16-, or 32-bit displacement.
Example: INC Word PTR [500}
Register indirect Mode: A Base register contains the
address of the operand.
Example: MOV [ECX], EDX

Based Mode: A Base register's contents is added to a
Displacement to form the operands offset.

Example: MOV ECX, [EAX + 24}

22 Am386 Microprocessors for Personal Computers

AMD

Table 2. Am386DX/DXL Microprocessor Instructions

Table 2a. Data Transfer

Table 2b. Arithmetic Instructions

General Purpose Addition
MoV Move operand ADD Add operands
PUSH | Push operand onto stack ADC Add with carry
POP Pop operand off stack INC Increment operand by 1
PUSHA| Push all registers on stack AAA ASCI| adjust for addition
POPA | Pop all registers off stack DAA Decimal adjust for addition
XCHG | Exchange operand register Subtraction
XLAT | Translate suB Subtract operands
Conversion SBB Subtract with borrow
MOVZX | Move byte or Word, Dword with zero extension DEC | Decrement operand by 1
MOVSX | Move byte or Word, Dword, sign extended NEG | Negate operand
CBW Convert byte to Word, or Word to Dword CMP | Compare operands
CWD Convert Word to Dword DAS Decimal adjust for subtraction
CWDE | Convert Word to Dword extended AAS | ASCIi adjust for subtraction
cDQ Convert Dword to Qword Multiplication
Input/Output MUL Multiply Double/Single Precision
IN Input operand from I/O space IMUL Integer multiply
ouT Output operand to I/O space AAM ASCII adjust after multiply
Address Object Division
LEA Load effective address DIV Divide unsigned
LDS Load pointer into D segment register DIV Integer divide
LES Load pointer into E segment register AAD ASCI| adjust before division
LFS Load pointer into F segment register
LGS Load pointer into G segment register Table 2c. String Instructions
LSS Load pointer into S (Stack) segment register MOVS | Move byte or Word, Dword string
Flag Manipulation INS Input string from /O space
LAHF Load A register from Flags OUTS | Output string to O space
SAHF Store A register in Flags CMPS | Compare byte or Word, Dword string
PUSHF | Push flags onto stack SCAS | Scan Byte or Word, Dword string
POPF Pop flags off stack LODS | Load byte or Word, Dword string
PUSHFD | Push EFLAGS onto stack STOS | Store byte or Word, Dword string
POPFD | Pop EFLAGS off stack REP | Repeat
cLe Clear Carry Flag EEEE/ Repeat while equal/zero
CLD Clear Direction Flag
RENE/
CMC Complement Carry Flag REPNZ | Repeat while not equal/not zero
STC Set Carry Flag
STD Set Direction Flag

Am386DX/DXL Microprocessor Data Sheet

23

l‘.' AMD

Table 2. Am386DX/DXL Microprocessor Instructions (continued)

Table 2d. Logical Instructions

Logicals

Table 2f. Program Control Instructions

(continued)

Unconditional Transfers

NOT “NOT" operand
opel CALL Call procedure/task
AND “AND” operands
- RET Return from procedure
OR “Inclusive OR" operands
- JMP Jump
XOR “Exclusive OR" operands
TEST “Test’ operands lteration Controls
Shifts LOOP Loop
SHL/SHR | Shift logical left or right LOOPE/
SAL/SAR | Shift arithmetic left or right LOOPZ | Loop if equal/zero
SHLD/ LOOPNE/
SHRD Double shift left or right LOOPNZ | Loop it not equai/not zero
Rotates JCXZ JUMP if register CX=0
ROL/ROR | Rotate left/right Interrupts
RCL/RCR | Rotate through carry left/right INT Interrupt
Table 2e. Bit Manipulation Instructions INTO Interrupt if overflow
- - - IRET Return from interrupt/task
- Single Bit Instructions CLI Clear interrupt enable
BT Bit Test STI Set interrupt enable
BTS Bit Test and Set
BTR Bit Test and Reset Table 2g. High Level Language Instructions
BTC Bit Test and Complement BOUND | Check array bounds
BSF Bit Scan Forward ENTER | Setup parameter block for entering procedure
BSR Bit Scan Reverse LEAVE Leave procedure
Table 2f. Program Control Instructions Table 2h. Protection Model
Conditional Transters SG[;T Store global dejcriptor table
SID St int t iptor tabl
SETCC Set byte equal to condition code S errup‘ SscTplorleme
- STR Store task register
JA/JJNBE | Jump if above/not below nor equal -
- SLDT Store local descriptor table
JAE/UNB Jump if above or equal/not below GoT Load alobal 4 " or 1abl
a a
JB/INAE Jump if below/not above nor equal DT LO d?? 2 te:cnp ort tebl
oal riptor
JBE/UNA Jump if below or equal/not above |n errugv SScfplorebe
- LTR Load task register
JC Jump if carry -
- LLDT Load local descriptor table
JENZ Jump if equal/zero ARPL Adiust wod orivi ovel
JG/INLE Jump if greater/not less nor equal L reques.e priviege ove
- LAR Load access rights
JGE/ANL Jump if greater or equal/not less —
- LSL Load segment limit
JLAUNGE Jump if less/not greater nor equal VERR
JLE/ANG Jump if less or equal/not greater VERW Verify segment for reading or writing
JINC Jump it not carry LMSW Load machine status word (lower 16 bits
JNEANZ Jump if not equal/not zero of CR0)
JNO Jump if not overflow SMSwW Store machine status word
JINP/JPO | Jump !f not parity/parity odd Table 2i. Processor Control Instructions
JNS Jump if not sign
JO Jump if overflow HLT Ha‘T '
JPUPE Jump if parity/parity even WAIT Wait until BUSY negated
Js Jump if sign EsC Escape
LOCK Lock Bus
24 Am386 Microprocessors for Personal Computers

AMD a

Index Mode: An Index register’s contents is added to a
Displacement to form the operands offset.

Example: ADD EAX, TABLE [ESI]

Scaled Index Mode: An Index register’s contents is mul-
tiplied by a scaling factor that is added to a Displace-
ment to form the operands offset.

Example: IMUL EBX, TABLE [ESI+4], 7

Based Index Mode: The contents of a Base register is
added to the contents of an Index register to form the
effective address of an operand.

Example: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an index
register is multiplied by a Scaling factor and the resuit is
added to the contents of a Base register to obtain the
operands offset.

Example: MOV ECX, [EDX « 8] [EAX]

Based Index Mode with Displacement: The contents of
an Index Register and a Base register’s contents and a
Displacement are all summed together to form the
operand offset.

Example: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The con-
tents of an Index register are multiplied by a Scaling
factor; the result is added to the contents of a Base reg-
ister and a Displacement to form the operand’s offset.

Example: MOV EAX, LOCALTABLE[EDI « 4] [EBP + 80]

Segment Registers
SS

GS
FS
ES
DS Selector

L Base Register |

Index Register I

— CS

Descriptor Registers

Access Rights SS l
Access Rights GS]
Access Rights FS I
Access Rights ES I
Access Rights DS |
Access Rights CS

Limit

»{ Base Address

—()

Effective s
Address Limit

X

Scale
1,2,4,0r8

Displacement
(In Instruction)

Segment

4

Linear
Address

Target Address

Selected
Segment

Segment Base Address

15021B-012

Figure 9. Addressing Mode Calculations

Am386DX/DXL Microprocessor Data Sheet 25

a AMD

Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with the 80286
and the 8086, the Am386DX/DXL microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the in-
structions itis executing by examining the D bitinthe CS
segment descriptor. If the D bit is 0 then all operand
lengths and effective addresses are assumed to be 16
bits long. If the D bit is 1 then the default length for oper-
ands and addresses is 32 bits. In Real Mode, the default
size for operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386DX/DXL microprocessor is able
to execute either 16- or 32-bit instructions. This is speci-
fied via the use of override prefixes. Two prefixes, the
Operand Size Prefix and the Address Length Prefix,
override the value of the D bit on an individual instruction
basis.

Example: The processor is executing in Real Mode and the
programmer needs to access the EAX registers. The assem-
bler code for this might be MOV EAX, 32-bit MEMORYOP. An
assembler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0 and the programmer wishes to use
Scaled Index addressing mode to access an array. The
Address Length Prefix allows the use of MOV DX,
TABLE[ESle2]. The assembler uses an Address Length
Prefix, since with D = 0, the default addressing mode is 16 bits.
Example: The D bit is 1 and the program wants to store a
16-bit quantity. The Operand Length Prefix is used to specify
only a 16-bit value: MOV MEM16, DX.

The Operand Length and Address Length prefixes can
be applied separately or in combination to any instruc-
tion. The Address Length Prefix does not allow ad-
dresses over 64 Kb to be accessed in Real Mode. A
memory address exceeding FFFFH will resultin a Gen-
eral Protection Fault. An Address Length Prefix only al-
lows the use of the additional Am386DX/DXL micropro-
cessor addressing modes.

When executing 32-bit code, the Am386DX/DXL micro-
processor uses either 8- or 32-bit displacements, and
any register can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8 or 16 bits, and the base and index register
conform to the 80286 model. Table 3 illustrates the
differences.

Data Types

The Am386DX/DXL microprocessor supports all data
types commonly used in high-level languages.

Bit: A singie bit quantity.

Bit Field: A group of up to 32 contiguous bits that spans a
maximum of four bytes.

Bit String: A set of contiguous bits on the Am386DX/
DXL microprocessor bit strings can be up to 4 Gb long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit

quantity. All operations assume a 2's complement
representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.
Unsigned Long Integer (Double Word): An unsigned
32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.
Unsigned Quad Word: An unsigned 64-bit quantity.

Offset: A 16- or 32-bit offset only quantity that indirectly
references another memory location.

Pointer: A full pointer which consists of a 16-bit segment
selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII alphanumeric
or control character.

String: A contiguous sequence of bytes, words, or
Dwords. A string may contain between 1 byte and 4 Gb.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.

When the Am386DX/DXL. microprocessor is coupled
with a 387DX math coprocessor then the following com-
mon floating point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. Floating point numbers are supported
by a 387DX compatible math coprocessor.

Figure 10 illustrates the data types supported by the
Am386DX/DXL microprocessor and a 387DX compat-
ible math coprocessor.

Table 3. Base and Index Registers for 16- and 32-Bit Addresses

32-Bit Addressing

16-Bit Addressing
Base Register BX, BP
Index Register Sl, DI
Scale Factor None
Displacement 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

26 Am386 Microprocessors for Personal Computers

AMD

7 0 7 0
Signed RERRA Unsigned [T T T T
Byte Byte
SignBit JL_ | |
Magnitude Magnitude
514 87 ° 15 + 0 0
Signed II|II]III|III Unsigned||||||||||||||
Word Word
Sign Bit 1 LMsSB \ 1 !
Magnitude Magnitude
31 +3 2 16 15 +1 0 0
Signed
Sgned TTTT[TTT[TTT[TTT[TTT[TTT[TTT 171
Word
Sign Bit 1, LMSB |
Magnitude
31 +3 +2 16 15 + 0 0
Unsigned
Digned ety rrrp e rrrprrep v
Word
|- 1
Magnitude
63 +7 +6 4847 +5 +4 3231 +3 +2 16 15 +1 0 4
Signed
Quad
Word
Sign Bit 4, LMsB)
Magnitude
7 +N o 7 +1 07 0 0
Biay TTTTTTTI HERERERRAARARA
Coded see
Decimal
(BCD) BCD Digit N BCD Digit 1 BCD Digit 0
7 +N 0 7 +1 07 0 0
RERERA RERRRRERARRAA
*on
ASCII
ASCII Character N ASCI! Character 1 ASCIl Character 0
7 +N 0 7 +1 07 0 0
rerpred Frrprrrfrerprnl
Packed Y
BCD
— —
Most Significant Digit Least Significant Digit
715 N 0 s 0 7/15 0 0
Bmlll]lll...lll“llI|||III
String

15021B-013

Figure 10. Supported Data Types

Am386DX/DXL Microprocessor Data Sheet

n AMD

Long
48-Bit
Pointer

32-Bit
Bit Field

*Supported by 387DX-compatible math coprocessor.

Figure 10. Supported Data Types (continued)

+2 Gbits —2 Gbits
210
Bit
String
Bit0
31 +3 +2 +1 ¢} 0
Short
e (PP ETTPTTE TP TET T
Pointer
L i
Offset
p +5 +4 +3 +2 +1 0 0
rrrprrrprerpreerrreprrprreprrrrrrrp e
Selector Offset
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 o
Floating
Point”
Sign Bit J | n |
Exponent Magnitude
+5 +4 +3 +2 +1 0
T T I T[T T T T[T T T[T T[T T T[T T[T I T I TIT]TT]
le Bit Field N|
« 110 32 Bits o
150218013

28

Am386 Microprocessors for Personal Computers

AMD u

Memory Organization
Introduction

Memory on the Am386DX/DXL. microprocessor is di-
vided up into 8-bit quantities (Bytes), 16-bit quantities
{Words), and 32-bit quantities (Dword). Words are
stored in two consecutive bytes in memory with the low-
order byte at the lowest address, the high-order byte at
the highest address. Dwords are stored infour consecu-
tive bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest address.
The address of a word or Dword is the byte address of
the low-order byte.

in addition to these basic datatypes, the Am386DX/DXL
microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up into
one or more variable length segments, which can be
swapped to disk or shared between programs. Memory
can also be organized into one or more 4-Kb pages.
Finally, both segmentation and paging can be com-
bined, gaining the advantages of both systems. The
Am386DX/DXL microprocessor supports both pages
and segments in order to provide maximum flexibility to
the system designer. Segmentation and paging are
complementary. Segmentation is useful for organizing
memory in logical modules, and as such is a toolfor the
application programmer, while pages are useful for the
system programmer for managing the physical memory
of a system.

Address Spaces

The Am386DX/DXL microprocessor has three distinct
address spaces: logical, linear, and physical. A logical

address (also known as a virtual address) consists of a
selector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all of
the addressing components (Base, Index, Displace-
ment) discussed in Section Memory Address Modes
into an effective address. Since eachtask on Am386DX/
DXL CPU has amaximum of 16K (2'*—1) selectors, and
offsets can be 4 Gb (2% bits), this gives a total of 2*¢ bits
or 64 b of logical address space per task. The program-
mer sees this virtual address space.

The segmentation unit translates the logical address
space into a 32-bit linear address space. If the paging
unit is not enabled then the 32-bit linear address corre-
sponds to the physical address. The paging unit trans-
lates the linear address space into the physical address
space. The physical address is what appears on the

address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs the
translation of the logical address into the linear address.
in Real Mode, the segmentation unit shifts the selector
left four bits and adds the result to the offset to form
the linear address. While in Protected Mode, every se-
lector has a linear base address associated with it. The
linear base address is stored in one of two operating
systemtables (i.e., the Local Descriptor Table or Global
Descriptor Table). The selector’s linear base address is
added to the offset to form the final linear address.

Figure 11 shows the relationship between the various
address spaces.

Effective Address Calculation
Index
Base Displacement
Scale 31 0
1,2,4,8
;$4 BE3-BEO
- A31-A2
Physical
30 Effective Address Memory
15 2 0 ,I >
R Logical or Segmentation 32| Paging Unit ;32 o
Selector P Virtual Address 9 Unit] U (Optional Use) [T v
L 14/ > Linear Physical
- Descriptor Index Address Address
Segment Register
15021B-014

Figure 11. Address Translation

Am386DX/DXL Microprocessor Data Sheet 29

u AMD

Segment Register Usage

The main data structure used to organize memory isthe
segment. On the Am386DX/DXL microprocessor, seg-
ments are variable sized blocks of linear addresses that
have certain attributes associated with them. There are
two main types of segments: code and data. The seg-
ments are of variable size and can be as small as 1 byte
or as large as 4 Gb (2% bytes).

In order to provide compact instruction encoding and in-
crease processor performance, instructions do not need
to explicitly specify which segment register is used. A
default segment register is automatically chosen ac-
cording to the rules of Table 4 (Segment Register Selec-
tion Rules). In general, data references use the selector
contained in the DS register; Stack references use the
S8 register; and Instruction fetches use the CS register.
The contents of the instruction Pointer provides the off-
set. Special segment override prefixes allow the explicit
use of a givensegment register, and override the implicit
rules listed in Table 4. The override prefixes also allow
the use of the ES, FS, and GS segment registers.

There are no restrictions regarding the overlapping of
the base addresses of any segments. Thus, all 6 seg-
ments could have the base address set to zero and
create a system with a 4-Gb linear address space. This
creates a system where the virtual address space is the
same as the linear address space. Further details of
segmentation are discussed in Section Protected Mode
Architecture.

/0 Space

The Am386DX/DXL microprocessor has two distinct
physical address spaces: Memory and 1/O. Generally,
peripherals are placed in I/O space although the
Am386DX/DXL CPU also supports memory-mapped
peripherals. The I/O space consists of 64 Kb and can be
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K
32-bit ports, or any combination of ports that add up to
less than 64 Kb. The 64Kb I/O address space refers to
physical memory rather than linear address since I/O in-
structions do not go through the segmentation or paging
hardware. The M/IO pin acts as an additional address
line, thus allowing the system designer to easily deter-
mine which address space the processor is accessing.

The /O ports are accessed via the IN and OUT I/0 in-
structions, with the port address supplied as an immedi-
ate 8-bit constant in the instruction or in the DX register.
All 8- and 16-bit port addresses are zero extended on
the upper address lines. The /O instructions cause the
M/O pin to be driven Low.

I/O port addresses 00F8H through 00FFH are reserved.

Interrupts
Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handie external events, to report errors
or exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used to

Table 4. Segment Register Selection Rules

Type of Memory Reference

Implied (Default) Segment Use

Segment Override Prefixes Possible

Code Fetch CSs None

Destination of PUSH, PUSHF, INT, SS None

CALL, PUSHA Instructions

Source of POP, POPA, POPF, SS None

IRET, RET Instructions

Destination of STOS, MOVS, REP ES None

STOS, REP MOVS Instructions

(Dlis Base Register)

Other Data References with

Effective Address Using Base

Register of:
[EAX] DS CS, SS, ES, FS, GS
[EBX] Dbs CS, SS, ES, FS, GS
[ECX] DS CS, SS, ES, FS, GS
[EDX] DS CS, SS, ES, FS, GS
[ESI] DS CS, SS, ES, FS, GS
[ED]] DS CS, SS, ES, FS, GS
[EBP)] SS CS, SS, ES, FS, GS
[ESP] SS CS, SS, ES, FS, GS

Am386 Microprocessors for Personal Computers

AMD a

handle asynchronous external events while excep-
tions handle instruction faults. Although a program can
generate a software interrupt via an INT n instruction,
the processor treats software interrupts as exceptions.

Hardware interrupts occur as the result of an external
event and are classified into two types: maskable or
non-maskable. Interrupts are serviced after the execu-
tion of the current instruction. After the interrupt handler
is finished servicing the interrupt, execution proceeds
with the instruction immediately after the interrupted in-
struction. The differences between the interrupts are
discussed in the Maskable Interrupt and Non-Maskable
Interrupt sections.

Exceptions are classified as faults, traps, or aborts de-
pending on the way they are reported, and whether or
not restart of the instruction causing the exception is
supported. Faults are exceptions that are detected and
serviced before the execution of the faulting instruction.
A fault occurs in a virtual memory system when the
processor references a page or a segment that is not
present. The operating system fetches the page or seg-
ment from disk, and then the Am386DX/DXL micropro-
cessor restarts the instruction. Traps are exceptions
that are reported immediately after the execution of the
instruction that caused the problem. User defined inter-
rupts are examples of traps. Aborts are exceptions that

do not permit the precise location of the instruction caus-
ing the exception to be determined. Aborts are used to
report severe errors, such as a hardware error or illegal
values in system tables.

Thus, when an interrupt service routine has been com-
pleted, execution proceeds from the instruction immedi-
ately following the interrupted instruction. On the other
hand, the return address from an exception fault routine
will always point at the instruction causing the exception
and include any leading instruction prefixes. Table 5
summarizes the possible interrupts for the Am386DX/
DXL microprocessor and shows where the return ad-
dress points.

The Am386DX/DXL microprocessor has the ability to
handle up to 256 difterent interrupts/exceptions. In order
to service the interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are sim-
ply pointers to the appropriate interrupt service routine.
In Real Mode (see Section Real Mode Introduction),
the vectors are 4 byte quantities, a Code Segment
plus a 16-bit offset; in Protected Mode, the interrupt
vectors are 8 byte quantities that are put in an Inter-
rupt Descriptor Table (see Section Introduction). Of
the 256 possible interrupts, 32 are Reserved for Future
Use, the remaining 224 are free to be used by the
system designer.

Table 5. Interrupt Vector Assignments

Return Address
Points to
Interrupt Faulting
Function Number | Instructions Which Can Cause Exceptions Instruction Type
Divide Error 0 DIv, IDIV Yes FAULT
Debug Exception 1 Any instruction Yes TRAP*
NMI Interrupt 2 INT 2 or NMi No NMI
One Byte Interrupt 3 INT No TRAP
Interrupt on Overflow 4 INTO No TRAP
Array Bounds Check 5 BOUND Yes FAULT
Invalid Op-Code 6 Any illegal instruction Yes FAULT
Device Not Available 7 ESC, WAIT Yes FAULT
Double Fault 8 Any instruction that can generate an Exception ABORT
Coprocessor Segment Overrun 9 ESC No ABORT
Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT
Segment Not Present 11 Segment register instructions Yes FAULT
Stack Fault 12 Stack references Yes FAULT
General Protection Fault 13 Any memory reference Yes FAULT
Page Fault 14 Any memory access or code fetch Yes FAULT
Reserved for Future Use 15
Coprocessor Error 16 ESC, WAIT Yes FAULT
Reserved for Future Use 17-31
Two Byte Interrupt 0-255 | INTn No TRAP
*Some debug exceptions may report both traps on the previous instruction and faults on the next instruction,
Am386DX/DXL Microprocessor Data Sheet 31

n AMD

Interrupt Processing
When an interrupt occurs the following actions happen.

e First, the current program address and the Flags
are saved on the stack to allow resumption of the
interrupted program.

¢ Next, an 8-bit vector is supplied to the Am386DX/
DXL microprocessor that identifies the appropriate
entry in the interrupt table. The table contains the
starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed.

o Finally, when an IRET instruction is executed the old
processor state is restored and program execution
resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am386DX/

DXL microprocessor in several different ways: excep-

tions supply the interrupt vector internally; software INT

instructions contain or imply the vector; maskable hard-
ware interrupts supply the 8-bit vector via the interrupt
acknowledge bus sequence. Non-Maskable hardware

interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way the
Am386DX/DXL microprocessor responds to asynchro-
nous external hardware events. A hardware interrupt
occurs when the INTR is pulled High and the Interrupt
Flag bit (IF) is enabled. The processor only responds to
interrupts between instructions (REPeat String instruc-
tions have an interrupt window between memory
moves, which allows interrupts during long string
moves). When an interrupt occurs, the processor reads
an 8-bit vector supplied by the hardware that identifies
the source of the interrupt (one of 224 user defined inter-
rupts). The exact nature of the interrupt sequence is dis-
cussed in Section Functional Data.

The IF bitin the EFLAGS register is reset when an inter-
rupt is being serviced. This effectively disables servicing
additional interrupts during an interrupt service routine.
However, the IF bit may be set explicitly by the interrupt
handler to allow the nesting of interrupts. When an IRET
instruction is executed the original state of the IF bit is
restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servicing
very high priority interrupts. A common example of
the use of a non-maskable interrupt (NM1) would be to
activate a power failure routine. When the NMI input
is pulled High it causes an interrupt with an interally
supplied vector value of 2. Unlike a normal hardware
interrupt, no interrupt acknowledgment sequence is per-
formed for NMI.

While executing the NMI servicing procedure, the
Am386DX/DXL microprocessor will not service further
NMI requests until an interrupt retum (IRET) instruction
is executed or the processor is reset. If NMI occurs while
currently servicing an NM|, its presence will be saved for

servicing after executing the first IRET instruction. The
IF bit is cleared at the beginning of an NMI interrupt to
inhibit further INTR interrupts.

Software Interrupts

Athird type of interrupt/exception for the Am386DX/DXL
microprocessor is the software interrupt. An INT n in-
struction causes the processor to execute the interrupt
service routine pointed to by the nth vector in the inter-
rupt table.

A special case of the two byte software interrupt INT nis
the one byte INT 3 or breakpoint interrupt. By inserting
this one byte instruction in a program, the user can set
breakpoints in the program as a debugging tool.

A final type of software interrupt is the single step inter-
rupt. It is discussed in the Debugging Support section.

Interrupt and Exception Priorities

Interrupts are externally-generated events. Mask-
able Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at instruc-
tion boundaries. When NMI and maskable INTR are
both recognized at the same instruction boundary, the
Am386DX/DXL microprocessor invokes the NMI serv-
ice routine first. If after the NMI service routine has been
invoked, maskable interrupts are stili enabled, then the
Am386DX/DXL CPU invokes the appropriate interrupt
service routine.

Table 6a. Am386DX/DXL Microprocessor Priority
for Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2. _INTR

Exceptions are internally-generated events. Exceptions
are detected by the Am386DX/DXL microprocessor if in
the course of executing an instruction, the Am386DX/
DXL CPU detects a problematic condition. The
Am386DX/DXL microprocessor then immediately in-
vokes the appropriate exception service routine. The
state of the Am386DX/DXL CPU is such that the instruc-
tion causing the exception can be restarted. If the ex-
ception service routine has taken care of the problem-
atic condition, the instruction will execute without caus-
ing the same exception.

It is possible for a single instruction to generate several
exceptions (for example, transferring a single operand
could generate two page faults if the operand location
spans two not present pages). However, only one ex-
ception is generated upon each attempt to execute the
instruction. Each exception service routine should cor-
rect its corresponding exception, and restart the instruc-
tion. In this manner, exceptions are serviced until the in-
struction executes successfully.

As the Am386DX/DXL microprocessor executes in-
structions, it follows a consistent cycle in checking for
exceptions, as shownin Table 6b. This cycle is repeated

32 Am386 Microprocessors for Personal Computers

AMD n

as each instruction is executed and occurs in parallel
with instruction decoding and execution.

Instruction Restart

The Am386DX/DXL microprocessor fully supports re-
starting all instructions after faults. If an exception is
detected in the instruction to be executed (Exception
Categories 4 through 10 in Table 6b), the Am386DX/
DXL device invokes the appropriate exception service
routine. The Am386DX/DXL microprocessoris in a state
that permits restart of the instruction, for all cases but
those in Table 6c. Note that all such cases are easily
avoided by proper design of the operating system.

Table 6b. Sequence of Exception Checking

Consider the case of the Am386DX/DXL microprocessor
having just completed an instruction. It then performs the
following checks before reaching the point where the next
instruction is completed:

1. Check for Exception 1 Traps from the instruction just
completed (single-step via Trap Flag or Data Breakpoints
set in the Debug Registers).

2. Check for Exception 1 Faults in the next instruction
(Instruction Execution Breakpoint set in the Debug
Registers for the next instruction).

Check for external NMI and INTR.

Check for Segmentation Faults that prevented fetching
the entire next instruction (Exceptions 11 and 13).

5. Check for Paging Faults that prevented fetching the
entire next instruction (Exception 14).

6. Checkfor Faults decoding the next instruction [Exception
6 if illegal op-code; Exception 6 if in Real Mode or in
Virtual 8086 Mode and attempting to execute an
instruction for Protected Mode only (see Section
Protection and /O Permission Bitmap); or Exception 13 if
instruction is longer than 15 bytes, or privilege violation in
Protected Mode (i.e., not at IOPL or at CPL = 0)}.

7. HWAIT op-code, check if TS =1 and MP = 1 (Exception 7
it both are 1).

8. |f ESCAPE op-code for numeric coprocessor, check if
EM=10r TS=1 (Exception 7 if either are 1).

9. If WAIT op-code or ESCAPE op-code for numeric
coprocessor, check ERROR input signal (Exception 16 if
ERROR input is asserted).

10. Check in the following order for each memory reference
required by the instruction.

a. Check for Segmentation Faults that prevent trans-
ferring the entire memory quantity
(Exceptions 11, 12, 13).

b. Check for Page Faults that prevent transferring
the entire memory quantity (Exception 14).

Note that the order stated supports the concept of the paging mecha-
nism being undemeath the segmentation mechanism. Therefore, for
any given code or data reference in memory, segmentation excep-
tions are generated before paging exceptions are generated.

Table 6c. Conditions Preventing
Instruction Restart

1. Aninstruction causes a task switch to a task whose Task
State Segment (TSS) is partially not present. (An entire
not present TSS is restartable.) Partially present TSS's
can be avoided either by keeping the TSS's of such tasks
presentin memory or by aligning TSS segments to reside
entirely within a single 4K page (for TSS segments of
4 Kb or less).

2. A coprocessor operand wraps around the top of a 64-Kb
segment or a 4-Gb segment and spans three pages; and
the page holding the middle portion of the operand is not
present. This condition can be avoided by starting any
segments containing coprocessor operands at a page
boundary if the segments are approximately 64-200 Kb
or larger (i.e., large enough for wraparound of the
coprocessor operand to possibly occur).

Note that these conditions are avoided by using the operating system
designs mentioned in this table.

Double Fault

A Double Fault (Exception 8) results when the proces-
sor attempts to invoke an exception service routine for
the segment exceptions (10, 11, 12, or 13), but in the
process of doing so, detects an exception other than a
Page Fault (Exception 14).

A Double Fault (Exception 8) will also be generated
when the processor attempts to invoke the Page Fault
(Exception 14) service routine, and detects an excep-
tion other than a second Page Fault. In any functional
system, the entire Page Fault service routine must re-
main present in memory.

Double Page faults however do not raise the Double
Fault exception. If a second Page Fault occurs while the
processor is attempting to enter the service routine for
the first time, then the processor will invoke the Page
Fault (Exception 14) handler a second time rather than
the Double Fault (Exception 8) handler. A subsequent
fault, though, will lead to shutdown.

When a Double Fault occurs, the Am386DX/DXL micro-
processor invokes the exception service routine for
Exception 8.

Reset and Initialization

When the processor is initialized or Reset, the registers
have the values shown in Table 7. The Am386DX/DXL
microprocessor will then start executing instructions
near the top of physical memory, at location
FFFFFFFOH. When the first inter-Segment Jump or Call
is executed, address lines A31-A20 will drop Low for
CS-relative memory cycles, and the Am386DX/DXL
microprocessor will only execute instructions in the
lower 1 Mb of physical memory. This allows the system
designer to use a ROM at the top of physical memory
to initialize the system and take care of Resets.

Am386DX/DXL Microprocessor Data Sheet 33

n AMD

RESET forces the Am386DX/DXL microprocessor to
terminate all execution and local bus activity. No instruc-
tion execution or bus activity will occur as long as Reset
is active. Between 350- and 450-CLK2 periods after
Reset becomes inactive, the Am386DX/DXL device
will start executing instructions at the top of physical
memory.

Table 7. Register Values after Reset
Flag Word

UUUU0002H Note 1

Machine Status Word (CR0) UUUUUUUOH Note 2

Instruction Pointer 0000FFFOH

Code Segment FOOOH Note 3

Data Segment 0000H

Stack Segment 0000H

Extra Segment (ES) 0000H

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

DX Register Component and Note 5
Stepping ID

All Other Registers Undefined Note 4

Notes:

1. EFLAGS Register. The upper 14 bits of the EFLAGS register are
undefined, VM (Bit 17) and RF (Bit 16) and 0 (Bit 15) are all other
defined flag bits.

2. CRO: (Machine Status Word). All of the defined fields in the CRO
are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and PE
Bit 0).

3. The code Segment Register (CS) will have its Base Address set
to FFFFOO00H and Limit set to OFFFFH.

4. Allundefined bits are Reserved for Future Use and should not be
used.

5. DX register always holds component and stepping identifier (see
Section Component and Revision Identifiers). EAX register holds
self-test signature if self-test was requested (see Section Self-
Test Signature).

Testability
Self-Test

The Am386DX/DXL microprocessor has the capability
to perform a self-test. The self-test checks the function
of all the Control ROM and most of the non-random logic
of the part. Approximately one-half of the Am386DX/
DXL microprocessor can be tested during self-test.

Self-Test is initiated on the AM386DX/DXL micropro-
cessor when the RESET pin transitions from High to
Low, and the BUSY pinis Low. The self-test takes about
2'° clocks or approximately 26 ms with a 20-MHz
Am386DX/DXL device. At the completion of self-test,
the processor performs reset and begins normal opera-
tion. The part has successfully passed self-test if the
contents of the EAX register are zero (0). If the results of
EAXare notzero thenthe self-test has detected aflaw in
the part.

TLB Testing

The Am386DX/DXL microprocessor provides a mecha-
nism for testing the Translation Look-Aside Buffer (TLB)

if desired. This particular mechanism is unique to the
Am386DX/DXL CPU and may not be continued in the
same way in future processors. When testing the TLB,
paging must be turned off (PG = 0 in CR0) to enable the
TLB testing hardware and avoid interference with the
test data being written to the TLB.

There are two TLB testing operations:

1. Write entries into the TLB; and,

2. Perform TLB lookups. Two test registers, shown in
Figure 12, are provided for the purpose of testing.
TRe6 is the test command register and TR7 is the test
data register. The fields within these registers are
defined below.

C: This is the command bit. For awrite into TR6 to cause

an immediate write into the TLB entry, write a 0 to this

bit. For a write into TR6 to cause an immediate TLB
lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB . On a
TLB write, a TLB entry is allocated to this linear address
and the rest of that TLB entry is set per the value of TR7
and the value just written into TR6. Ona TLB lookup, the
TLB is interrogated per this value and if one and onty
one TLB entry matches, the rest of the fields of TR6 and
TR7 are set from the matching TLB entry.

Physical Address: This is the data field of the TLB. On
a write to the TLB, the TLB entry allocated to the linear
address in TR6 is set to this value. On a TLB lookup, the
data field (physical address) from the TLB is read out to
here.

PL: On a TLB write, PL = 1 causes the REP field of TR7
to selectwhich of four associative blocks of the TLB is to
be written, but PL = 0 allows the internal pointer in the
paging unit to select which TLB block is written. On a
TLB lookup, the PL bit indicated whether the lockup was
a hit (PL gets set to 1) or a miss (PL gets reset to 0).

V: The valid bit for this TLB entry. All valid bits can also
be cleared by writing to CR3.

D, D: The dirty bit for/from the TLB entry.
U, U: The user bit for/from the TLB entry.
W, W: The writable bit for/from the TLB entry.

For D, U, and W, both the attribute and its complement
are provided as tag bits to permit the option of a don’t
care on TLB lookups. The meaning of these pairs of bits
is given in the following table.

X - | Effect During Value of Bit
X TLB Lookup X after TLB Write
0 0 Miss All Bit X becomes undefined
0 1 Match if X=0 | Bit X becomes 0
1 0 Match if X=1 | Bit X becomes 1
1 1 Match Al Bit X becomes undefined

34 Am386 Microprocessors for Personal Computers

AMD a

For writing a TLB entry:
1. Write TR7 for the desired physical address, PL, and
REP values; and,

2. Write TR6 with the appropriate linear address, etc.,
{(be sure to write C =0 for write command).

For looking up (reading) a TLB entry:

1. Wirite TR6 with the appropriate linear address (be
sure to write C =1 for lookup command); and,

2. Read TR7 and TR®. If the PL bit in TR7 indicates a
hit, then the other values reveal the TLB contents. If
PL indicates amiss, then the othervalues in TR7 and
TR6 are indeterminate.

Debugging Support

The Am386DX/DXL microprocessor provides several
features that simplify the debugging process.

The three categories of on-chip debugging aids are:

1. The code execution breakpoint op-code (OCCH);

2. The single-step capability provided by the TF bit in
the flag register; and,

3. The code and data breakpoint capability provided by
the Debug Registers DR3-DR0, DR6, and DR7.

Breakpoint Instruction

A single-byte op-code breakpoint instruction is avail-
able for use by software debuggers. The breakpoint op-
code is 0CCh and generates an Exception 3 trap when
executed. In typical use, a debugger program can plant
the breakpoint instruction at all desired code execution
breakpoints. The single-byte breakpoint op-code is an
alias for the two-byte general software interrupt instruc-
tion, INT n, where n = 3. The only difference between
INT 3 (OCCh) and INT n is that INT 3 is never IOPL-
sensitive; but, INT n is IOPL-sensitive in Protected
Mode and Virtual 8086 Mode.

31

12|11 0

Linear Address

ViD|D|u|U|wlw|o|ojo]olC| TRe

Physical Address

Plrep|olo| TrR7

Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.

15021B-015

Figure 12, Test Registers

Am386DX/DXL Microprocessor Data Sheet 35

u AMD

Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAGS register
is found to be set at the end of an instruction, a single-
step exception occurs. The single-step exceptionis auto
vectored to Exception 1. Precisely, Exception 1 occurs
as a trap after the instruction following the instruction
that set TF. Intypical practice, a debugger sets the TF bit
of a flag register image on the debugger’s stack. It then
typically transfers control to the user program and loads
the flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one in-
struction of the user program.

Since the Exception 1 occurs as a trap (that is, it occurs
after the instruction has already executed), the CS:EIP
pushed onto the debugger’s stack points to the next
unexecuted instruction of the program being debugged.
An Exception 1 handler, merely by ending with an IRET
instruction, can therefore efficiently support single-
stepping through a user program.

Debug Registers

The Debug Registers are an advanced debugging fea-
ture of the Am386DX/DXL microprocessor. They allow
data access breakpoints as well as code execution
breakpoints. Since the breakpoints are indicated by on-
chip registers, an instruction execution breakpoint can
be placed in ROM code or in code shared by several
tasks, neither of which can be supported by the INT 3
breakpoint op-code.

The Am386DX/DXL microprocessor contains six Debug
Registers, providing the ability to specify up to four dis-
tinct breakpoint addresses, breakpoint control options,
and read breakpoint status. Initially after reset, break-
points will occur unless the debug registers are pro-
grammed. Breakpoints set up in the Debug Registers
are auto-vectored to Exception 1.

Linear Address Breakpoint Registers (DR3-DR0)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DR3-DR0, shown in Fig-
ure 13. The breakpoint addresses specified are 32-bit
linear addresses. Am386DX/DXL microprocessor hard-
ware continuously compares the linear breakpoint

addresses in DR3-DRO with the linear addresses gen-
erated by executing software (a linear address is the re-
sult of computing the effective address and adding the
32-bit segment base address). Note that if paging is not
enabled the linear address equals the physical address.
It paging is enabled, the linear address is translated to a
physical 32-bit address by the on-chip paging unit. Re-
gardiess of whether paging is enabled or not, however,
the breakpoint registers hold linear addresses.

Debug Control Register (DR7)

A Debug Control Register, DR7, shown in Figure 13,
allows several debug control functions, such as ena-
bling the breakpoints and setting up other control
options for the breakpoints. The fields within the Debug
Contro! Register, DR7, are as follows.

LENI {Breakpoint Length Specification Bits)

A 2-bit LEN field exists for each of the four breakpoints.
LEN specifies the length of the associated breakpoint
field. The choices for data breakpoints are: 1 byte,
2 bytes, and 4 bytes. instruction execution break-
points must have a length of 1 (LENi = 00). Encoding of
the LENi field is as follows.

Usage of Least
Significant Bits in

LENi Breakpoint Breakpoint Address
Encoding Field Width Register i, (i=0-3)

00 1 byte All 32-bits used to specify
a single-byte breakpoint
field.

01 2 bytes A31-A1 used to specify
a two-byte, word-aligned
breakpoint field. A0 in
Breakpoint Address
Register is not used.

10 Undefined—

do not use

this encoding

11 4 bytes A31-A2 used to specify
a four-byte, Dword-aligned|
breakpoint field. A0 and

A1 in Breakpoint Address

Register are not used.

36 Am386 Microprocessors for Personal Computers

AMD n

31 16 15 0
Breakpoint 0 Linear Address DRo
Breakpoint 1 Linear Address DR1
Breakpoint 2 Linear Address DR2
Breakpoint 3 Linear Address DR3
Reserved for Future Use. Do not define. DR4
Reserved for Future Use. Do not define. DRs
B{B| B B(B|B|B
0 Tls|plo|o|efo]ofe]olofo]|3|2]|5|q] ORE
LEN |R|W| LEN|R[W]LEN |R|W|LEN |R W G G|L|G|L|G|L|G|L|G]|L
3 |3|3] 2 |22} 1 11 0 |0}0 oj° D ojefo E|E|3]|3]|2]|2]|1]1}0]0 DRY
31 16 15 0
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
Figure 13. Debug Registers 15021B-016

The LEN:i field controls the size of breakpoint field i by RWi (Memory Access Qualifier Bits)
controlling whether all low-order linear address bits
in the breakpoint address register are used to detect
the breakpoint event. Therefore, all breakpoint fields
are aligned; 2-byte breakpoint fields begin on Word

A 2-bit RW field exists for each of the four breakpoints.
The 2-bit RW field specifies the type of usage that must
occur in order to activate the associated breakpoint.

boundaries and 4-byte breakpoint fields begin on Dword RW Usage
boundaries. Encoding Causing Breakpoint
The following is an example of various size breakpoint 00 Instruction execution only
fields. Assume the breakpoint linear address in DR2 is 01 Data writes only
00000005H. In that situation, the following illustration) . .
’ - 10 Undefined—d t th d
indicates the region of the breakpoint field for lengths of nae 'ned Zno_ use I'S encoding
1,2, or 4 bytes. 11 Data reads and writes only
DR2 =00000005H; LEN2=00B RW encoding 00 is used to set up an instruction execu-
31 0 tion breakpoint. RW encodings 01 or 11 are used to set
up write-only or read/write data breakpoints.
00000008H
Note that instruction execution breakpoints are taken
bkpt fid2 00000004H as faults (i.e., before the instruction executes), but
00000000H data breakpoints are taken as traps (i.e., after the data
transfer takes place).
DR2 = 00000005H; LEN2=01B Using LENi and RWi to Set Data Breakpoint i
31 0 A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints, RWi
00000008H can = 01 (write only) or 11 (write/read). LEN can = 00,
& bkptfid2 —» | 00000004H 01, or 11.
00000000H If a data_ access falls entirely or pgrtly w'r(.h_in the data
breakpoint field, the data breakpoint condition has oc-
curred, and if the breakpoint is enabled, an Exception 1
DR2 = 00000005H; LEN2=11B trap will occur.
31 0
Using LENi and RWI to Set Instruction Execution
00000008H Breakpoint i
An instruction execution breakpoint can be set up
4 bkptfld2 b 00000004H by writing address of the beginning of the instruction
| | | 00000000H (including prefixes it any) into DRi (i=0-3). RWi

Am386DX/DXL Microprocessor Data Sheet 37

n AMD

must=00 and LEN must =00 for instruction execution
breakpoints.

If the instruction beginning at the breakpoint address is
about to be executed, the instruction execution break-
point condition has occurred, and if the breakpoint is
enabled, an Exception 1 fault will occur before the in-
struction is executed.

Note that an instruction execution breakpoint address
must be equal to the beginning byte address of an in-
struction (including prefixes) in order for the instruction
execution breakpoint to occur.

GD (Global Debug Register Access Detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The GD
bit, when set, provides extra protection against any De-
bug Register access even in Real Mode or at privilege
level 0 in Protected Mode. This additional protectionfea-
ture is provided to guarantee that a software debugger
(or ICE-386) can have full control over the Debug Regis-
ter resources when required. The GD bit, when set,
causes an Exception 1 fault if an instruction attempts to
read or write any Debug Register. The GD bit is then
automatically cleared when the Exception 1 handler is
invoked, allowing the Exception 1 handlerfree accessto
the debug registers.

GE and LE (Exact Data Breakpoint Match, Global
and Local)

If either GE or LE is set, any data breakpoint trap will be
reported exactly after completion of the instruction that
caused the operand transfer. Exact reporting is pro-
vided by forcing the Am386DX/DXL microprocessor
execution unit to wait for completion of data oper-
and transfers before beginning execution of the next
instruction.

If exact data breakpoint match is not selected, data
breakpoints may not be reported until several instruc-
tions later or may not be reported at all. When enabling a
data breakpoint, it is therefore recommended to enable
the exact data breakpoint match.

When the Am386DX/DXL microprocessor performs a
task switch, the LE bit is cleared. Thus, the LE bit sup-
ports fast task switching out of tasks that have enabled
the exact data breakpoint match for their task-local
breakpoints. The LE bit is cleared by the processor dur-
ing a task switch to avoid having exact data breakpoint
match enabled in the new task. Note that exact data
breakpoint match must be re-enabled under software
control.

The Am386DX/DXL microprocessor GE bit is unaf-
fected during a task switch. The GE bit supports exact
data breakpoint match that is to remain enabled during
all tasks executing in the system.

Note that instruction execution breakpoints are always
reported exactly, whether or not exact data breakpoint
match is selected.

Gi and Li (Breakpoint Enable, Global and Local)

if either Gior Liis set, thenthe associated breakpoint (as
defined by the linear address in DRi, the length in LENi
and the usage criteria in RWi) is enabled. If either Gior
Liis set and the Am386DX/DXL microprocessor detects
the breakpoint condition, then the Exception 1 handler
is invoked.

When the Am386DX/DXL microprocessor performs a
task switch to a new Task State Segment (TSS), all Li
bits are cleared. Thus, the Li bits support fast task
switching out of tasks that use some task-local break-
point registers. The Li bits are cleared by the processor
during a task switch to avoid spurious exceptions in the
new task. Note that the breakpoints must be enabled un-
der software control.

All Am386DX/DXL microprocessor Gi bits are unaf-
fected during a task switch. The Gi bits support break-
points that are active in alltasks executing in the system.

Debug Status Register (DR6)

A Debug Status Register, DR6, shown in Figure 13,
allows the Exception 1 handler to easily determine why
it was invoked. Note the Exception 1 handler can be
invoked as a result of one of several events.

DRO Breakpoint fault/trap.

DRt Breakpoint fault/trap.

DR2 Breakpoint fault/trap.

DR3 Breakpoint fault/trap.

Single-step (TF) trap.

Task switch trap.

Fault due to attempted debug register access when
GD = 1.

The Debug Status Register contains single-bit flags for
each of the possible events invoking Exception 1. Note
below that some of these events are faults (exception
taken before the instruction is executed), while other

events are traps (exception taken after the debug
events occurred).

N OMOD =

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before retuming to the user program
to avoid future confusion in identifying the source of
Exception 1.

The fields within the Debug Status Register, DR6 are as
follows.

Bi (Debug Fault/Trap Due to Breakpoint 0-3)

Four breakpoint indicator flags, B3-B0, correspond
one-to-one with the breakpoint registers in DR3-DR0. A

38 Am386 Microprocessors for Personal Computers

AMD a

flag Bi is set when the condition described by DRi, LEN!,
and RWi occurs.

If Gi or Li is set, and if the breakpoint is detected, the
processor will invoke the Exception 1 handler. The ex-
ception is handled as a fault if an instruction execution
breakpoint occurred or as a trap if a data breakpoint
occurred.

Important Note: A flag, Bi, is set whenever the hard-
ware detects a match condition on enabled breakpointi.
Whenever a match is detected on at least one enabled
breakpoint i, the hardware immediately sets all Bi bits
corresponding to breakpoint conditions matching at that
instant, whether enabled or not. Therefore, the Excep-
tion 1 handler may see that multiple Bi bits are set, but
only set Bibits corresponding to enabled breakpoints (Li
or Gi set) are true indications of why the Exception 1
handier was invoked.

BD (Debug Fault Due to Attempted Register Access
When GD Bit Set)

This bitis set if the Exception 1 handler was invoked due
to an instruction attempting to read or write to the debug
registers when GD bit was set. If such an event occurs,
then the GD bit is automatically cleared when the Ex-
ception 1 handler is invoked, allowing handler access to
the debug registers.

BS (Debug Trap Due to Single-Step)

This bit is set if the Exception 1 handler was invoked due
to the TF bit in the flag register being set (for single-
stepping). See Section Single-Step Trap.

(See Figure 29.) Note the task switch into the new task
occurs normally, but before the first instruction of the
task is executed, the Exception 1 handler is invoked.
With respect to the task switch operation, the operation
is considered to be a trap.

Use of Resume Flag (RF) In Flag Register

The Resume Flag (RF) in the flag word can suppress an
instruction execution breakpoint when the Exception 1
handler returns to a user program at a user address that
is also an instruction execution breakpoint. See Section
Flags Register.

REAL MODE ARCHITECTURE
Real Mode Introduction

When the processor is reset or powered up, it is initial-
ized in Real Mode. Real Mode has the same base archi-
tecture as the 8086, but allows access to the 32-bit
register set of the Am386DX/DXL microprocessor. The
addressing mechanism, memory size, and interrupt
handling are all identical to the Real Mode onthe 80286.

All of the Am386DX/DXL microprocessor instructions
are available in Real Mode (except those instructions
listed in Protection and I/O Permission Bitmap). The de-
fault operand size in Real Mode is 16 bits, just like the
8086. In order to use the 32-bit registers and addressing
modes, override prefixes must be used. In addition, the
segment size on the Am386DX/DXL CPU in Real Mode
is 64 Kb so 32-bit effective addresses must have a value
less than 0000FFFFH. The primary purpose of Real
Mode is to set up the processor for Protected Mode

BT (Debug Trap Due to Task Switch) Operation.
This bit is set if the Exception 1 handler was invoked
due to a task switch occurring to a task having an
Am386DX/DXL microprocessor TSS with the T-bit set.
15 0 Max Limit
Fixed At 64K In
Offset Real Mode
19 0
Segment Selector 0000
Memory Operand T
Selected
64K Segment
Segment Base
15021B-017

Figure 14. Real Address Mode Addressing

Am386DX/DXL Microprocessor Data Sheet 39

u AMD

LOCK Operation

The LOCK prefix on the Am386DX/DXL microproces-
sor, even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Am386DX/DXL CPU in Protected Mode and Virtual
8086 Mode. Paging makes it impossible to guarantee
that repeated string instructions can be LOCKed. The
Am386DX/DXL CPU cannot require that all pages hold-
ing the string be physically present in memory. Hence, a
Page Fault (Exception 14) might have to be taken during
the repeated string instruction. Therefore the LOCK
prefix cannot be supported during repeated string
instructions.

These are the only instruction forms where the LOCK
prefix is legal on the Am386DX/DXL microprocessor.

Operands
Opcode (Dest, Source)
BIT TEST and Mem, Reg/immed
SET/RESET/COMPLEMENT

XCHG Reg, Mem
XCHG Mem, Reg

ADD, OR, ADC, SBB, AND, SUB, XOR| Mem, Reg/immed
NOT, NEG, INC, DEC Mem

An Exception 6 will be generated if a LOCK prefix is
placed before any instruction form or op-code not listed
above. The LOCK prefix allows indivisible read/modity/
write operations on memory operands using the instruc-
tions above. For example, even the ADD Reg, Mem is
not LOCKable, because the Mem operand is not the
destination (and therefore no memory read/modify/
operation is being performed).

Since, on the Am386DX/DXL microprocessor, repeated
string instructions are not LOCKable, it is not possible
to LOCK the bus for a long period of time. Therefore, the
LOCK prefix is not IOPL-sensitive on the Am386DX/
DXL device. The LOCK prefix can be used at any privi-
lege level, but only on the instruction forms listed above.

Memory Addressing

In Real Mode, the maximum memory size is limited to
1 Mb. Thus, only address lines A19—-A2 are active.

Exception, the High address lines A31-A20 are
High during CS-relative memory cycles until an inter-
segment jump or call is executed (see Section Reset
and Initialization).

Since paging is not allowed in Real Mode, the linear ad-
dresses are the same as physical addresses. Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register that is
shifted left by 4 bits to an effective address. This addition
results in a physical address from 00000000H to
0010FFEFH. This is compatible with 80286 Real Mode.
Since segment registers are shifted left by 4 bits, this im-
plies that Real Mode segments always start on 16-byte
boundaries.

Al segments in Real Mode are exactly 64-Kb long and
may be read, written, or executed. The Am386DX/DXL
microprocessor will generate an Exception 13 if a data
operand or instruction fetch occurs past the end of a
segment (i.e., if an operand has an offset greater than
FFFFH; for example, a word with a low byte at FFFFH
and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if a
particutar segment does not use all 64 Kb, another seg-
ment ¢ an be overlayed on top of the unused portion of
the previous segment. This allows the programmer to
minimize the amount of physical memory needed for a
program.

Reserved Locations

There are two fixed areas in memory that are reservedin
Real address mode: system initialization area and the
interrupt table area. Locations 00000H through 003FFH
are reserved for interrupt vectors. Each one of the 256
possible interrupts has a 4-byte jump vector reserved
for it. Locations FFFFFFFOH through FFFFFFFFH are
reserved for system initialization.

Interrupts

Many of the exceptions shown in Table 5 and discussed
in Section Interrupts are not applicable to Real Mode op-
eration; in particular, Exceptions 10, 11, and 14 will not
happen in Real Mode. Other exceptions have slightly
different meanings in Real Mode. Table 8 identifies
these exceptions.

Table 8. Other Exceptions in Real Mode

Interrupt
Function Number Related instructions Return Address Location
Interrupt table limit too small 8 INT Vector is not within table limit. Before Instruction

CS, DS, ES, FS, GS
Segment overrun exception

Word memory reference
13 beyond offset= FFFFH.
An attempt to execute
past the end of CS segment.

Before Instruction

SS Segment overrun exception 12

Stack Reference
beyond offset= FFFFH.

Before Instruction

40 Am386 Microprocessors for Personal Computers

AMD n

Shutdown and Halt

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, FLT, INTR with interrupts en-
abled (IF =1), or RESET will force the Am386DX/DXL
microprocessor out of halt. If interrupted, the saved
CS:IP will point to the next instruction after the HLT.

Shutdown willoccur when a severe erroris detected that
prevents further processing. In Real Mode, shutdown
can occur under two conditions:

e An interrupt or an exception occur (Exception 8 or
13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e., there is not an
interrupt handler for the interrupt);

¢ ACALL, INT, or PUSH instruction attempts to wrap
aroundthe stack segment when SP is not even (e.g.,
pushing a value on the stack when SP = 0001
resulting in a stack segment greater than FFFFH).

An NMI input can bring the processor out of shutdown if
the Interrupt Descriptor Table limit is large enough to
contain the NMI interrupt vector (at least 0017H) and the
stack has enough room to contain the vector and flag in-
formation (i.e., SP is greater than 0005H). Otherwise
shutdown can only be exited via the RESET input.

PROTECTED MODE ARCHITECTURE
Introduction

The complete capabilities of the Am386DX/DXL micro-
processor are unlocked when the processor operates in
Protected Virtual Address Mode (Protected Mode).
Protected Mode vastly increases the linear address
space to 4 Gb (2% bytes) and allows the running of vir-
tual memory programs of almost unlimited size (64 tb or
2% bytes). In addition, Protected Mode allows the
Am386DX/DXL CPU to run all of the existing 8086 and
80286 software, while providing a sophisticated mem-
ory management and a hardware-assisted protection
mechanism. Protected Mode allows the use of addi-
tional instructions especially optimized for supporting
multitasking operating systems. The base architecture
of the Am386DX/DXL CPU remains the same; the regis-
ters, instructions, and addressing modes described in

the previous sections are retained. The main differ-
ences between Protected Mode and Real Mode from a
programmer’s view is the increased address space and
a different addressing mechanism.

Addressing Mechanism

Like Real Mode, Protected Mode uses two components
to form the logical address: a 16-bit selector is used to
determine the linear base address of a segment; the
base address is added to a 32-bit effective address to
form a 32-bit linear address. The linear address is then
either used as the 32-bit physical address or it paging is
enabled the paging mechanism maps the 32-bit linear
address into a 32-bit physical address.

The difference between the two modes lies in calculat-
ing the base address. in Protected Mode, the selector is
used to specify an index into an operating system de-
finedtable (see Figure 15). The table contains the 32-bit
base address of a given segment. The physical address
is formed by adding the base address obtained from the
table to the offset.

Paging provides an additional memory management
mechanism that operates only in Protected Mode. Pag-
ing provides a means of managing the very large seg-
ments of the Am386DX/DXL microprocessor. As such,
paging operates beneath segmentation. The paging
mechanism translates the protected linear address that
comes from the segmentation unit into a physical ad-
dress. Figure 16 shows the complete Am386DX/DXL
device addressing mechanism with paging enabled.

Segmentation
Segmentation Introduction

Segmentation is one method of memory management
and provides the basis for protection. Segments are
used to encapsulate regions of memory that have com-
mon attributes. For example, all of the code of a given
program could be contained in a segment or an operat-
ing system table may reside in a segment. All informa-
tion about a segment is stored in an 8-byte data struc-
ture called a descriptor. All of the descriptors in a system
are contained in tables recognized by hardware.

Am386DX/DXL Microprocessor Data Sheet a

u AMD

48/32 Bit Pointer

Segment Limit

Selector Offset

47/31 31/15 0

Memory Operand

Selected
Segment

Access Rights
Limit
| Base Address

Segment

Descriptor Segment Base

Address

15021B-018
Figure 15. Protected Mode Addressing

48 Bit Pointer

Descriptor Address Kb

4 Kb

4 Kb

Segment Offset Physical Address

15 0 31 0 I4 Kb

Id Kb

Paging 4 Kb

Access Rights Mechanism Physical
imi Address .
-t b Memory Operand ggsy]:cm
age
__> Base Address Page o
Segment 32 Linear =

150218019

Figure 16. Paging and Segmentation

42 Am386 Microprocessors for Personal Computers

AMD a

Terminology

The following terms are used throughout the discussion
of descriptors, privilege levels, and protection:

PL: Privilege Level—One of the four hierarchical privi-
lege levels. Level 0 is the most privileged level and level
3 is the least privileged. More privileged levels are nu-
merically smaller than less privileged levels.

RPL: Requester Privilege Level—The privilege level of
the original supplier of the selector. RPL is determined
by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least privi-
leged level at which a task may access that descriptor
(and the segment associated with that descriptor). De-
scriptor Privilege Level is determined by bits 6-5 in the
Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed. CPL
can also be determined by examining the lowest 2 bits of
the CS register, except for conforming code segments.

EPL.: Ettective Privilege Level—The effective privilege
level is the least privileged of the RPL and DPL. Since
small privilege level values indicate greater privilege,
EPL is the numerical maximum of RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

Descriptor Tables
Descriptor Tables Introduction

The descriptor tables define all of the segments which
are used in an Am386DX/DXL microprocessor system.

There are three types of tables on the Am386DX/DXL
microprocessor that hold descriptors: the Global De-
scriptor Table, Local Descriptor Table, and the Interrupt
Descriptor Table. All of the tables are variable length
memory arrays. They canrange in size between 8 bytes
and 64 Kb. Each table can hold up to 8192 eight byte
descriptors. The upper 13 bits of a selector are used as
an index into the descriptor table. The tables have
registers associated with them that hold the 32-bit
linear base address, and the 16-bit limit of each table.

Each of the tables has a register associated with it: the
GDTR,LDTR, andthe IDTR (see Figure 17). The LGDT,
LLDT, and LIDT instructions load the base and limit of
the Gilobal, Local, and Interrupt Descriptor Tables, re-
spectively, into the appropriate register. The SGDT,
SLDT, and SIDT instructions store the base and limit
values. These tables are manipulated by the operating
system. Therefore, the load descriptor table instructions
are privileged instructions.

Global Descriptor Table

The Global Descriptor Table (GDT) contains descriptors
that are possibly available to all of the tasks in a system.
The GDT can contain any type of segment descriptor
except for descriptors that are used for servicing inter-
rupts (i.e., interrupt and trap descriptors). Every
Am386DX/DXL microprocessor contains a GDT. Gen-
erally, the GDT contains code and data segments used
by the operating systems and task state segments and
descriptors for the LDTs in a system.

The first slot of the Global Descriptor Table corresponds
to the null selector and is not used. The null selector
defines a null pointer value.

15 0

LDT DESCR
Selector

LDTR

15 0

IDT Limit

IDTR DT Base
Linear Address

31 0 .-

15

GDT Limit

GDT Base
Linear Address

31 0

GDTR

Program Invisible
Automatically Loaded
From LDT Descriptor

15 o !
]

LDT Limit X

]

1

LDT Base '
Linear Address '
1

31 o
1

1

)

[}

15021B-020

Figure 17. Descriptor Table Registers

Am386DX/DXL Microprocessor Data Sheet 43

n AMD

Local Descriptor Table

LDTs contain descriptors that are associated with a
given task. Generally, operating systems are designed
so that each task has a separate LDT. The LDT may
contain only code, data, stack, task gate, and call gate
descriptors. LDTs provide a mechanism for isolating a
giventask’s code and data segments fromthe rest of the
operating system, while the GDT contains descriptors
for segments that are common to all tasks. A segment
cannot be accessed by a task if its segment descriptor
does not exist in either the current LDT or the GDT. This
provides both isolation and protection for a task’s seg-
ments, while still allowing giobal data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers that contain a
base address and limit, the visible portion of the LDT
register contains only a 16-bit selector. This selector re-
fers o a Local Descriptor Table descriptor in the GDT.

Interrupt Descriptor Table

Thethird table needed for Am386DX/DXL microproces-
sor systems is the Interrupt Descriptor Table (see Figure
18). The IDT contains the descriptors that point to the lo-
cation of up to 256 interrupt service routines. The IDT
may contain only task gates, interrupt gates, and trap
gates. The IDT should be at least 256 bytes in size in

order to hold the descriptors for the 32, Reserved for
Future Use, interrupts. Every interrupt used by a system
must have an entry inthe IDT. The IDT entries are refer-
enced via INT instructions, external interrupt vectors,
and exceptions. (See Interrupts.)

Descriptors
Descriptor Attribute Bits

The object to which the segment selector points is called
a descriptor. Descriptors are 8-byte quantities that con-
tain attributes about a given region of linear address
space (i.e., a segment). These attributes include the
32-bit base linear address of the segment, the 20-bit
length and granularity of the segment, the protection
level, read, write or execute privileges, the default size
of the operands (16 bit or 32 bit), and the type of seg-
ment. All of the attribute information about a segment is
contained in 12 bits in the segment descriptor. Figure 19
shows the general format of a descriptor. All segments
on the Am386DX/DXL microprocessor have three at-
tribute fields in common: the P bit, the DPL bit, andthe S
bit. The Present P bit is 1 if the segment is loaded in
physical memory:; if P = 0 then any attempt to access this
segment causes a not present exception (Exception
11). The Descriptor Privilege Level (DPL) is a 2-bit field
that specifies the protection levels 0—3 associated with a
segment.

e Memory 1
r Y
Gate For
Interrupt #n
Gate For
Interrupt #n-1
Interrupt
— < > Descriptor
. abie
. (IDT)
L]
CPU
Gate For
Interrupt #1
15 0
. Gate For .
IDT Limit Interrupt #0 mcreasmg
. ‘ A:gr‘gsrges
IDT Base
31 0 = =

15021B-021

Figure 18. Interrupt Descriptor Table Register Use

44 Am386 Microprocessors for Personal Computers

>
=
o
o

Byte
31 0 Address
Segment Base 15-0 Segment Limit 15-0 Y]
- DPL Type
— Limit Base

Base 3124 G|D|Oo|AVL 106 P | S | l A 23-16 +4
Base Base Address of the segment
Limit The length of the segment
P Present Bit: 1=Present, 0=Not Present
DPL Descriptor Privilege Levels 0-3
S Segment Descriptor: 0 = System Descriptor, 1= Code or Data Segment Descriptor
Type Type of Segment
A Accessed Bit
G Granularity Bit: 1 = Segment length is page granular, 0= Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only): 1 =32-bit segment, 0 =16-bit segment

Bit must be zero (0) for compatibility with future processors

4]
AVL Available field for user or OS

Note: In a maximum-size segment (i.e., segment with G = 1 and segment limit 19-0 =FFFFFH), the lowest 12 bits of
the segment base should be zero (i.e., segment base 11-000 = 000H).

15021B-022

Figure 19. General Format of Segment Descriptors

The Am386DX/DXL microprocessor has two main cate-
gories of segments: system segments and non-system
segments (for code and data). The segment S bit in the
segment descriptor determines if a given segment is a
system segment or a code or data segment. If the S bit is
1, thenthe segment is either a code or data segment; if it
is 0, then the segment is a system segment.

Am386DX/DXL Microprocessor Code and Data
Descriptors (S=1)

Figure 20 shows the general format of a code and data
descriptor and Table 9 illustrates how the bits in the
Access Rights Byte are interpreted.

Code and data segments have several descriptor fields
in common. The accessed A bit is set whenever the
processor accesses a descriptor. The A bit is used
by operating systems to keep usage statistics on a
given segment. The G bit, or granularity bit, specifies if
a segment length is byte-granular or page-granular.
Am386DX/DXL microprocessor segments can be 1 Mb
long with byte granularity (G=0) or 4 Gb with page
granularity (G=1), (i.e., 22° pages—each page is 4 Kb
in length). The granularity is totally unrelated to paging.
An Am386DX/DXL CPU system can consist of seg-
ments with byte granularity and page granularity,
whether or not paging is enabled.

The executable E bit tells if a segment is a code or data
segment. A code segment (E=1, S=1) may be exe-
cute-only or execute/read as determined by the Read
R bit. Code segments are execute only if R=0 and exe-
cute/read if R =1. Code segments may never be written
into.

Note: Code segments may be modified via aliases. Aliases
are writeable data segments that occupy the same range of
linear address space as the code segment.

The D bit indicates the default length for operands and
effective addresses. If D = 1, then 32-bit operands
and 32-bit addressing modes are assumed. f D = 0,
then 16-bit operands and 16-bit addressing modes are
assumed. Therefore all existing 80286 code segments
will execute on the Am386DX/DXL microprocessor
assuming the D bit is set 0.

Another attribute of code segments is determined by the
conforming C bit. Conforming segments, C = 1, can be
executed and shared by programs at different privilege
levels (see Section Protection).

Am386DX/DXL Microprocessor Data Sheet 45

a AMD

31 0
Segment Base 15-0 Segment Limit 15-0 0
imi Access Rights Base
Base 31-24 G| DB fofAvL| Hmi Byte 23-16 | +4
b/B 1 = Default Instructions Attributes are 32 bits
0 = Default Instructions Attributes are 16 bits

AVL Available field for user or OS
G Granularity Bit: 1 = Segment length is page granular, 0 =Segment length is byte granular
0 Bit must be zero (0} for compatibility with future processors
Note: In a maximum-size segment (i.e., a segment with G =1 and segment limit 19-0 = FFFFFH), the lowest 12 bits of

the segment base should be zero (i.e., sagment base 11-000 = 000H).

150218023

Figure 20. Code and Data Segment Descriptors

Table 9. Access Rights Byte Definition for Code and Data Descriptions

Bit
Position Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exists, base and limit are
not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Levels (DPL)
4 Segment Descriptor (S) S=1 Code or Data (includes stacks) segment descriptor.
S=0 System Segment Descriptor or Gate Descriptor.
3 Executable (E) E=0 Descriptor type is data segment. i Data
2 Expansion Direction (ED) ED=0 Expand up segment, offsets must be < limit. s t
ED=1 Expand down segment, offsets must be > limit. egmen
1 Writeable (W) W=0 Data segment may not be written into. (8=1,
W=1 Data segment may be written into. E=0)
3 Executable (E) E=1 Descriptor type is code segment.
2 Conforming (C) C=1 Code segment may only be executed when If Code
CPL=DPL and CPL remains unchanged. Segment
1 Readable (R} R=0 Code segment may not be read. S=1,
R=1 Code segment may be read. E=1)
] Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

Segments identified as data segments (E=0, S=1) are
used for two types of Am386DX/DXL microprocessor
segments: stack and data segments. The expansion
direction (ED) bit specifies if a segment expands down-
ward (stack) or upward (data). If a segment is a stack
segment, all offsets must be greater than the segment
limit. On a data segment all offsets must be less than or
equalto the limit. In other words, stack segments start at
the base linear address plus the maximum segment limit
and grow down to the base linear address plus the limit.
On the other hand, data segments start at the base
linear address and expand to the base linear address
plus limit.

The write (W) bit controls the ability to write into a seg-
ment. Data segments are read-only if W=0. The stack
segment must have W=1.

The B bit controls the size of the stack pointer register. If
B =1,then PUSHes, POPs, and CALLs all use the 32-bit
ESP register for stack references and assume anupper
limit of FFFFFFFFH. If B =0, stack instructions all use
the 16-bit SP register and assume an upper limit of
FFFFH.

System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 21 shows
the general format of system segment descriptors, and

46

Am386 Microprocessors for Personal Computers

AMD n

the various types of system segments. The Am386DX/
DXL microprocessor system descriptors contain a
32-bit base linear address and a 20-bit segment limit.
80286 system descriptors have a 24-bit base address
and a 16-bit segment limit. 80286 system descriptors
are identified by the upper 16 bits being all zeros.

LDT Descriptors (S=0, Type=2)

LDT descriptors (S=0, TYPE =2) contain information
about Local Descriptor Tables. LDTs contain a table of
segment descriptors, unique to a particular task. Since
the instruction to load the LDTR is only available at privi-
lege level 0, the DPL field is ignored. LDT descriptors
are only allowed in the Global Descriptor Table (GDT).

TSS Descriptors (S=0, Type=1, 3,9, B)

A Task State Segment (TSS) descriptor contains infor-
mation about the location, size, and privilege level of a
TSS. ATSSinturnis a special fixed format segment that
contains all the state information for atask and a linkage
field to permit nesting tasks. The Type field is usedto in-
dicate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The Type
field also indicates if the segment contains a 80286 or an
Am386DX/DXL microprocessor TSS. The Task Regis-
ter (TR) contains the selector that points to the current
TSS.

Gate Descriptors (S=0, Type =4-7,C, F)

Gates are used to control access to entry points within
the target code segment. The various types of gate de-
scriptors are call gates, task gates, interrupt gates, and
trap gates. Gates provide a level of indirection between
the source and destination of the control transfer. This
indirection allows the processor to automatically per- -
form protection checks. It also allows system designers
to control entry points to the operating system. Call
gates are used to change privilege levels (see Section
Protection), task gates are used to perform a task

switch, and interrupt and trap gates are used to specify
interrupt service routines.

Figure 22 shows the format of the four types of gate de-
scriptors. Call gates are primarily used to transfer pro-
gram controlto a more privileged level. The call gate de-
scriptor consists of three fields: the access byte; a long
pointer (selector and offset) that points to the start of a
routine; and a word count that specifies how many pa-
rameters are to be copied from the caller’s stack to the
stack of the called routine. The word count field is only
used by call gates when there is a change in the privi-
lege level, other types of gates ignore the word count
field.

Interrupt and trap gates use the destination selector and
destination offset fields of the gate descriptor as a point-
er to the start of the interrupt or trap handler routines.
The difference between interrupt gates and trap gates is
that the interrupt gate disables interrupts (resets the IF
bit) while the trap gate does not.

Task gates are used to switch tasks. Task gates may
only refer to a task state segment (see Section Task
Switching); therefore, only the destination selector por-
tion of atask gate descriptoris used, and the destination
offset is ignored.

Exception 13 is generated when a destination selector
does not refer to a correct descriptor type, i.e., a code
segment for an interrupt, trap or call gate, a TSS for a
task gate.

The access byte format is the same for all gate descrip-
tors. P=1 indicates that the gate contents are valid.
P =0indicates the contents are not valid and causes Ex-
ception 11 if referenced. DPL is the descriptor privilege
level and specifies when this descriptor may be used by
a task (see Section Protection). The S field, bit 4 of the
access rights byte, must be 0 to indicate a system con-
trol descriptor. The type field specifies the descriptor
type as indicated in Figure 22.

31 16 0
Segment Base 15-0 Segment Limit 15-0 0
. Limit DPL Type Base
Base 31-24 Gl|oJo]o 19-16 P |] I | I 23 16 +4
Type Definition Type Definition
0 Invalid 8 Invalid
1 Available 80286 TSS 9 Available Am386DX/DXL CPU TSS
2 LDT A Undefined (Reserved)
3 Busy 80286 TSS B Busy Am386DX/DXL CPU TSS
4 80286 Call Gate C Am386DX/DXL CPU Call Gate
5 Task Gate (for 80286 or Am386DX/DXL CPU Task) D Undefined (Reserved)
6 80286 Interrupt Gate E Am386DX/DXL CPU Interrupt Gate
7 80286 Trap Gate F Am386DX/DXL CPU Trap Gate

Note: In a maximum-size segment (i.e., segment with G = 1 and segment limit 19-0 = FFFFFH), the lowest 12 bits
of the segment base should be zero {i.e., segment base 11-000 = 000H).

15021B-024

Figure 21. System Segments Descriptors

Am386DX/DXL Microprocessor Data Sheet 47

o

AMD
31 24 16 15 8 5 0
Selector Offset 15-0 0
DPL T Word
Offset 31-16 P] ype ofofo| Count +4
| 1] 40

Gate Descriptors Fields

Name Value
Type 4
5
6
7
Cc
E
F
P 0
1

Description

80286 Call Gate

Task Gate (for 80286 or Am386DX/DXL CPU Task)
80286 Interrupt Gate

80286 Trap Gate

Am386DX/DXL CPU Call Gate

Am386DX/DXL CPU Interrupt Gate

Am386DX/DXL CPU Trap Gate

Descriptor contents are not valid

Descriptor contents are valid

DPL—Least privileged level at which a task may access the gate. WORD COUNT 0-31—The number of parameters to copy
from caller's stack to the called procedure’s stack. The parameters are 32-bit quantities for Am386DX/DXL CPU gates, and

16-bit quantities for 80286 gates.

DESTINATION 16-Bit
SELECTOR Selector
DESTINATION Offset
OFFSET 16-bit 80286

32-bit Am386DX/DXL CPU

Selector to the target code segment
or
Selector to the target state segment for task gate

Entry point within the target code segment

150218025

Figure 22. Gate Descriptor Formats

Difference Between Am386DX/DXL Microproces-
sor and 80286 Descriptors

In order to provide operating system compatibility be-
tween the 80286 and Am386DX/DXL microprocessor,
the Am386DX/DXL CPU supports all of the 80286 seg-
ment descriptors. Figure 23 shows the general format of
an 80286 system segment descriptor. The only differ-
ences between 80286 and Am386DX/DXL device de-
scriptor formats are that the values of the type fields and
the limit and base address fields have been expanded
for the Am386DX/DXL device. The 80286 system seg-
ment descriptors contained a 24-bit base address and
16-bit limit, while the Am386DX/DXL microprocessor
system segment descriptors have a 32-bit base ad-
dress, a 20-bit limit field, and a granularity bit.

By supporting 80286 system segments, the Am386DX/
DXL microprocessor is able to execute 80286 appli-
cation programs on an Am386DX/DXL CPU operating
system. This is possible because the processor
automatically understands which descriptors are
80286-style descriptors and which are Am386DX/DXL
microprocessor-style descriptors. In particular, if the
upper word of a descriptor is zero, then that descriptor
is an 80286-style descriptor.

The only other differences between 80286-style de-
scriptors and Am386DX/DXL microprocessor descrip-
tors is the interpretation of the word count field of call
gates and the B bit. The word count field specities the
number of 16-bit quantities to copy for 80286 call gates
and 32-bit quantities for Am386DX/DXL device call
gates. The B bit controls the size of PUSHes when using
a call gate; if B = 0, then PUSHes are 16 bits, f B =1,
then PUSHes are 32 bits.

Selector Fields

A selector in Protected Mode has three fields: Local or
Global Descriptor Table indicator (T1), Descriptor Entry
Index (Index), and Requestor (the selector’s) Privilege
Level (RPL) as shown in Figure 24. The TI bits select
one of two memory-based tables of descriptors (the
Global Descriptor Table or the Local Descriptor Table).
The Index selects one of 8K descriptors in the appropri-
ate descriptor table. The RPL bits allow high speed test-
ing of the selector’s privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment register
has a segment descriptor cache register associated
with it. Whenever a segment register’'s contents are

48 Am386 Microprocessors for Personal Computers

AMD u

changed, the 8-byte descriptor associated with that not visible to the programmer. Since descriptor caches
selector is automatically loaded (cached) on the chip. only change when a segment register is changed,
Once loaded, all references to that segment use the programs that modify the descriptor tables must reload
cached descriptor information instead of reaccessing the appropriate segment registers after changing a

the descriptor. The contents of the descriptor cache are descriptor’s value.
31 0
Selector Base 15-0 Segment Limit 15~0 0
Reserved for Future Use DPL Type
P S Base
Setto 0 | | | | onqe | 4
Base Base Address of the Segment
Limit The length of the Segment
P Present Bit: 1 =Present, 0 = Not Present
DPL Descriptor Privilege Levels 0-3
S System Descriptor: 0 = System, 1 = User
Type Type of Segment
15021B-026
Figure 23. 80286 Code and Data Segment Descriptors
Selector
15 4321 0
Segment TI| RPL
Register | 0 | 0------ 0 11111 |
> ~ < | Table
Index Indicator
Tl=1 Ti=0
4 v
N Descriptor
/ Number /,
6 6
5 5
4 4
8 Descriptor 3
2 2
1 1
0 0 Null
Local Descriptor Table Global Descriptor Table
15021B-027

Figure 24. Example Descriptor Selection

Am386DX/DXL Microprocessor Data Sheet 49

n AMD

Segment Descriptor Register Settings

The contents of the segment descriptor cache vary de-
pending on the operating mode of the Am386DX/DXL
microprocessor. When operating in Real Address
Mode, the segment base, limit, and other attributes
within the segment cache registers are defined as
shown in Figure 25.

For compatibility with the 8086 architecture, the base is
set to 16 times the current selector value, the limit is
fixed at 0000FFFFH, and the attributes are fixed to

indicate that the segment is present and fully usable. In
Real Address Mode, the internal privilege levelis always
fixed to the highest level, level 0, so I/O and other privi-
leged op-codes may be executed.

When operating in Protected Mode, the segment base,
limit, and other attributes within the segment cache reg-
isters are defined as shown in Figure 26. In Protected
Mode, each of these fields are defined according to the
contents of the segment descriptor indexed by the se-
lector value loaded into the segment register.

Segment Descriptor Cache Register Contents

32-Bit Base
{Updated During Selector 32-Bit Limit Other Attributes
Load into Segment Register) (Fixed) {Fixed)

Conforming Privilege

Stack Size

Executable

Writeable

Readable

Expansion Direction

Granularity

Accessed

Privilege Level

Present

BASE LIMIT l Yy v v vv
CS | 16X Current CS Selector* 0000FFFFH Ylo] Y Bl U]lY|Y] Y] -|N
SS | 16X Current SS Selector 0000FFFFH Y{o]Y Bl U|lY]| Y| N| W| -
DS | 16X Current DS Selector 0000FFFFH Y|o] Y Bl U] Y] Y[N|] -|-
ES | 16X Current ES Selector 0000FFFFH Y| O] Y Bl U] Y[Y] N} |-
FS | 16X Current FS Selector 0000FFFFH Ylo|l Y| BlJ]U|Y|[Y] N|] -]-
GS | 16X Current GS Selector 0000FFFFH Y| 0] Y Bl U]l Y| Y] N| -| -
Key: Y = Yes D = Expand down

N = No B = Byte granularity

0 = Privilege level 0 P = Page granularity

1 = Privilege level 1 W = Push/pop 16-bit words

2 = Privilege level 2 F = Push/pop 32-bit Dwords

3 = Privilege level 3 — = Does not apply to that segment cache register

U = Expand up

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g., intersegment CALL, or

intersegment JMP, or INT). (See Figure 27 example.)

150218028

Figure 25. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

50 Am386 Microprocessors for Personal Computers

AMD n

Segment Descriptor Cache Register Contents

32-Bit Base
(Updated During Selector
Load into Segment Register)

32-Bit Limit
{Updated During Selector
Load Into Segment Register)

Other Attributes
{Updated During Selector
Load Into Segment Register)

Conforming Privilege
Stack Size

Executable

Writeable
Readable

Expansion Direction

Granularity

Accessed
Privilege Level

Present
BASE LIMIT l vy Y VvV VY
CS | Base per Seg Descr Limit per Seg Descr pl d| d d|l d]|]d|N|]Y|] -]d
SS | Base per Seg Descr Limit per Seg Descr p|ld| d d}] d r w| N| d]| -
DS | Base per Seg Descr Limit per Seg Descr p|d] d d} d d|d|{ N[-[| -
ES | Base per Seg Descr Limit per Seg Descr p|d] d df d d|]d| N[-] -
FS | Base per Seg Descr Limit per Seg Descr p|ld] d d| d d|d| N| - | -
GS | Base per Seg Descr Limit per Seg Descr pld]| d d|l d|d]|]d|] N[-]-
Key: Y = Fixed Yes
N = Fixed No
d = Per segment descriptor
p = Persegment descriptor; descriptor must indicate “present” to avoid Exception 11 (Exception 12 in case of SS)
r = Per segment descriptor, but descriptor must indicate “readable” to avoid Exception 13 (special case for SS)
w = Per segment descriptor, but descriptor must indicate “writeable” to avoid Exception 13 (special case for SS)

Does not apply to that segment cache register

15021B-029

Figure 26. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

When operating in a Virtual 8086 Mode within the Pro-
tected Mode, the segment base, limit, and other attrib-
utes within the segment cache registers are defined
as shown in Figure 27. For compatibility with the 8086
architecture, the base is set to 16 times the current
selector value, the limit is fixed at 0000FFFFH, and the

attributes are fixed so as to indicate the segment
is present and fully usable. The virtual program exe-
cutes at lowest privilege level, level 3, to allow trapping
of all IOPL-sensitive instructions and level 0 only
instructions.

Am386DX/DXL Microprocessor Data Sheet 51

e\ amp

Segment Descriptor Cache Register Contents

32-Bit Base
(Updated During Selector

Load into Segment Register)

32-Bit Limit Other Attributes
(Fixed) (Fixed)

Conforming Privilege
Stack Size

Executable

Writeable

Readable

Expansion Direction

Granularity

Accessed

Privilege Level

Present
BASE LIMIT l v ‘L L v
CS | 16X Current CS Selector 0000FFFFH Y| 3| Y| BlU|JY|]Y|]Y N
SS | 16X Current SS Selector 0000FFFFH Y|3]lY|B|J]U]Y]Y]N -
DS | 16X Current DS Selector 0000FFFFH Y3l Y| B]J]U|]Y|]Y]N -
ES | 16X Current ES Selector 0000FFFFH Y[3|] Y| B]l]U]Y[Y]|N -
FS | 16X Current FS Selector 0000FFFFH Y|3] Y| B]U|]Y|Y]|N -
GS | 16X Current GS Selector 0000FFFFH Y|3] Y| B]J]U|]Y|]Y]N -
Key: Y = Yes D = Expand down

N = No B = Byte granularity

0 = Privilege level 0 P = Page granularity

1 = Privilege level 1 W = Push/pop 16-bit words

2 = Privilege level 2 F = Push/pop 32-bit Dwords

3 = Privilege level 3 — = Does not apply to that segment cache register

U = Expand up

15021B-030

Figure 27. Segment Caches for Virtual 8086 Mode within Protected Mode
{Segment Limit and Attributes are Fixed)

52 Am386 Microprocessors for Personal Computers

AMD n

Protection
Protection Concepts

The Am386DX/DXL microprocessor has four levels of
protection that are optimized to support the needs of a
multitasking operating system to isolate and protect
user programs from each other and the operating sys-
tem. The privilege levels control the use of privileged in-
structions, I/O instructions, and access to segments and
segment descriptors. Unlike traditional microprocessor
based systems where this protection is achieved only
through the use of complex external hardware and soft-
ware, the Am386DX/DXL CPU provides the protection
on a page basis when paging is enabled (see Section
Page Level Protection).

The four-level hierarchical privilege system is illustrated
in Figure 28. It is an extension of the user/supervisor
privilege mode commonly used by minicomputers and,
in tact, the user/supervisor mode is fully supported by
the Am386DX/DXL microprocessor paging mechanism.
The privilege levels (PL) are numbered 0 through 3.
Level 0 is the most privileged or trusted level.

CPU
Enforced
Software
interfaces

Applications

Kernel
PL=0
Most
Privileged

High Speed
Operating
System

Interface 15021B-031

Figure 28. Four-Level Hierarchical Protection

Rules of Privilege

The Am386DX/DXL microprocessor controls access to

both data and procedures between levels of a task, ac-

cording to the following rules.

¢ Datastoredin a segment with privilege level p canbe
accessed only by code executing at a privilege level
at least as privileged as p.

¢ Acode segment/procedure with privilege level p can
only be called by a task executing at the same or a
lesser privilege level than p.

Privilege Levels
Task Privilege

At any pointin time, a task on the Am386DX/DXL micro-
processor always executes at one of the four privilege
levels. The Current Privilege Level (CPL) specifies the
task’s privilege level. Atask’s CPL may only be changed
by control transfers through gate descriptors to a code
segment with a different privilege level (see Section
Privilege Level Transfers). Thus, an application pro-
gram running at PL=3 may call an operating system
routine at PL = 1 (via a gate) that would cause the task’s
CPL to be set to 1 until operating system routine is
finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the RPL
field. The RPL is the two least significant bits of the se-
lector. The selector's RPL is only used to establish a
less trusted privilege level than the current privilege
level for the use of a segment. This level is called the
task’s effective privilege level (EPL). The EPL is defined
as being the least privileged (i.e., numerically larger)
level of a task’s CPL and a selector’s RPL. Thus, if se-
lector's RPL = 0, thenthe CPL always specifies the privi-
lege level for making an access using the selector. On
the other hand if RPL = 3, then a selector can only ac-
cess segments at level 3 regardless of the task’s CPL.
The RPL is most commonly used to verify that pointers
passed to an operating system procedure do not access
data that is of higher privilege than the procedure that
originated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL) in-
struction is provided to force the RPL bits to the
originator's CPL.

I/O Privilege and I/O Permission Bitmap

The I/O privilege level (IOPL, a 2-bit field in the EFLAGS
register) defines the least privileged level at which
1/0 instructions can be unconditionally performed. /O
instructions can be unconditionally performed when
CPL< IOPL. (The I/O instructions are IN, OUT, INS,
OUTS, REP INS, and REP OUTS.) When CPL > IOPL,
and the current task is associated with a 286 TSS, at-
tempted I/O instructions cause an Exception 13 fault.
When CPL > IOPL, and the current task is associated
with an Am386DX/DXL CPU TSS, the I/O Permission
Bitmap (part of an Am386DX/DXL microprocessor TSS)
is consuited on whether 1/0 to the port is allowed, or an
Exception 13 fault is to be generated instead. For dia-
grams of the [/O Permission Bitmap, refer to Figures
29a and 29b. For further information on how the I/O Per-
mission Bitmap is used in Protected Mode or in Virtual
8086 Mode, refer to Section Protection and I/O Permis-
sion Bitmap.

Am386DX/DXL Microprocessor Data Sheet 53

n AMD

31 16 15 0 TSS
Base
0000000000000000 | BackLink | o
ESPO 4
0000000000000000] S50 8 | Stacks
ESP1 C §CPL
0000000000000000 [SS1 w0 |22
EsP2 14
0000000000000000 | SS2 18
CR3 1C 3
EIP 20
EFLAGS 24
EAX 28
ECX 2
EDX 30
EBX 34
ESP 38 | curent
EBP 3c }TS?:tke
Note: ESI 40
BIT_MAP_OFFSET EDI 44
must be < DFFFH 0000000000000000 ES a8
0000000000000000 cs 4C
0000000000000000) 50
0000000000000000 DS 54
0000000000000000 FS 58
0000000000000000 Gs 5C
0000000000000000 LDT 80
BIT_MAP_OFFSET(15-0) 0000000000000000 R
Available N e~ DEBUG
N, System Status, efc. ~ TRAP
in Am386DX/DXL CPU TSS
31 24 | 23 16 [15 8|7 0
63 56 |55 48 | 47 40| 39 32 | BIT_MAP_OFFSET
95 88 |87 g0 | 79 72| 71 64
96 |OFFSET +C
_________ - OFFSET +10
) 1
ifhecess| I b NS N,
E BASE _e__ 65407 /O Permission Bitmap OFFSET + 1FEC
E 31 Program 0 E 65439 (Poor: g::mp;;?ny:,'g . OFFSET + 1FFO
fececmann . 65471 Truncated using TSS Limit.) OFFSET + 1FF4
Task Register 65503 65472 |OFFSET+1FF8
TR@”__I 65535 [65504 |OFFSET +1FFC
15 0 FFH |OFFSET+2000
4
] TSS Limit=OFFSET + 2000H
39 Am386DX/DXL CPU TSS Descriptor (In GDT) 0
R Selector Base 15-0 Segment Limit 15-0
Type =9: Available Base 31-24 alto]o] Gmt |p Dr Ly | Tyi"’ JBase
Am386DX/DXL CPU TSS,
Type =B: Busy
Am386DX/DXL CPU TSS
Figure 29a. TSS and TSS Registers 15021B-032a

54 Am386 Microprocessors for Personal Computers

31302828 2726 25 24 2322 2120191817 16 1514131211109 8 76 54 3 2 1 0
31111 01 1 o]0 00111 1]/06 t0 01 100/000 00011
63|60 1 000111 100 10101 1111 100]/111 11001
%1111 111 111 1+ 11 11111 11111110111 11111
127|600 0 0 00 0 0|0 0 0O 0 O 0 0|0 00 0O COO|OOO OCOOOGO

111 11111

¥ Y

I/0 Ports Accessible: 2 — 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 96 — 127

Figure 29b. Sample /O Permission Bit Map

15021B-032b

The I/O privilege level (IOPL) also affects whether
several other instructions can be executed or cause an
Exception 13 faultinstead. These instructions are called
IOPL-sensitive instructions and they are CLI and STi.
(Note that the LOCK prefix is not IOPL-sensitive on the
Am386DX/DXL microprocessor.)

The IOPL also affects whether the IF bit (interrupts en-
able flag) can be changed by loading a value into the
EFLAGS register. When CPL<IOPL, the IF bit can be
changed by loading a new value into the EFLAGS regis-
ter. When CPL > IOPL, the IF bit cannot be changed by a
new value POP’ed into (or otherwise loaded into) the
EFLAGS register; the IF bit merely remains unchanged
and no exception is generated.

Table 10. Pointer Test Instructions

Instruction Operands Function
ARPL

Selector,
Register

Adjust Requested Privilege
Level; adjusts the RPL of the
selector to the numeric maximum
of current selector RPL value and
the RPL value in the register. Set
zero flag if selector RPL was
changed.

VERify for Read: sets the zero
flag if the segment referred to
by the selector can be read.

VERIfy for Write: sets the zero
flag if the segment referred to
by the selector can be written.

VERR Selector

VERW Selector

LSL Register,

Selector

Load Segment Limit: reads the
segment limit into the register if
privilege rules and descriptor
type allow. Set zero flag if
successful.

LAR Register,

Selector

Load Access Rights: reads the
descriptor access rights byte into
the register if privilege rules allow.
Set zero flag if successful.

Privilege Validation

The Am386DX/DXL CPU provides several instructions
to speed pointer testing and help maintain system
integrity by verifying that the selector value refers to an

appropriate segment. Table 10 summarizes the selec-
tor validation procedures available for the Am386DX/
DXL microprocessor.

This pointer verification prevents the common problem
of an application at PL = 3 calling an operating-systems
routine at PL = 0 and passing the operating-systems
routine a bad pointer that corrupts a data structure
belonging to the operating system. If the operating-
systems routine uses the ARPL instruction to ensure
that the RPL of the selector has no greater privilege
than that of the calier, then this problem can be avoided.

Descriptor Access

There are basically two types of segment accesses:
those involving code segments, such as controt trans-
fers; and those involving data accesses. Determining
the ability of a task to access a segment involves the
type of segment to be accessed, the instruction used,
the type of descriptor used, and CPL, RPL, and DPL as
described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Am386DX/DXL microprocessor
makes protection validation checks. Selectors loaded in
the DS, ES, FS, GS registers must refer only to data
segments or readable code segments. The data access
rules are specified in Section Rules of Privilege. The
only exception to those rules is readable conforming
code segments which can be accessed at any privilege
level.

Finally, the privilege validation checks are performed.
The CPL is compared to the EPL; if the EPL is more
privileged than the CPL, an Exception 13 (General Pro-
tection fault) is generated.

The rules regarding the stack segment are slightly differ-
ent than those involving data segments. Instructions
that load selectors into SS must refer to data segment
descriptors for writeable data segments. The DPL and
RPL must equal the CPL. All other descriptor types or a
privilege level violation will cause Exception 13. A stack
not present fault causes Exception 12. Note that an
Exception 11 is used for a not-present code or data
segment.

Am386DX/DXL Microprocessor Data Sheet

u AMD

Table 11. Descriptor Types Used for Control Transfer

Descriptor Descriptor|
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege level CALL Call Gate GDT/LOT
L Interrupt Instruction, Trap or Interrupt

Interrupt within task may change CPL Except‘i)on, External Interrupt | Gate IDT
Intersegment to a lower privilege level (change task CPL) | RET, IRET* Code Segment GDTADT

CALL, JMP Task State Segment | GDT

CALL, JMP Task Gate GDT/LDT
Task Switch .

IRET**, interrupt Instruction,

Exception, External Interrupt Task Gate IDT

“NT (Nested Task bit of flag register) = 0

**NT (Nested Task bit of flag register) = 1

Privilege Level Transfers

Intersegment control transfers occur when a selector is
loaded in the CS register. For a typical system most of
these transfers are simply the result of a call or a jump to
another routine. There are five types of control transfers,
which are summarized in Table 11.

Many of these transfers result in a privilege level trans-
fer. Changing privilege levels is done only via control
transfers by using gates, task switches, and interrupt or
trap gates.

Control transfers can only occur if the operation that
loaded the selector references the correct descriptor
type. Any violation of these descriptor usage rules will
cause an Exception 13 (e.g., JMP through a call gate or
IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conforming
code segment with greater or equal privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels that are the same or less privileged
than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL must
be of equal or greater privilege than the gate’s DPL.

— The code segment selected in the gate must be the
same or more privileged than the task’'s CPL.

— Return instructions that do not switch tasks can only
return control to a code segment with same or less
privilege.

— Task switches can be performed by a CALL, JMP, or
INT that references either a task gate or task state
segment whose DPL is less privileged or the same
privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privilege
level change. The initial values of SS:ESP for privilege
levels 0, 1, and 2 are retained in the task state segment
(see Section Task Switching). During a JMP or CALL
control transfer, the new stack pointer is loaded in the
SS and ESP registers and the previous stack pointer is
pushed onto the new stack.

When returning to the original privilege level, use of the
lower-privilege stack is restored as part of the RET or
IRET instruction operation. For subroutine calls that
pass parameters on the stack and cross privilege levels,
afixed number of words (as specified inthe gate’s word
count field) are copied from the previous stack to the
current stack. The intersegment RET instruction with a
stack adjustment value will correctly restore the previ-
ous stack pointer upon return.

Call Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all the gates in a system, it can
ensure that all gates only allow entry into a few trusted
procedures (such as those that allocate memory or per-
form 1/O).

56 Am386 Microprocessors for Personal Computers

AMD a

Gate descriptors follow the data access rules of privi-
lege; that is, gates can be accessed by a task if the EPL
is equal to or more privileged than the gate descriptor's
DPL. Gates follow the control transfer rules of privilege
and therefore may only transfer control to a more privi-
leged level.

Call gates are accessed via a CALL instruction and are
syntactically identical to calling a normal subroutine.
When an interlevet Am386DX/DXL microprocessor call
gate is activated, the following actions occur:

1. Load CS:EIP from gate check for validity;

2. SSis pushed zero-extended to 32 bits;

3. ESPis pushed;
4

. Copy word count 32-bit parameters from the old
stack to the new stack;

5. Push return address on stack.

The procedure is identical for 80286 Call gates, except
that 16-bit parameters are copied and 16-bit registers
are pushed.

Interrupt gates and Trap gates work in a similar fashion
as the call gates, except there is no copying of parame-
ters. The only difference between Trap and Interrupt
gates is that control transfers through an Interrupt gate,
disable further interrupts (i.e., the IF bit is set to 0), and
Trap gates leave the interrupt status unchanged.

Task Switching

A very important attribute of any multitasking/multi-user
operating system is its ability to rapidly switch between
tasks or processes. The Am386DX/DXL microproces-
sor directly supports this operation by providing a task
switch instruction in hardware. The Am386DX/DXL
CPU task switch operation saves the entire state of the
machine (all of the registers, address space, and a link
to the previous task), loads a new execution state, per-
forms protection checks, and commences execution in
the new task, in about 17 ms. Like transfer of control via
gates, the task switch operation is invoked by executing
anintersegment JMP or CALL instructionthatreferstoa
Task State Segment (TSS), or a task gate descriptor in
the GDT or LDT. AnINT ninstruction, exception, trap, or
external interrupt may also invoke the task switch opera-
tion if there is a task gate descriptor in the associated
IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
29a) containing the entire Am386DX/DXL microproces-
sor execution state while a task gate descriptor contains
aTSS selector. The Am386DX/DXL CPU supports both
80286 and Am386DX/DXL CPU style TSSs. Figure 30
shows an 80286 TSS. The limit of an Am386DX/DXL
microprocessor TSS must be greater than 0064H
(002BH for an 80286 TSS) and can be as large as 4 Gb.
In the additional TSS space, the operating system is
free to store additional information, such as the reason
the task is inactive, time the task has spent running, and
open files belonging to the task.

Each task must have a TSS associated with it. The cur-
rent TSS is identified by a special register in the
Am386DX/DXL microprocessor called the Task State
Segment Register (TR). This register contains a seiec-
tor referring to the task state segment descriptor that de-
fines the current TSS. A hidden base and limit register
associated with TR are loaded whenever TR is loaded
with a new selector. Returning from a task is accom-
plished by the IRET instruction. When IRET is executed,
control is returned to the task that was interrupted. The
current executing task’s state is saved in the TSS and
the old task state is restored from its TSS.

Several bits in the flag register and machine status word
(CRO) give information about the state of a task that are
useful to the operating system. The Nested Task (NT)
(bit 14 in EFLAGS) controls the function of the IRET in-
struction. If NT = 0, the IRET instruction performs the
regular return; when NT = 1, IRET performs a task
switch operation back to the previous task. The NT bit is
set or reset in the following fashion.

When a CALL or INT instruction initiates a task switch,
the new TSS will be marked busy and the back link
field of the new TSS setto the old TSS selector. The NT
bit of the new task is set by CALL or INT initiated task
switches. An interrupt that does not cause a task switch
willclear NT. (The NT bit will be restored after execution
of the interrupt handler.) NT may also be set or cleared
by POPF or IRET instructions.

The Am386DX/DXL microprocessor Task State Seg-
ment is marked busy by changing the descriptor type
field from Type 9H to Type BH. An 80286 TSS is
marked busy by changing the descriptor type field from
Type 1 to Type 3. Use of a selector that references a
busy task state segment causes an Exception 13.

The Virtuai Mode (VM) bit 17 is used to indicate if a task
is a virtual 8086 task. If VM =1, then the tasks will use
the Real Mode addressing mechanism. The virtual 8086
environment is only entered and exited via a task switch
(see Section Virtual Mode).

The coprocessor's state is not automatically saved
when a task switch occurs, because the incoming task
may not use the coprocessor. The Task Switched (TS)
Bit (bit 3 in the CR0) helps deal with the coprocessor’s
state in a multitasking environment. Whenever the
Am386DX/DXL microprocessor switches tasks, it sets
the TS bit. The Am386DX/DXL CPU detects the firstuse
of a processor extension instruction after a task switch
and causes the processor extension not available Ex-
ception 7. The exception handler for Exception 7 may
then decide whether to save the state of the coproces-
sor. A processor extension not present Exception 7 will
occur when attempting to execute an ESC or WAIT in-
struction if the Task Switched and Monitor coprocessor
extension bits are both set (i.e., TS=1 and MP =1).

Am386DX/DXL Microprocessor Data Sheet 57

n AMD

15 0
Back Link Selector to TSS 0 .
SP for CPL 0 2
SS for CPL O 4 »
Initial
SP for CPL 1 6 | Stacks
SS for CPL 1 g [frobt
SP for CPL 2 A
SS for CPL 2 C J
IP (Entry Point) £)
Flags 10
AX 12
CX 14
DX 16
BX 18 | Current
s e L
BP 1C
Sl 1E
DI 20
ES Selector 22
CS Selector 24
SS Selector 26
DS Selector 28)
Task's LDT Selector 2A
R Available A
nJ Y 15021B-033

Figure 30. 80286 TSS

The T bit in the Am386DX/DXL microprocessor TSS in-
dicates that the processor should generate a debug ex-
ception when switching to atask. If T = 1, then upon en-
try to a new task, a debug Exception 1 will be generated.

Initialization and Transition to Protected Mode

Since the Am386DX/DXL microprocessor begins exe-
cuting in Real Mode immediately after RESET, it is nec-
essary to initialize the system tables and registers with
the appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256-bytes long,
and GDT must contain descriptors for the initial code
and data segments. Figure 31 shows the tables and
Figure 32 shows the descriptors needed for a simple
Protected Mode Am386DX/DXL microprocessor sys-
tem. it has a single code and single data/stack segment
each 4 Gb long and a single privilege level PL=0.

The actual method of enabling Protected Mode is to load
CRO with PE bit set, via the MOV CR0, R/M instruction.

This puts the Am386DX/DXL microprocessor in Pro-
tected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers with
the initial selector values.

An alternate approach to entering Protected Mode that
is especially appropriate for multitasking operating sys-
tems is to use the built in task-switch to load all of the
registers. In this case, the GDT would contain two TSS
descriptors in addition to the code and data descriptors
needed for the first task. The first JMP instruction in Pro-
tected Mode would jump to the TSS causing a task
switch and loading all of the registers with the values
storedinthe TSS. The TR should be initialized to point to
a valid TSS descriptor since a task switch saves the
state of the current task in a task state segment.

Paging
Paging Concepts

Paging is another type of memory management useful
for virtual memory muttitasking operating systems. Un-
like segmentation that modularizes programs and data
into variable length segments, paging divides pro-
grams into multiple uniform size pages. Pages bear no
direct relation to the logical structure of a program.
While segment selectors can be considered the logical
name of a program module or data structure, a page
most likely corresponds to only a portion of a module or
data structure.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of pages
from each active task need be in memory at any one
moment.

Paging Organization
Page Mechanism

The Am386DX/DXL microprocessor uses two levels of
tables to translate the linear address (from the segmen-
tation unit) into a physical address. There are three com-
ponents to the paging mechanism of the Am386DX/DXL
CPU: the page directory, the page tables, and the page
itself (page frame). All memory-resident elements of the
Am386DX/DXL CPU paging mechanism are the same
size, namely, 4 Kb. A uniform size for all of the elements
simplities memory allocation and reallocation schemes,
since there is no problem with memory fragmentation.
Figure 33 shows how the paging mechanism works.

58 Ama386 Microprocessors for Personal Computers

AMD
5 0, 31 0
- FFFFFFFF
Reset Routines
§s FFFFFFFO
Initialization
GS Routines
rs [ooro]
es
User Memory
DS |ooto
)
cs o008]
GDTR |0017 Limit 00000118
00000100 Data Descri.ptor 00000110
Base Address Code Descriptor 00000108 GDT
Nuli Selector
IDTR [00FF] Limit 00000100
Interrupt 4
00000000 Descriptors (32) IDT
Base Address » ooogoooo
15021B-034
Figure 31. Simple Protected System
Data Segment Base 15-0 Segment Limit 15-0
Descriptor 0118 (H) FFFF (H)
Base31-24 |G |D Limit Base
olo] 19-18 1]ojof1] ojoy1|o]| 2318
oo || F (H) | L] 00 (H)
Code Segment Base 15-0 Segment Limit 15-0
Descriptor 0118 (H) FFFF (H)
Limit Base
Base 31-24 ‘15? olo] 1o-16 1{ojof1| 1j0,1[0]| 2318
00 (H) FH) |°] 00 (H)
Null | Descriptor
31 24 16 15 8 0
15021B-035

Figure 32. GDT Descriptors for Simple System

Page Descriptor Base Reglster

CR2 is the Page Fault Linear Address register. It holds
the 32-bit linear address that caused the last Page Fault
detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of the
Page Directory. The lower 12 bits of CR3 are always
zero to ensure that the Page Directory is always page
aligned. Loading it via a MOV CR3, reg instruction
causes the Page Table entry cache to be flushed, as will

a task switch through a TSS that changes the value of
CRO. (See Translation Look-Aside Buffer.)

Page Directory

The Page Directory is 4-Kb long and allows up to 1024
Page Directory entries. Each Page Directory entry con-
tains the address of the next level of tables, the Page Ta-
bles and information about the page table. The contents
of a Page Directory entry are shown in Figure 34. The
upper 10 bits of the linear address (A31-A22) are used
as an index to select the correct Page Directory entry.

Am386DX/DXL Microprocessor Data Sheet

59

a AMD

Two Level Paging Scheme

31 22 12 0
Linear 'l Directory rTable LOffsﬂ
Address
12
Z
10// 10// 4 User
Memory
égSBGDX/DXL 3 9 Address
Y
a1 0 31 o & |
CRO |
3
CR1 45 »
CR2 Page Table
CR3 Root >
Control Registers Directory
15021B-036
Figure 33. Paging Mechanism
31 1211 10 9 8 7 6 5 4 3 2 1 0
0s UIR
Page Table Address 31-12 Reserved | 0] 0 [DJAO]O slw P
Figure 34. Page Directory Entry (Points to Page Table) 15021B-037
31 1211 10 9 8 7 6 5 4 3 2 1 0
Page Frame Address 31-12 Reserved | 0| 0| D Alo]|O 5 V_V P
Figure 35. Page Table Entry (Points to Page) 15021B-038

Am386 Microprocessors for Personal Computers

AMD n

Page Tables

Each Page Table is 4 Kb and holds up to 1024 Page
Table entries. Page Table entries contain the starting
address of the page frame and statistical information
about the page (see Figure 35). Address bits A21-A12
are used as an index to select one of the 1024 Page
Table entries. The 20 upper-bit page frame address is
concatenated with the lower 12 bits of the linear address
to formthe physical address. Page tables canbe shared
between tasks and swapped to disks.

Page Directory/Table Entries

The lower 12 bits of the Page Table entries and Page Di-
rectory entries contain statistical information about
pages and page tables respectively. The P (Present) bit
0 indicates if a Page Directory or Page Table entry can
be used in address translation. if P = 1, the entry can be
used for address translation; if P = 0, the entry cannot be
used for translation. Note that the present bit of the page
table entry that points to the page where code is cur-
rently being executed should aiways be set. Code that
marks its own page not present should not be written. All
of the other bits are available for use by the software. For
example the remaining 31 bits could be used to indicate
where on the disk the page is stored.

The A (Accessed) bit 5 is set by the Am386DX/DXL mi-
croprocessor for both types of entries before a read or
write access occurs to an address covered by the entry.
The D (Dirty) bit 6 is setto 1 before a write to an address
covered by that page table entry occurs. The D bit is un-
defined for Page Directory entries. When the P, A, and
D bits are updated by the Am386DX/DXL CPU, the mi-
croprocessor generates a Read-Modify-Write cycle that
locks the bus and prevents conflicts with other proces-
sors or peripherals. Software that modifies these bits
should use the LOCK prefix to ensure the integrity of the
page tables in multi-master systems.

The three bits marked OS Reserved in Figures 34 and
35 (bits 11-9) are software definable. OSs are free to
use these bits for whatever purpose they wish. An
example use of the OS Reserved bits would be to store
information about page aging. By keeping track of how
long a page has been in memory since being accessed,
an operating system can implement a page replace-
ment algorithm like Least Recently Used.

The (User/Supervisor) U/S bit 2 and the (Read/Write)
R/W bit 1 are used to provide protection attributes for
individual pages.

Page Level Protection (R/'W, U/S Bits)

The Am386DX/DXL microprocessor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: user, which corresponds to level 3 of the
segmentation based protection, and supervisor, which
encompasses all of the other protection levels (0, 1, 2).

Programs executing at level 0, 1, or 2 bypass the page
protection, although segmentation based protection is
still enforced by the hardware.

The U/S and R/W bits are usedto provide User/Supervi-
sor and Read/Write protection for individual pages or for
all pages covered by a Page Table Directory entry. The
U/S and R/W bits in the first level Page Directory Table
apply to all pages described by the page table pointed to
by that directory entry. The U/S and R/W bits in the sec-
ond level Page Table entry apply only to the page de-
scribed by that entry. The U/S and R/W bits for a given
page are obtained by taking the most restrictive of the
U/S and R/W bits from the Page Directory Table entries
and the Page Table entries and using these bits to ad-
dress the page. .

Example: If the U/S and R/W bits for the Page Directory
entry were 10 and the U/S and R/W bits for the Page Ta-
ble entry were 01, the access rights for the page would
be 01, the numerically smaller of the two. Table 12
shows the effect of the U/S and R/W bits on accessing
memory.

Table 12. Protection Provided by R/W and U/S

Permitted Permitted Access
U/s RW Level 3 Levels 0, 1, or 2
0 0 None Read/Write
0 1 None Read/Write
1 0 Read-Only Read/Write
1 1 Read/Write Read/Write

However, a given segment can be easily made read-
only for level 0, 1, or 2 via the use of segmented protec-
tion mechanisms (see Section Protection).

Translation Look-Aside Buffer

The Am386DX/DXL microprocessor paging hardware
is designed to support demand paged virtual memory
systems. However, performance would degrade sub-
stantially if the processor was required to access two
levels of tables for every memory reference. To solve
this problem, the Am386DX/DXL device keeps a cache
of the most recently accessed pages, this cache is
called the Translation Look-Aside Buffer (TLB). The
TLB is a four-way set associative 32-entry page table
cache. It automatically keeps the most commonly used
Page Table entries in the processor. The 32-entry TLB,
coupled with a 4K page size, results in coverage of
128 Kb of memory addresses. For many common mutlti-
tasking systems, the TLB will have a hit rate of about
98%. This means that the processor will only have to
access the two-level page structure on 2% of all memory
references. Figure 36 illustrates how the TLB com-
plements the Am386DX/DXL microprocessor's paging
mechanism.

Am386DX/DXL Microprocessor Data Sheet 61

u AMD

32 Entries Physical
Linear Memory
Addraess | Translation N
— | Look-Aside Hit y
Buffer
+
Miss
31 0
y
+,
Page Page
Directory Table
©938% Hit Rate 15021B-039

Figure 36. Translation Look-Aside Buffer

Paging Operation

The paging hardware operates in the following fashion:
the paging unit hardware receives a 32-bit linear ad-
dress from the segmentation unit. The upper 20 linear
address bits are compared with all 32 entries inthe TLB
to determine if there is a match. If there isamatch (i.e., a
TLB hit), then the 32-bit physical address is calculated
and will be placed on the address bus.

However, if the Page Table entry is not in the TLB, the
Am386DX/DXL microprocessor will read the appro-
priate Page Directory entry. Iif P = 1 on the Page Direc-
tory entry indicating that the page table is in memory,
then the Am386DX/DXL device will read the appro-
priate Page Table entry and set the Access bit. If P = 1
on the Page Table entry indicating that the page is in
memory, the Am386DX/DXL device will update the
Access and Dirty bits as needed and fetch the operand.
The upper 20 bits of the linear address, read from the
page table, will be stored in the TLB for future accesses.
However, if P = 0 for either the Page Directory entry or
the Page Table Entry, then the processor will generate
a Page Fault, an Exception 14.

The processor will also generate an Exception 14, Page
Fault, if the memory reference violated the page protec-
tion attributes (i.e., U/S or R/W; trying to write to a read-
only page). CR2 will hold the linear address that caused
the page fault. Iif a second page fault occurs while the
processor is attempting to enter the service routine for
the first, then the processor will invoke the Page Fault
(Exception 14) handler a second time, rather than the
Double Fault (Exception 8) handler. Since Exception 14

is classified as afault, CS:EIP will point to the instruction
causing the page fault. The 16-bit error code pushed as
part of the page fault handler will contain status bits
which indicate the cause of the Page Fault.

The 16-bit error code is used by the operating systemto
determine how to handle the Page Fault. Figure 37
shows the format of the page-fault error code andthe in-
terpretation of the bits.

Note: Even though the bits in the error code (U/S, R/W,
and P) have similar names as the bits in the Page Direc-
tory/Table entries, the interpretation of the error code
bits is different. Figure 38 indicates what type of access
caused the Page Fault.

15 3 210
U|w
ujujujulujujujujujufujulu P
S|R
150218040

Figure 37. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access causing
the fault occurred when the processor was executing
the User Mode (U/S=1) or in Supervisor mode
(U/S=0).

R/W: The R/W bit indicates whether the access causing
the fault was a Read (R/W = 0) or a Write (R/W=1).

P: The P bit indicates whether a Page Fault was caused
by a not-present page (P = 0) or by a page level protec-
tion violation (P = 1).

U: Undefined.
u/s RW Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 ¢} User Read
1 1 User Write

*Descriptor table access will fault with U/S =0, even if the
program is executing at level 3.

15021B-041
Figure 38. Type of Access Causing Page Fault

Operating System Responsibilities

The Am386DX/DXL microprocessor takes care of the
page address translation process, relieving the burden
trom an operating system in a demand-paged system.
The operating system is responsible for setting up the
initial page tables and handiing any page faults. The op-
erating system is also required to invalidate (i.e., tlush)
the TLB when any changes are made to any of the Page
Table entries. The operating system must reload CR3 to
cause the TLB to be flushed.

62 Am386 Microprocessors for Personal Computers

AMD n

Setting up the tables is simply a matter of loading CR3
with the address of the Page Directory and allocating
space for the Page Directory and the Page Tables. The
primary responsibility of the operating system is to im-
plement a swapping policy and handle all of the page
faults.

Afinal concern of the operating system is to ensure that
the TLB cache matches the information in the paging ta-
bles. In particular, any time the operating system sets
the P present bit of page table entry to zero, the TLB
must be flushed. Operating systems may want to take
advantage of the fact that CR3is stored as part of a TSS
to give every task or group of tasks its own set of page
tables.

Virtual 8086 Environment
Executing 8086 Programs

The Am386DX/DXL microprocessor allows the execu-
tion of 8086 application programs in both Real Mode
and in the Virtual 8086 Mode (Virtual Mode). Of the two
methods, Virtual 8086 Mode offers the system designer
the most flexibility. The Virtual 8086 Mode allows the
execution of 8086 applications, while still allowing
the system designer to take full advantage of the
Am386DX/DXL device protection mechanism. In par-
ticular, the Am386DX/DXL CPU allows the simultane-
ous execution of 8086 operating systems and its appli-
cations, and an Am386DX/DXL CPU operating system
and both 80286 and Am386DX/DXL microprocessor
applications. Thus, in a multiuser Am386DX/DXL CPU
computer, one person could be running a MS-DOS
spreadsheet, another person using MS-DOS, and a
third person could be running multiple UNIX utilities and
applications. Each person inthis scenario would believe
they had the computer completely to themsetf. Figure 39
illustrates this concept.

Virtual 8086 Mode Addressing Mechanism

One of the major differences between Am386DX/DXL
microprocessor Real and Protected Modes is how the
segment selectors are interpreted. When the processor
is executing in Virtual 8086 Mode, the segment registers
are used in an identical fashion to Real Mode. The
contents of the segment register are shifted left 4 bits
and added to the offset to form the segment base linear
address.

The Am386DX/DXL microprocessor allows the operat-
ing systemto specify which programs use the 8086 style
address mechanism, and which programs use Pro-
tected Mode addressing, on a per task basis. Through
the use of paging, the 1-Mb address space of the Virtual
Mode task can be mapped to anywhere in the 4-Gb lin-
ear address space of the Am386DX/DXL device. Like
Real Mode, Virtual Mode effective addresses (i.e., seg-
ment offsets) that exceed 64 Kb will cause an Exception
13. However, these restrictions should not prove to be

important because most tasks running in Virtual 8086
Mode will simply be existing 8086 application programs.

Paging In Virtual Mode

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks and provides protection
and operating system isolation. Although it is not
strictly necessary to have the paging hardware enabled
to run Virtual Mode tasks, it is needed in order to run
multiple Virtual Mode tasks or to relocate the address
space of a Virtual Mode task to physical address space
greater than 1 Mb.

The paging hardware allows the 20-bit linear address
produced by a Virtual Mode program to be divided into
up to 256 pages. Each one of the pages can be located
anywhere within the maximum 4-Gb physical address
space of the Am386DX/DXL microprocessor. In addi-
tion, since CR3 (the Page Directory Base Register) is
loaded by a task switch, each Virtual Mode task can use
a different mapping scheme to map pages to different
physical locations. Finally, the paging hardware allows
the sharing of the 8086 operating system code between
multiple 8086 applications. Figure 39 shows how the
Am386DX/DXL device paging hardware enables multi-
ple 8086 programs to run under a virtual memory de-
mand paged system.

Protection and 1/0 Permission Bitmap

All Virual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual 8086
Mode programs are subject to all of the protection
checks defined in Protected Mode. (This is different
from Real Mode which implicitly is executing at privilege
level 0, the level of greatest privilege.) Thus, an attempt
to execute a privileged instruction when in Virtual 8086
Mode will cause an Exception 13 fault.

The following are privileged instructions, which may be
executed only at Privilege Level 0. Therefore, attempt-
ing to execute these instructions in Virtual 8086 Mode
(or anytime CPL > 0) causes an Exception 13 fault.

LIDT; MOV DRn, reqg; MOV reg,DRn;
LGDT; MOV TRn, reg; MOV reg, TRn;
LMSW; MOV CRn, reg; MOV reg, CRn;
CLTS;
HLT;

Several instructions, particularly those applying to the
muititasking model and protection model, are available
only in Protected Mode. Therefore, attempting to exe-
cute the following instructions in Real Mode or in Virtual
8086 Mode generates an Exception 6 fault.

LTR; STR;

LLDT; SLDT;
LAR; VERR;
LSL; VERW;
ARPL.

Am386DX/DXL Microprocessor Data Sheet 63

a AMD

/ Page N
8086 OS \
Empty \
Task 2
Page
Table
Virtual Mode i
8086 Task | 298 Diregtory
(Page N
T
Page 1 [~——___]
8086 OS \
Empty
Page Task 1
Directory .| Page
Root Table
Virtual Mode Page Directory

\ 8086 Task

Task 1 /

Physical Memory
o] 02000000(H)

Available

00000000(H)

Task 1
Memory

- Task 2 ' Am386DX/DXL CPU OS

Memory Memory

15021B-042

Figure 39. Virtual 8086 Environment Memory Management

The instructions that are IOPL-sensitive in Protected
Mode are:

IN; STI;

ouT; CLI;

INS;

ouTs;

REP INS;

REP OUTS.

In Virtual 8086 Mode, a slightly different set of instruc-
tions are made IOPL-sensitive. The following instruc-
tions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF'; CLI;
POPF; IRET.

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision al-
lows the IF flag (interrupt enable flag) to be virtualized to
the Virtual 8086 Mode program. The INT n software

interrupt instruction is also IOPL-sensitive in Virtual
8086 Mode. Note, however, that the INT 3 (op-code
0CCH), INTO, and BOUND instructions are not |OPL-
sensitive in Virtual 8086 Mode (they are not IOPL sensi-
tive in Protected Mode either).

Note that the I/O instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in Vir-
tual 8086 Mode. Rather, the I/O instructions become
automatically sensitive to the I/O Permission Bitmap
contained inthe Am386DX/DXL. CPU TSS. The /O Per-
mission Bitmap, automaticaily used by the Am386DX/
DXL microprocessor in Virtual 8086 Mode, is illustrated
by Figures 29a and 29b.

The /O Permission Bitmap can be viewed as a
0-64K bit string, that begins in memory at offset
Bit_Map_Offset in the current TSS. Bit_Map_Offset
mustbe < DFFFH so the entire bit map and the byte FFH
that follows the bit map are all at offset < FFFFH from the
TSS base. The 16-bit pointer Bit_Map_Offset (15-0) is
found in the word beginning at offset 66H (102 decimal)
from the TSS base, as shown in Figure 29a.

64 Am386 Microprocessors for Personal Computers

AMD a

Each bit in the I/0 Permission Bitmap corresponds to a
single byte-side I/O port, as illustrated in Figure 29a. If a
bitis 0, I/O to the corresponding byte-wide port can oc-
cur without generating an exception. Otherwise the I/O
instruction causes an Exception 13 fault. Since every
byte-wide 1/O port must be protectable, all bits corre-
sponding to a Word-wide or Dword-wide port must be 0
for the Word-wide or Dword-wide I/O to be permitted. If
all the referenced bits are 0, the /O will be allowed. If
any referenced bits are 1, the attempted I/O will cause
an Exception 13 fault.

Due to the use of a pointer to the base of the I/O Permis-
sion Bitmap, the bitmap may be located anywhere within
the TSS or may be ignored completely by pointing the
Bit_Map_Offset (15-0) beyond the limit of the TSS
segment. In the same manner, only a small portion of
the 64K /O space need have an associated map bit by
adjusting the TSS limit to truncate the bitmap. This
eliminates the commitment of 8K of memory when a
complete bitmap is not required, while allowing the fully
general case if desired.

Example of Bitmap for I/O Ports 0-255: Setting the TSS
limit to {Bit_Map_Offset + 31 +1**} [**see note below]
will allow a 32-byte bitmap forthe 1/O ports 0-255, plus a
terminator byte of all 1s [**see note below]. This allows
the 1/O bitmap to control ¥O Permission to /O ports
0-255 while causing an Exception 13 fault on attempted
1/0 to any /O port 256 through 65,565.

**Important Implementation Note: Beyond the last byte of
IO mapping, information in the I/O Permission Bitmap must
be abyte containing all 1s. The byte of all 1s must be within the
limit of the Am386DX/DXL CPU TSS segment (see Figure
29a).

Interrupt Handling

In order to fully support the emulation of an 8086 ma-
chine, interrupts in Virtual 8086 Mode are handled in a
unique fashion. When running in Virtual Mode, all inter-
rupts and exceptions involve a privilege change back
to the host Am386DX/DXL CPU operating system. The
Am386DX/DXL microprocessor operating system de-
termines if the interrupt comes from a Protected Mode
application or from a Virtual Mode program by examin-
ing the VM bitinthe EFLAGS image stored onthe stack.

When a Virtual Mode program is interrupted and execu-
tion passes to the interrupt routine at level 0, the VM bit
is cleared. However, the VM bit is still setinthe EFLAGS
image on the stack.

The Am386DX/DXL microprocessor operating system
in turn handles the exception or interrupt and then re-
turns control to the 8086 program. The Am386DX/DXL
CPU operating system may choose to let the 8086 oper-
ating system handle the interrupt or it may emulate the
function of the interrupt handler. For example, many
8086 operating system calls are accessed by PUSHing
parameters on the stack, and then executing an INT n
instruction. If the IOPL is set to 0 then all INT n in-
structions will be intercepted by the Am386DX/DXL

microprocessor operating system. The Am386DX/DXL
CPU operating system could emulate the 8086 operat-
ing system’s call. Figure 40 shows how the Am386DX/
DXL microprocessor operating system could intercept
an 8086 operating system’s call to Open a File.

The Am386DX/DXL microprocessor operating system
can provide a Virtual 8086 Environment that is totally
transparent to the application software via intercepting
and then emulating 8086 operating system’s calls, and
intercepting IN and OUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 Mode is entered by executing an IRET in-
struction (at CPL = 0), or Task Switch (at any CPL) to an
Am386DX/DXL microprocessor task whose Am386DX/
DXL microprocessor TSS has an EFLAGS image con-
taining a 1 in the VM bit position while the processor is
executing in Protected Mode. That is, one way to enter
Virtual 8086 Mode is to switch to a task with an
Am386DX/DXL device TSS that has a 1 inthe VM bit in
the EFLAGS image. The otherway is to execute a 32-bit
IRET instruction at privilege level 0, where the stack has
a 1inthe VM bit in the EFLAGS image. POPF does not
affect the VM bit even if the processor is in Protected
Mode or level 0, and so cannot be used to enter Virtual
8086 Mode. PUSHF always pushes a 0 in the VM bit,
even if the processor is in Virtual 8086 Mode, so that a
program cannot tell if it is executing in Real Mode or in
Virtual 8086 Mode.

The VM bit can be set by executing an IRET instruction
only at privilege level 0 or by any instruction or interrupt
that causes a task switch in Protected Mode (with VM =
1 inthe new FLAGS image), and can be cleared only by
aninterrupt or exception in Virtual 8086 Mode. IRET and
POPF instructions executed in Real Mode or Virtual
8086 Mode will not change the value in the VM bit.

The transition out of Virtual 8086 Mode to Am386DX/
DXL microprocessor Protected Mode occurs only on re-
ceipt of aninterrupt or exception (such as due to a sensi-
tive instruction). in Virtual 8086 Mode, all interrupts and
exceptions vector through the Protected Mode IDT,
and enter an interrupt handler in Am386DX/DXL CPU
Protected Mode. That is, as part of interrupt processing,
the VM bit is cleared.

Because the matching IRET must occur from level 0, if
an Interrupt or Trap gate is used to field an interrupt or
exception out of Virtual 8086 Mode, the gate must per-
form an interlevel interrupt only to level 0. Interrupt or
Trap gates through conforming segments or through
segments with DPL > 0, will raise a GP fauit with the CS
selector as the error code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in Virtual 8086 Mode must be
described by a TSS with the new Am386DX/DXL micro-
processor format (Type 9 or 11 descriptor).

Am386DX/DXL Microprocessor Data Sheet 65

n AMD

Program

8086 Application| - 1a6ny/DXL CPU

Application Program

GP Fault

8086
Operating

Virtual 8086
Mode Monitor

System #3

¢#2

Am386DX/DXL CPU
OS File Open
Routines

Privilege
Level 3
(Lowest)

Privilege
Level 0
(Highest)

8086 Application

Program

8086 Application makes “Open File Call” — causes General Protection Fault (Arrow #1)
Virtual 8086 Monitor intercepts call. Calls Am386DX/DXL CPU OS (Arrow #2)
Am388DX/DXL CPU OS “Opens File" returns control to 8086 OS (Arrow #3)

8086 OS retumns control to application (Arrow #4)
Transparent to Application

15021B-043

Figure 40. Virtual 8086 Environment Interrupt and Call Handling

A task switch out of Virtual 8086 Mode will operate
exactly the same as any other task switch out of a task
with an Am386DX/DXL CPU TSS. All of the program-
mer visible state, including the FLAGS register with the
VMbit setto 1, is stored in the TSS. The segment regis-
ters in the TSS will contain 8086 segment base values
rather than selectors.

Atask switch into a task described by an Am386DX/DXL
microprocessor TSS will have an additional check to
determine if the incoming task should be resumed in
Virtual 8086 Mode. Tasks described by 80286 format
TSSs cannot be resumed in Virtual 8086 Mode, s0 no
check is required there {the FLAGS image in 80286
format TSS has only the low-order 16 FLAGS bits). Be-
fore loading the segment register images from an
Am386DX/DXL CPU TSS, the FLAGS image is loaded
so that the segment registers are loaded from the TSS
image as 8086 segment base values. The task is now
ready to resume in Virtual 8086 Execution Mode.

Transitions Through Trap and Interrupt Gates,
and IRET

A task switch is one way to enter or exit Virtual 8086
Mode. The other method is to exist through a Trap or In-
terrupt gate, as part of handling an interrupt, andto enter
as part of executing an IRET instruction. The transition
out must use an Am386DX/DXL microprocessor Trap
gate (Type 14) or Interrupt gate (Type 15) that must
point to a non-conforming level 0 segment (DPL = 0} in
order to permit the trap handler to IRET back to the
Virtual 8086 program. The gate must point to a non-
conforming level 0 segment to perform a level switch to
level 0 so that the matching IRET can change the VM
bit. Am386DX/DXL device gates must be used, since
80286 gates save only the lower 16 bits of the FLAGS
register, so that the VM bit will not be saved on transi-
tions through the 80286 gates. Also, the 16-bit IRET
{presumably) used to terminate the 80286 interrupt han-
dler will pop only the lower 16 bits from FLAGS, and will

66 Am386 Microprocessors for Personal Computers

AMD n

not affect the VM bit. The action taken for an Am386DX/
DXL microprocessor Trap or Interrupt gate if an interrupt
occurs while the task is executing in Virtual 8086 Mode
is given by the following sequence.

1. Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt gate, turn off IF bit, also.

2. Interrupt and Trap gates must perform a level switch
from 3 (where the VM86 program executes) to level ¢
(so IRET can return). This process involves a stack
switch to the stack given in the TSS for privilege
level 0. Save the Virtual 8086 Mode SS and ESP
registers to push in a later step. The segment
register load of SS will be done as a Protected Mode
segment load since the VM bit was turned off above.

3. Pushthe 8086 segment register values onto the new
stack, in the order: GS, FS, DS, ES. These are
pushed as 32-bit quantities with undefined values in
the upper 16 bits. Then load these 4 registers with
null selectors (0).

4. Push the old 8086 stack pointer onto the new stack
by pushing the SS register {(as 32-bit, high bits
undefined), then pushing the 32-bit ESP register
saved above.

5. Push the 32-bit FLAGS register saved in step 1.

6. Push the old 8086 instruction pointer onto the new
stack by pushing the CSregister (as 32-bits, high bits
undefined), then pushing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate and begin execution of the interrupt routine in
Protected Am386DX/DXL Microprocessor Mode.

The transition out of Virtual 8086 Mode performs a level
change and stack switch, in addition to changing back to
Protected Mode. In addition, all of the 8086 segment
register images are stored on the stack (behind the
SS:ESP image), and then loaded with null (0) selectors
before entering the interrupt handler. This will permit the
handler to safely save and restore the DS, ES, FS, and
GS registers as 80286 selectors. This is needed so that
interrupt handlers that “don’t care” about the mode ofthe
interrupted program can use the same prolog and epilog
code for state saving (i.e., push all registers in prolog,
pop all in epilog) regardless of whether or not a native
mode or Virtual 8086 Mode program was interrupted.
Restoring null selectors to these registers before exe-
cuting the IRET will not cause a trap in the interrupt han-
dler. Interrupt routines that expect values inthe segment
registers or return values in segment registers will have
to obtain/return values from the 8086 register images
pushed onto the new stack. They will need to know the
mode of the interrupted program in order to know
where to find/return segment registers, and also to
know how to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended Am386DX/DXL
microprocessor IRET instruction (operand size = 32)
can be used and must be executed at level 0 to change
the VM bitto 1.

1. Ifthe NT bitinthe FLAGS register is on, an inter-task
returnis performed. The current state is stored in the
current TSS, and the link field in the current TSS is
used to locate the TSS for the interrupted task which
is to be resumed.

Otherwise, continue with the following sequence.

2. Read the FLAGS image trom SS:8[ESP] into the
FLAGS register. This will set VM to the value active
in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is popped
first, then a 32-bit word is popped that contains the
CS value in the lower 16 bits. If VM = 0, this CS
foad is done as a Protected Mode segment load. If
VM = 1, this will be done as an 8086 segment foad.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was popped in step 1.

5. If VM=1, load segment registers ES, DS, FS,
and GS from memory locations SS:ESP+8],
SS{ESP +12), SSESP+16], and SS:ESP +20],
respectively, where the new value of ESP stored in
step 4 isused. Since VM = 1, these are done as 8086
segment register loads.

Else if VM = 0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routine. Nuil
out invalid selectors to trap if an attempt is made to
access through them.

6. If (RPL(CS) > CPL), pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32-bits containing SS inthe lower 16 bits.
IfVM =0, SSisloaded as a Protected Mode segment
register load. If VM = 1, an 8086 segment register
load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) determines
whether the processor resumes the interrupted
routine in Protected Mode of Virtual 8086 Mode.

Am386DX/DXL Microprocessor Data Sheet 67

n AMD

FUNCTIONAL DATA
Introduction

The Am386DX/DXL microprocessor features a straight
forward functional interface to the external hardware.
The Am386DX/DXL CPU has separate parallel buses
fordata and address. The data bus is 32 bits in width and
is bidirectional. The address bus outputs 32-bit address
values in the most directly usable form for the high-
speed local bus: 4 individual Byte Enable signals and
the 30 upper-order bits as a binary value. The data and
address buses are interpreted and controlled with their
associated control signals.

A dynamic data bus sizing feature allows the processor
to handle a mix of 32- and 16-bit external buses on a
cycle-by-cycle basis (see Data Bus Sizing). if 16-bit bus
size is selected, the Am386DX/DXL microprocessor
automatically makes any adjustment needed, even
performing another 16-bit bus cycle to complete the
transferifthat is necessary. Any 8-bit peripheral devices
may be connected to 32- or 16-bit buses with no loss of
performance. A new address pipelining option is pro-
vided and applies to 32- and 16-bit buses for substan-
tially improved memory utilization, especially for the
most heavily used memory resources.

The address pipelining option, when selected, typically
allows a given memory interface to operate with one
less wait state than would otherwise be required (see
Address Pipelining). The pipelined bus is also well
suited to interleaved memory designs. When address
pipelining is requested by the external hardware, the
Am386DX/DXL microprocessor will output the address
and bus cycle definition of the next bus cycle (if it is inter-
nally available) even while waiting for the current cycle
to be acknowledged.

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will
typically be fast enough to allow non-pipelined cycles.
For maximum design flexibility, the address pipelining
option is selectable on a cycle-by-cycle basis.

The processor's bus cycle is the basic mechanism for
information transfer, either from system to processor or
fromprocessorto system. Am386DX/DXL microproces-
sor bus cycles perform data transfer in a minimum of
only two clock periods. On a 32-bit data bus, the
maximum Am386DX/DXL device transfer at 20-MHz
bandwidth is therefore 40 Mb/s, at 25-MHz bandwidth is
50 Mb/s, at 33-MHz bandwidth is 66 Mb/s, and at
40-MHz bandwidth is 80 Mb/s. Any bus cycle will be
extended for more than two clock periods, however, if
external hardware withholds acknowledgment of the
cycle. At the appropriate time, acknowledgment is
signaled by asserting the Am386DX/DXL microproces-
sor READY input.

The Am386DX/DXL CPU can relinquish control of its
local buses to allow mastership by other devices, such

as direct memory access channels. When relinquished,
HLDA is the only output pin driven by the Am386DX/
DXL microprocessor providing near-complete isolation
of the processor from its system. The near-complete
isolation characteristic is ideal when driving the system
from test equipment and in fault-tolerant applications.

Functional data covered in this section describes the
processor's hardware interface. First, the set of signals
available at the processor pins is described (see Signal
Description). Following that are the signal waveforms
occurring during bus cycles (see Bus Transfer Mecha-
nism, Bus Functional Description, and Other Functional
Descriptions).

Signal Description
Introduction

Ahead is a brief description of the Am386DX/DXL CPU
input and output signals arranged by functional groups
(see Figure 41).

Example signal:

M/IO —High voltage indicates Memory selected
—Low voltage indicates I/O selected

The signal descriptions sometimes reter to AC timing
parameters, such as t25 RESET Setup Time and t26
RESET Hold Time.

Clock (CLK2)

CLK2 provides the fundamental timing for the
Am386DX/DXL microprocessor. it is divided by two in-
ternally to generate the internal processor clock used for
instruction execution. The internal clock is comprised of
two phases, phase one and phase two. Each CLK2 pe-
riod is a phase of the internal clock. Figure 42 illustrates
the relationship. If desired, the phase of the internal
processor clock can be synchronized to a known phase
by ensuring the RESET signal falling edge meets its ap-
plicable setup and hold times, 125 and 126.

Data Bus (D31-D0)

These three-state, bidirectional signals provide the gen-
eral purpose data path between the Am386DX/DXL mi-
croprocessor and other devices. Data bus inputs and
outputs indicate 1 when High. The data bus can transfer
data on 32- and 16-bit buses using a data bus sizing
feature controlled by the BS16 input. See Section Bus
Control. Data bus reads require that read data setup and
hold times, t21 and t22, be met for correct operation. In
addition, the Am386DX/DXL microprocessor requires
that all data bus pins be at a valid logic state (High or
Low) at the end of each read cycle, when READY is
asserted. During any write operation (and during halt
cycles and shut down cycles), the Am386DX/DXL
microprocessor always drives all 32 signals of the data
bus even if the current bus size is 16 bits.

68 Am386 Microprocessors for Personal Computers

AMD a

CLK2
2X Clock { Address Bus A31-A2
BE3
5
32.Bit Data { D31-DO | BE2 32-Bit Address
BET > Byte Enables
ADS —)m
— :
Bus Gontrol —22 0 Am3sEDX/DXL WR .
BSTE N EEE—
BST6 I Microprocessor DiE
READY ————»
ﬂb MAO $ Bus Cycle Definition
—»
LOCK
——»
HOLD ’
—»
Bus Arbitration HLDA PEREQ
— BUSY
Coprocessor Signaling
INTR ERROR
Interrupts NMI Voo .
RESET GND } Power Connections
FLT
1—} Float
1560218044
Figure 41. Functional Signhal Groups
Processor Clock Processor Clock
Period Period
CLK2 Period CLK2 Period CLK2 Period CLK2 Period
f1 f2 f1 f2

cwe[2ZFTN_ 2 N N2 i
Internal Am386DX/DXL —
CPU Clock (Half of [AN / N\ / \

the frequency of CLK2)

125 ns Min | 40-MHz
(40 MHz Max) | Am386DX/DXL CPU

15 ns Min } 33-MHz

(33 MHz Max) | Am386DX/DXL CPU
40 ns Min 25-MHz
(25 MHz Max) Am386DX/DXL CPU

50 ns Min 20-MHz
(20 MHz Max) Am386DX/DXL CPU

16021B-045

Figure 42. CLK2 Signal and Internal Processor Clock

Am386DX/DXL Microprocessor Data Sheet 69

a AMD

Address Bus (BE3-BEO, A31-A2)

These three-state outputs provide physical memory
addresses or I/O port addresses. The address bus is
capable of addressing 4 Gb of physical memory space
{00000000H-FFFFFFFFH), and 64 Kb of I/0 address
space (00000000H-0000FFFFH) for programmed I/O.
IO transfers automatically generated for Am386DX/
DXL microprocessor-to-coprocessor communication
use I/O addresses 800000F8H-800000FFH, so A31 is
High in conjunction with M/IO Low allows simple gen-
eration of the coprocessor select signal.

The Byte Enable outputs, BE3-BEQ, directly indicate
which bytes of the 32-bit data bus are involved with the
current transfer. This is most convenient for external
hardware.

BED applies to D7-D0
E1 applies to D15-D8
BEZ applies to D23-D16
BE3 applies to D31-D24

7

|

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2, 3, or
4 bytes). Refer to Section Operand Alignment.

When a memory write cycle or /0O write cycle is in pro-
gress and the operand being transferred occupies only
the upper 186 bits of the data bus (D31-D16), duplicate
data is simultaneously presented on the corresponding
lower 186 bits of the data bus (D15-D0). This duplication

is performed for optimum write performance on 16 bit
buses. The pattern of write data duplication is a function
of the Byte Enables asserted during the write cycle.
Table 13 lists the write data present on D31-D0, as a
function of the asserted Byte Enable outputs BE3-BEO.

Bus Cycle Definition Signals (W/R, D/C, M/TO,
LOCK) :

These three-state outputs define the type of bus cycle
being performed. W/R distinguishes between write
and read cycles, D/C between data and controi cycles,
M/IO between memory and /O cycles, and LOCK
between locked and unlocked bus cycles.

The primary bus cycle definition signals are W/R, D/C,
and M/O, since these are the signals driven valid as the
ADS (Address Status output) is driven asserted. The
LOCK is driven valid at the same time as the first locked
bus cycle begins, which due to address pipelining, couid
be later than ADS is driven asserted. See Pipelined Ad-
dress. The LOCK is negated when the READY input
terminates the last bus cycle that was locked.

Exact bus cycle definitions, as a function of W/R, D/C,
and M/IO, are given in Table14. Note one combination
of W/R, D/C, and M/IO is never given when ADS is as-
serted (however, that combination, which is listed as
does not occur, may occur during idle bus states when
ADS is not asserted). If M/IO, D/C, and W/R are quali-
tied by ADS asserted, then a decoding scheme may be
simplified by using this definition.

Table 13. Write Data Duplication as a Function of BE3—-BEO

Am386DX/DXL CPU Byte Enables Am386DX/DXL CPU Write Data Automatic
BE3 BE2 BET BEO D31-D24 D23-D16 D15-D8 D7-Do Duplication?
High High High Low Undef Undef Undef A No
High High Low High Undef Undef B Undef No
High Low High High Undef o] Undef C Yes
Low High High High D Undef D Undef Yes
High High Low Low Undet Undef B A No
High Low Low High Undef C B Undef No
Low Low High High D 9] D o] Yes
High Low Low Low Undef c B A No
Low Low Low High D C B Undef No
Low Low Low Low D C B A No

Key: D =Logical Write Data D31-D24
C = Logical Write Data D23-D16

B = Logical Write Data D15-D8
A = Logical Write Data D7-D0

70

Am386 Microprocessors for Personal Computers

AMD a

Table 14. Bus Cycle Definition

M/io D/c WR Bus Cycle Type Locked?
Low Low Low Interrupt Acknowledge Yes
Low Low High Does Not Occur —
Low High Low /O Data Read No
Low High High 1/0O Data Write No
High Low Low Memory Code Read No
High Low High Halt: Shutdown: No
Address =2 Address =0
BEG High BEO Low
BET High BET High
BEZ Low BE2 High
BES3 High BE3 High
A31-A2 Low A31-A2 Low
High High Low Memory Data Read Some Cycles
High High High Memory Data Write Some Cycles

Bus Control Signals (ADS, READY, NA, BS16)
Introduction

The following signals allow the processor to indicate
when bus cycle has begun and allow other system hard-
ware to control address pipelining, data bus width, and
bus cycle termination.

Address Status (ADS)
This three-state output indicates that a valid bus cycle

definition and address (W/R, D/C, M/IO, BE3-BEO, and
A31-A2) is being driven at the Am386DX/DXL micro-
processor pins. It is asserted during T1 and T2P bus
states (see Non-pipelined Address and Pipelined

Address for additional information on bus states).
Transfer Acknowledge (READY)

This input indicates the current bus cycle is complete,
and the active bytes indicated by BE3-BEC and BS16
are accepted or provided. When READY is sampled
asserted during a read cycle or interrupt acknowledge
cycle, the Am386DX/DXL microprocessor latches the
input data and terminates the cycle. When READY is
sampled asserted during a write cycle, the processor
terminates the bus cycle.

READY is ignored on the first bus state of all bus cycles,
and sampled each bus state thereafter until asserted.
READY must eventually be asserted to acknowledge
every bus cycle, including Halt Indication and Shutdown
Indication bus cycles. When being sampled, READY
must always meet setup and hold times, t19 and t20, for
correct operation. See all sections of Bus Functional
Description.

Next Address Request (NA)

This is used to request address pipelining. This input
indicates the system is prepared to accept new values
of BE3-BEO, A31-A2, W/R, D/C, and M/IO from
the Am386DX/DXL microprocessor even if the end of

the current cycle is not being acknowledged on READY.
If this input is asserted when sampled, the next address
is driven onto the bus provided the next bus request is
already pending internally. See Address Pipelining and
Read and Write Cycles. NA must always meet setup
and hold times, t15 and t16, for correct operation.

Bus Size 16 (BS16)

The BS16 feature allows the Am386DX/DXL micropro-
cessor to directly connect to 32- and 16-bit data buses.
Asserting this input constrains the current bus cycle to
use only the lower-order half (D15-D0) of the data bus,
corresponding to BEO and BET. Asserting BS16 has no
additional effect if only BEO and/or BET are asserted in
the current cycle. However, during bus cycles asserting
BEZ2 or BES3, asserting BS16 will automatically cause the
Am386DX/DXL microprocessor to make adjustments
for correct transfer of the upper byte(s) using only physi-
cal data signals D15-D0.

If the operand spans both halves of the data bus and
BS16 is asserted, the Am386DX/DXL microprocessor
will automatically perform another 16-bit bus cycle.
BS16 must always meet setup and hold times, t17 and
18, tor correct operation.

AmM386DX/DXL CPU /O cycles are automatically gen-
erated for coprocessor communication. Since the
AmM386DX/DXL microprocessor must transter 32-bit
quantities between itself and a 387DX math coproces-
sor, BS16 must not be asserted during 387DX math
coprocessor communication cycles.

Bus Arbitration Signals (HOLD, HLDA)
Introduction

This section describes the mechanism by which the
processor relinquishes control of its local buses when
requested by another bus master device. See
Entering and Exiting Hold Acknowledge for additional
information.

Am386DX/DXL Microprocessor Data Sheet 7

n AMD

Bus Hold Request (HOLD)

This input indicates some device other than the
Am386DX/DXL CPU requires bus mastership.

HOLD must remain asserted as long as any other de-
vice is alocal bus master. HOLD is not recognized while
RESET is assented. If RESET is asserted while HOLD is
asserted, RESET has priority and places the bus into an
idle state, rather than the hold acknowledge (high
impedance) state. HOLD is level-sensitive and is a syn-
chronous input. HOLD signals must always meet setup
and hold times, t23 and t24, for correct operation.

Bus Hold Acknowledge (HLDA)

Assertion of this output indicates the Am386DX/DXL
microprocessor has relinquished control of its local bus
in response to HOLD asserted, and is in the Bus Hold
Acknowledge state.

The Hold Acknowledge state offers near-complete sig-
nal isolation. In the Hold Acknowledge state, HLDA is
the only signal being driven by the Am386DX/DXL mi-
croprocessor. The other output signals or bidirectional
signals (D31-D0, BE3-BEQ, A31-A2, W/R, D/C, M/IC,
LOCK, and ADS) are in a high-impedance state so the
requesting bus master may control them. Pull-up resis-
tors may be desired on several signals to avoid spurious
activity when no bus master is driving them. See Resis-
tor Recommendations. Also, one rising edge occurring
on the NMI input during Hold Acknowledge is remem-
bered for processing after the HOLD input is negated.

In addition to the normal usage of Hold Acknowledge
with DMA controllers or master peripherals, the near-
complete isolation has particular attractiveness during
system test when test equipment drives the system and
in hardware-fault-tolerant applications.

Coprocessor Interface Signals (PEREQ, BUSY,
ERROR)

Introduction

Inthe following sections are descriptions of signals dedi-
cated to the numeric coprocessor interface. In addition
to the data bus, address bus, and bus cycle definition
signals, these following signals control communication
between the Am386DX/DXL microprocessor and its
387DX math coprocessor extension.

Coprocessor Request (PEREQ)

When asserted, this input signal indicates a coproces-
sor request for a data operand to be transferred to/from
memory by the Am386DX/DXL microprocessor. In re-
sponse, the Am386DX/DXL CPU transfers information
between the coprocessor and memory. Because
Am386DX/DXL microprocessor has internally stored
the coprocessor op-code being executed, it performs
the requested data transfer with the correct direction
and memory address.

PEREQis level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

Coprocessor Busy (BUSY)

When asserted, this input indicates the coprocessor is
still executing an instruction andis not yet able to accept
another. When the Am386DX/DXL microprocessor en-
counters any coprocessor instruction that operates on
the numeric stack (e.g., load, pop, or arithmetic opera-
tion) or the WAIT instruction, this input is first automati-
cally sampled until it is seen to be negated. This sam-
pling of the BUSY input prevents overrunning the execu-
tion of a previous coprocessor instruction.

The FNINIT and FNCLEX coprocessor instructions are
allowed to execute even if BUSY is asserted, since
these instructions are used for coprocessor initialization
and exception-clearing.

BUSY is level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

BUSY serves an additional function. If BUSY is sampled
Low at the falling edge of RESET, the Am386DX/DXL
microprocessor performs an internal self-test (see Bus
Activity During and Following Reset). If BUSY is sam-
pled High, no self-test is performed.

Coprocessor Error (ERROR)

This input signal indicates that the previous coprocessor
instruction generated a coprocessor error of a type
not masked by the coprocessor's control register. This
input is automatically sampled by the Am386DX/DXL
microprocessor when a coprocessor instruction is en-
countered, and if asserted, the Am386DX/DXL device
generates Exception 16 to access the error-handling
software.

Several coprocessor instructions, generally those that
clear the numeric error flags in the coprocessor or
save coprocessor state, do execute without the
Am386DX/DXL microprocessor generating Exception
16 even if ERROR is asserted. These instructions are
FNINIT, FNCLEX, FSTSW, FSTSWAX, FSTCW,
FSTENV, FSAVE, FESTENV, and FESAVE.

ERRORI s level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal.

Interrupt Signals (INTR, NMI, RESET)
Introduction

The following descriptions cover inputs that can inter-
rupt or suspend execution of the processor's current
instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for inter-
rupt service, which can be masked by the Am386DX/
DXL CPU Flag Register IF bit. Whenthe Am386DX/DXL.
microprocessor responds to the INTR input, it performs
two interrupt acknowledge bus cycles, and at the end of
the second, latches an 8-bit interrupt vector on D17-D0
to identify the source of the interrupt.

72 Am386 Microprocessors for Personal Computers

AMD a

INTR is level-sensitive and is allowed to be asynchro-
nous to the CLK2 signal. To assure recognition of an
INTR request, INTR should remain asserted until the
first interrupt acknowledge bus cycle begins.

Non-Maskable Interrupt Request (NMI)

This input indicates a request forinterrupt service, which
cannot be masked by software. The non-maskable in-
terrupt request is always processed according to the
pointer or gate in slot 2 of the interrupt table. Because of
the fixed NMI siot assignment, no interrupt acknowledge
cycles are performed when processing NMI.

NMI is rising edge-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. To assure recognition of
NMI, it must be negated for at ieast eight CLK2 periods,
and then be asserted for at least eight CLK2 periods.

more CLK2 periods before requesting self-test). When
RESET is asserted, all other input pins, except FLT, are
ignored, and all other bus pins are driven to an idle bus
state as shown in Table 15. If RESET and HOLD are
both asserted at a point in time, RESET takes priority
even if the Am386DX/DXL device was in a Hold Ac-
knowledge state prior to RESET asserted.

RESET is level-sensitive and must be synchronous to
the CLK2 signal. If desired, the phase of the internal
processor clock and the entire Am386DX/DXL CPU
state can be completely synchronized to external cir-
cuitry by ensuring the RESET signal falling edge meets
its applicable setup and hold times, t25 and t26. The
signal summary is shown in Table 16.

Table 15. Pin State (ldle Bus) During Reset

Once NMI processing has begun, no additional NM/'s Pin Name Signal Level During Reset

are processed until after the next IRET instruction, ADS High

which is typically the end of the NMI service routine. if D31-D0 High Impedance

NMLl is re-asserted prior to that time, however, one rising BE3-BEO Low

edge on NMi will be remembered for processing after A31-A2 High

executing the next IRET instruction. _ 9

W/R Low

Reset (RESET) oie High

This input signal suspends any operation in progress Mo Low

and places the Am386DX/DXL microprocessor in a TOCK High

known reset state. The Am386DX/DXL device is reset HLDA Low

by asserting RESET for 15 or more CLK2 periods (80 or

Table 16. Am386DX/DXL Microprocessor Signal Summary
Input Synch Output High

Signal Active Input/ or Asynch to Impedance During
Name Function State Output CLK2 HLDA?
CLK2 Clock — ! — —
D31-Do Data Bus High 7{e] S Yes
BE3-BEO Byte Enables Low o} — Yes
A31-A2 Address Bus High o — Yes
WR Write-Read Indication High 0 — Yes
D¢ Data-Control Indication High 0 — Yes
MO Memory-I/O Indication High 0 — Yes
COCK Bus Lock Indication Low o — Yes
AD3 Address Status Low 0 — Yes
NA Next Address Request Low | S —
BSi6 Bus Size 16 Low | S —
READY Transfer Acknowledge Low | S —
HOLD Bus Hold Request High | S —
HLDA Bus Hold Acknowledge High o} — No
PEREQ Coprocessor Request High 1 A —
BUSY Coprocessor Busy Low | A —
ERROR Coprocessor Error Low | A —
INTR Maskable Interrupt Request High | A —
NMI Non-Maskable Intrpt Request High | A —
RESET Reset High | S —

Am386DX/DXL Microprocessor Data Sheet 73

n AMD

Bus Transfer Mechanism
Introduction

All data transfers occur as a resuit of one or more bus
cycles. Logical data operands of byte, word, and Dword
lengths may be transferred without restrictions on
physical address alignment. Any byte boundary may be
used, afthough two or even three physical bus cycles
are performed as required for unaligned operand
transfers. See Dynamic Data Bus Sizing and Operand
Alignment.

The Am386DX/DXL microprocessor address signals
are designed to simplify external system hardware.
Higher-order address bits are provided by A31-A2.
Lower-order address in the form of BE3-BEO directly
provides linear selects for the four bytes of the 32-bit
data bus. Physical operand size information is thereby
implicitly provided for each bus cycle in the most usable
form.

Byte Enable outputs, BE3-BED, are asserted when their
associated data bus bytes are involved with the present
bus cycle, as listed in Table 17. During a bus cycle, any
possible pattem of contiguous asserted Byte Enable
outputs can occur, but never patterns having a negated
Byte Enable separating two or three asserted Enables.

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary (for

instance, for MULTIBUS | or MULTIBUS Il interface), as
a function of the lowest-order asserted Byte Enable.
This is shown by Table 18. Logic to generate A0 and A1
is given by Figure 43.

Table 17. Byte Enables and Associated
Data and Operand Bytes

Byte Enable Signat| Associated Data Bus Signals
BEO D7-D0 (Byte 0—least significant)
BET D15-D8 (Byte 1)
BE2 D23-D16 (Byte 2)
BE3 D31-D24 (Byte 3—most significant)

Each bus cycle is composed of at least two bus states
and each bus state requires one processor clock period.
Additional bus states added to a single bus cycle are
called wait states. See Bus Functional Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data can
be transferred between external devices and the
Am386DX/DXL CPU at a maximum rate of one 4-byte
Dword every two processor clock periods, for a
maximum bus bandwidth of 80 Mb/s (Am386DX/DXL
microprocessor operating at 40-MHz processor clock
rate).

BEO
L H
NEE omen
o LIx]H|L __
BE2 H BE3
LIL]x|L
H
x| x HJ x|L
L H L
BET
K — Map for A1 Signal
BEO
L H
L{x|LJHJL
L
S Il Kl L G/ PP =0
2 3
L [x [H)
x| x \H| xAL
L H L
BET

K — Map for AQ Signal

J

[oe/
m
O

(v
|
n

w
m
[

-

A0

o)
A

15021B-046

Figure 43. Logic to Generate A0, A1 from BE3-BEO

74

Am386 Microprocessors for Personal Computers

AMD n

Table 18. Generating A31-A0 from BE3-BEO and A31-A2

Am386DX/DXL CPU Address Signals
A3l A2 BE3 BE2 BE1 BEO
Physical Base
Address
A3l | ...l A2| A1 Ao
A3l | ... A2 0| O X X X Low
A31 | e A2 0 |1 X X Low High
A3l | e A2l 1]0 X Low High High
A3l | ... A2l 1 |1 Low High High High
FFFFFFFFH
Physical
Memory ggggggign Math Coprocessor
4 Gb (See note) (387DX)
0000FFFFH
Accessible
Programmed
64 Ko /O Space
00000000H 00000000H
Physical Memory Space /0 Space

Note: Since A31 is High during automatic communication with copracessor, A31 High and M/IO Low can be used to
easily genarate a coprocessor select signal.

Figure 44. Physical Memory and /O Spaces

15021B-047

Am386DX/DXL Microprocessor Data Sheet

75

n AMD

Memory and |/O Spaces

Bus cycles may access physical memory space or /O
space. Peripheral devices in the system may either be
memory-mapped, or [/O-mapped, or both. As shown in
Figure 44, physical memory addresses range from
00000000H to FFFFFFFFH (4 Gb) and /O addresses
from 00000000H to OOOQOFFFFH (64 Kb) for pro-
grammed |/O. Note the I/O addresses used by the auto-
matic I/O cycles for coprocessor communication are
800000F8H to 800000FFH, beyond the address range
of programmed /O, to allow easy generation of a
coprocessor chip select signal using the A31 and M/IC
signals.

Memory and I/O Organization

The Am386DX/DXL microprocessor datapath to mem-
ory and I/O spaces can be 32- or 16-bits wide. When
32-bits wide, memory and I/O spaces are organized
naturally as arrays of physical 32-bit Dwords. Each
memory or |/O Dword has four individually addressable
bytes at consecutive byte addresses. The lowest-ad-
dressed byte is associated with data signals D17-D0;
the highest-addressed byte with D31-D24.

The Am386DX/DXL microprocessor includes a bus
control input, BS16, that also allows direct connectionto
16-bit memory or /O spaces organized as a sequence
of 16-bit word. Cycles to 32- and 16-bit memory or /O
devices may occur in any sequence, since the BS16
controlis sampled during each bus cycle. (See Dynamic
Data Bus Sizing.) The Byte Enable signals, BE3—BED,
allow byte granularity when addressing any memory or
1/0 structure, whether 32- or 16-bits wide.

Dynamic Data Bus Sizing

Dynamic Data Bus Sizing is a feature allowing direct
processor connection to 32- or 16-bit data buses for
memory or I/O. A single processor may connect to both
size buses. Transfers to or from 32- or 16-bit ports are
supported by dynamically determining the bus width
during each bus cycle. During each bus cycle an
address decoding circuit or the slave device itself may
assert BS16 for 16-bit ports, or negate BS16 for 32-bit
ports.

With BS16 asserted, the processor automatically
converts operand transfers larger than 16 bits, or mis-
aligned 16-bit transfers, into two or three transfers as
required. All operand transfers physically occur on
D15-D0 when BS16 is asserted. Therefore, 16-bit
memories or /O devices only connect on data signals
D15-D0. No extra transceivers are required.

Asserting BS16 only affects the processor when BE2
and/or BE3 are asserted during the current cycle. If only
D15-D0 are involved with the transfer, asserting BS16
has no affect since the transfer can proceed normally
over a 16-bit bus whether BS16 is asserted or not. In
other words, asserting BS16 has no effectwhen only the
lower half of the bus is involved with the current cycle.

There are two types of situations where the processor is
affected by asserting BS16, depending on which Byte
Enables are asserted during the current bus cycle.

Upper Half Only:
Only BEZ and/or BE3 asserted.

Upper and Lower Half:

At least BE1, BE2 asserted (and perhaps also
BEO and/or BE3).

Effect of asserting BS16 during Upper Half Only read
cycles:

Asserting BS16 during Upper Half Only reads causes the
Am386DX/DXL microprocessor to read data on the lower
16 bits of the data bus and ignore data on the upper 16 bits
of the data bus. Data that would have been read from
D31-D16 (as indicated by BEZ and BE3) will instead be
read from D15-DO0, respectively.

Effect of asserting BS16 during Upper Half Only write
cycles:

Asserting BS16 during Upper Half Only writes does not af-
fect the Am386DX/DXL microprocessor. When only BE2
and/or BE3 are asserted during a Write cycle, the
Am386DX/DXL microprocessor always duplicates data
signals D31-D16 onto D15-D0 (see Table 13). Therefore,
no further Am386DX/DXL CPU action is required to per-
form these writes on 32- or 16-bit buses.

Effect of asserting BS16 during Upper and Lower Half
read cycles:

Asserting BS16 during Upper and Lower Half reads
causes the processor to perform two 16-bit read cycles for
complete physical operand transfer. Bytes 0 and 1 (as in-
dicated by BEG and BET) are read on the first cycle using
D15-D0. Bytes 2 and 3 (as indicated by BE2 and BE3) are
read during the second cycle, again using D15-DO.
D31-D16 are ignored during both 16-bit cycles. BEO and
BET are always negated during the second 16-bit cycle.
See Figure 54 Cycles 2 and 2a.

Effect of asserting BS16 during Upper and Lower Half
write cycles:

Asserting BS16 during Upper and Lower Half writes
causes the Am386DX/DXL microprocessor to perform two
16-bit write cycles for complete physical operand transfer.
Alibytes are available the first write cycle allowing external
hardware to receive Bytes 0 and 1 (as indicated by BEO
and BET) using D15-D0. On the second cycle the
Am386DX/DXL microprocessor duplicates Bytes 2 and 3
on D15-D0 and Bytes 2 and 3 (as indicated by BE2 and
BE3) are written using D15-D0. BEO and BET are always
negated during the second 16-bit cycle. BS16 must be as-
serted during the second 16-bit cycle. See Figure 54 Cy-
cles 1 and 1a.

Interfacing with 32- and 16-Bit Memories

In 32-bit-wide physical memories such as Figure 45,
each physical Dword begins at a byte address that is a
multiple of 4. A31-A2 are directly used as a Dword
selects and BE3-BEQ as byte selects. BS16 is negated
for all bus cycles involving the 32-bit array.

76 Am386 Microprocessors for Personal Computers

AMD n

When 16-bit-wide physical arrays are included in the
system, as in Figure 46, each 16-bit physical word be-
gins at an address that is a multiple of 2. Note the ad-
dress is decoded to assert BS16 only during bus cycles
involving the 16-bit array. If desiring to use pipelined
address with 16-bit memories, then BE3-BEO and W/R
are also decoded to determine when BS16 should be
asserted. (See Pipelined Address with Dynamic Data
Bus Sizing.)

A31-A2 are directly usable for addressing 32- and
16-bit devices. To address 16-bit devices, A1 and two
Byte Enable signals are also needed.

To generate an A1 signal and two Byte Enable signals
for 16-bit access, BE3-BEO should be decoded as in
Table 19. Note that certain combinations of BE3-BEO
are never generated by the Am386DX/DXL micropro-
cessor, leading to “don’t care” conditions inthe decoder.
Any BE3-BEO decoder, such as shown in Figure 47,
may use the non-occurring BE3-BEO combinations to
its best advantage.

32, Data Bus (D31-D0)

Am386DX/DXL
Microprocessor

Address Bus (BE3-BEG, A31

32-Bit

-A2) Memory

Figure 45. Am386DX/DXL Microprocessor with 32-Bit Memory 15021B-048
Data Bus (D31-D0)
3%
Am386DX/DXL \ 32-Bit
Microprocessor Address Bus Memory
BED, A31-A2)
h
BST6
Add
Deur)zsesr , Data Bus (D15-D0)
Address Bus (A31-A2 16-Bit
\ (N Memory
(BE3-BED) (BHE, BLE, A1)
N
150218-049

Figure 46. Am386DX/DXL Microprocessor with 32-Bit and 16-Bit Memory

Am386DX/DXL Microprocessor Data Sheet 77

n AMD

Table 19. Generating A1, BHE, and BLE for Addressing 16-Bit Devices

Am386DX/DXL CPU Signals 16-Bit Bus Signals
BE3 | BE2 | BE1 BEO A1 BHE BLE (A0) Comments
H* H* H* H* X X X X—rno active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L* X X X X—non-contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L H* H* L* X X X X—non-contiguous bytes
L* H* L* H* X X X X—non-contiguous bytes
L* H* L* L* X X X X—non-contiguous bytes
L L H H H L L
L* L* H* L* X X X X—non-contiguous bytes
L L L H L L H
L L L L L L L

BLE asserted when D7-D0 of 16-bit bus is active.
BHE asserted when D15-D8 of 16-bit bus is active.
A1 Low for all even words; A1 High for all odd words.
Key: X =“Don’t Care”

H = High voltage ievel

L =Low voltage level

* =A non-occurring pattern of Byte Enables; either none are asserted or the pattern has Byte Enables asserted for non-contiguous bytes.

Operand Alighment

With the flexibilty of memory addressing on the
Am386DX/DXL microprocessor, itis possibie to transfer
a logical operand that spans more than one phy-
sical Dword or Word of memory or /O. Examples are
32-bit Dword operands beginning at addresses not
evenly divisible by 4- or a 16-bit Word operand split
between two physical Dwords of memory array.

Operand alignment and data bus size dictates when
multiple bus cycles are required. Table 20 describes the
transfer cycles generated for all combinations of logical
operand lengths, alignment, and data bus sizing. When
multiple bus cycles are required to transfer a multi-byte
logical operand, the highest-order bytes are transferred
first (but if BS16 asserted requires two 16-bit cycles be
performed, that part of the transfer is lowest-order first).

Bus Functional Description
Introduction

The Am386DX/DXL microprocessor has separate, par-
allel buses for data and address. The data bus is 32 bits
in width and is bidirectional. The address bus provides
a 32-bit value using 30 signals for the 30 upper-order
address bits and 4 Byte Enable signals to directly indi-
cate the active bytes. These buses are interpreted and
controlled via several associated definition or control
signals.

The definition of each bus cycle is given by three detini-
tion signals: MAO, W/R, and D/C. At the same time, a
valid address is present on the Byte Enable signals
BE3-BEO and other address signals, A31-A2. A status
signal, ADS, indicates when the Am386DX/DXL CPU
issues a new bus cycle definition and address.

Collectively, the address bus, data bus, and all associ-
ated control signals are referred to simply as the bus.

When active, the bus performs one of the bus cycles
below.

1. Read from memory space.

Locked read from memory space.

Write to memory space.

Locked write to memory space.

Read from 1/O space (or coprocessor).

Write to /O space (or coprocessor).

Interrupt acknowledge.

Indicate halt or indicate shutdown.

® N OhA WP

Table 14 shows the encoding of the bus cycle definition
signals for each bus cycle. See Section Bus Cycle
Definition.

The data bus has a dynamic sizing feature supporting
32- and 16-bit bus size. Data bus size is indicated to the
Am386DX/DXL microprocessor using its Bus Size 16
(BS16) input. All bus functions can be performed with
either data bus size.

78 Am386 Microprocessors for Personal Computers

AMD n

BEOC
L H
Ll xfHY L]
L
- LIxJHJL
BEZ H BE3
L|L L
H
x| x x|L
L H L
BET

K —Map for A1 Signal (same as Figure 43)

E
L H

Ql

—
—

B

m;

M

[l Kl B
IJI_
—

s
m’
m
w

>
il e
—

BE1
K — Map for 16-bit BHE signall

-

A1

@
m
-

EO
L H
Lix|LJH]L
t L L1H
X
BEz v dH B
A [« | H)
x| x\H]xAL
L H L
BET
K — Map for 16-bit BLE signal (same as A0 signal in Figure 43). 15021B-050
Figure 47. Logic to Generate A1, BHE, and BLE for 16-Bit Buses
Table 20. Transfer Bus Cycles for Bytes, Words, and Dwords
Byte-Length of Logical Operand
1 2
Physical Byte Address in Memory (low-order bits} xx | 00 01 10 11 00 01 10 | 11
Transfer Cycles over 32-bit Data Bus b w w w r}g* d r"g rm I’}g
b | w [b | w |hb [| hb|[hw |mw,
Transfer Cycles over 16-bit Data Bus hb b hw Ib w hb,
mw b
Key: b= Byte transfer 3=3-byte transfer
w= Word transfer d=Dword transfer
I= low-order portion h = high-order portion
m = mid-order portion x=Don't care
=BS16 asserted causes second bus cycie.
*For this case, 8086, 8088, 80186, 80188, 80286 transfer Ib first, then hb.
Am386DX/DXL Microprocessor Data Sheet 79

n AMD

Cycle 1 Cycle 2 Cycle 3

Non-Pipelined Non-Pipelined Non-Pipelined
(Read) (Read) (Read)

T1 T2 T1 T2 T T2

o1] o201 o2 |oe1 ez | er]oezfoer]| e2]| o1]02] o1
ouee) [LT L L LU
M/O, BE3-BED, 1 " " -
A31-A2, DT, WR _X Valid 1 Valid 2 Valid 3
(Outputs)

ADS (Qutput)

NA

NV N\

(Input)

T

READY
(Input)

o

LOCK

|
X

Valid 1

Valid 2

(Output)

D31-Do
(Input during Read)

r 1 1 m 1 e

____G,Iﬂ}___.___._

In2

Fastest non-pipelined bus cycles consist of T1 and T2

15021B-051

Figure 48. Fastest Read Cycles with Non-Pipelined Address Timing

When the Am386DX/DXL CPU bus is not performing
one of the activities listed above, it is either Idie or in the
Hold Acknowledge state, which may be detected by ex-
ternal circuitry. The Idle state can be identified by the
Am386DX/DXL microprocessor giving no further asser-
tions on its address strobe output (ADS) since the begin-
ning of its most recent bus cycle, and the most recent
bus cycle has been terminated. The Hold Acknowledge
state is identified by the Am386DX/DXL CPU asserting
its Hold Acknowledge (HLDA) output.

The shortest time unit of bus activity is abus state. Abus
state is one processor clock period (two CLK2 periods)
in duration. A complete data transfer occurs during a
bus cycle, composed of two or more bus states.

The fastest Am386DX/DXL microprocessor bus cycle
requires only two bus states. For example, three con-
secutive bus read cycles, each consisting of two bus
states, are shown by Figure 48. The bus states in each
cycle are named T1 and T2. Any memory or /O address
may be accessed by such a two-state bus cycle, if the
external hardware is fast enough. The high-bandwidth,
two-clock bus cycle realizes the full potential of fast main
memory, or cache memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the Am386DX/
DXL microprocessor READY input. Acknowledging the
bus cycle at the end of the first T2 results in the shortest

bus cycle, requiring only T1 and T2. If READY is not
immediately asserted, however, T2 states are repeated
indefinitely until the READY input is sampled asserted.

Address Pipelining

The address pipelining option provides a choice of bus
cycle timings. Pipelined or non-pipelined address timing
is selectable on a cycle-by-cycle basis with the Next
Address (NA) input.

When address pipelining is not selected, the current ad-
dress and bus cycle definition remain stable throughout
the bus cycle.

When address pipelining is selected, the address
(BE3-BEOG, A31-A2) and definition (W/R, D/C, and
M/IO) of the next cycle are available before the end of
the current cycle. To signal their availability, the
Am386DX/DXL microprocessor address status output
(ADS) is also asserted. Figure 49 illustrates the fastest
read cycles with pipelined address timing.

Note from Figure 49, the fastest bus cycles using
pipelined address require only two bus states, named
T1P and T2P. Therefore, cycles with pipelined address
timing allow the same data bandwidth as non-pipelined
cycles, but address-to-data access time is increased
compared to that of a non-pipelined cycle.

80

Am386 Microprocessors for Personal Computers

AMD a

Cycle 1 Cycle 2 Cycle 3
Pipelined Pipelined Pipelined
(Read) (Read) (Read)
T1P T2P TP T2P TP T2P
01] 021 61) 02| 01| 02 %1] ¢2 | o1 92 | 61| 02
CLK2 (Input) l: | l
M0, BE3-BED, - n " "
na1As. D5 WA L Valid 1 Valid 2 Valid 3 Valid 4
(Outputs)
ADS
(Output) I: —/ / / /
NA —
(Input) [\-
READY
(Input) [__/_——x_/_i_f—“_/
LOCK " n -
Ot [Valid 1 Valid 2 Valid 3
D31-Do | _)
(Input during Read) l: _p—__ - Int N In2 - In3
Fastest pipelined bus cycles consist of T1P and T2P
15021B-052

Figure 49. Fastest Read Cycles with Pipelined Address Timing

By increasing the address-to-data access time,
pipelined address timing reduces wait state require-
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would be
required with pipelined address.

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an ad-
dress has been latched, pipelined availability of the next
address allows decoding circuitry to generate chip se-
lects (and other necessary select signals) in advance,
so selected devices are accessed immediately when
the next cycle begins. In other words, the decode time
for the next cycle can be overlapped with the end of the
current cycle.

If a system contains a memory structure of two or more
interleaved memory banks, pipelined address timing
potentially allows even more overlap of activity. This is
true when the interleaved memory controller is designed
to allow the next memory operation to begin in one
memory bank while the current bus cycle is still activat-
ing another memory bank. Figure 50 shows the general
structure of the Am386DX/DXL microprocessor with
two-bank and four-bank interleaved memory. Note each
memory bank of the interleaved memory has full data
bus width (32-bit data width typically, unless 16-bit bus
size is selected).

Further details of pipelined address timing are given in
Pipelined Address; Initiating and Maintaining Pipelined
Address; Pipelined Address with Dynamic Bus Sizing;
and, Maximum Pipelined Address Usage With 16-bit
Bus Size.

Read and Write Cycles
Introduction

Data transfers occur as a resutit of bus cycles, classified
as Read or Write cycles. During Read cycles, data is
transferred from an external device to the processor.
During Write cycles, data is transferred in the other di-
rection, from the processor to an external device.

Two choices of address timing are dynamically select-
able: non-pipelined or pipelined. After a bus idle state,
the processor always uses non-pipelined address tim-
ing. However, the NA (Next Address) input may be as-
sentedto select pipelined address timing for the nextbus
cycle. When pipelining is selected and the Am386DX/
DXL microprocessor has a bus request pending inter-
nally, the address and definition of the next cycle is
made available even before the current bus cycle is
acknowledged by READY. Generally, the NA input is
sampled each bus cycle to select the desired address
timing for the next bus cycle.

Am386DX/DXL Microprocessor Data Sheet 81

u AMD

Two-Bank Interleaved Memory:
a. Address signal A2 selects bank
b. 32-bit datapath to sach bank

32, DataBus
Am386DX/DXL [7 \
CPU Address Bus
A2 A2
/732 32
Interleave DRAM DRAM
Controller Bank 0 Bank 1

Four-Bank Interleaved Memory:
a. Address signals A3 and A2 select bank
b. 32-bit datapath to each bank

32 , Data Bus
7

Am386DX/DXL
CPU Address Bus \ \ \ \
AN Al Az| \ AN A3 AN AN
A3 A2
A32 A32 A32 A32

lcr;ntertlea”ve DRAM DRAM DRAM DRAM

ontroller Bank 0 Bank 1 Bank 2 Bank 3
15021B-053

Figure 50. Two-Bank and Four-Bank Interleaved Memory Structure

Two choices of physical data bus width are dynamically
selectable: 32 bits or 16 bits. Generally, the BS16 (Bus
Size 16) input is sampled near the end of the bus cycle to
confirm the physical data bus size applicable to the
current cycle. Negation of BS16 indicates a 32-bit size
and assertion indicates a 16-bit bus size.

If 16-bit bus size is indicated, the Am386DX/DXL CPU
automatically responds as required to complete the
transfer on a 16-bit data bus. Depending onthe size and
alignment of the operand, another 16-bit bus cycle may
be required. Table 19 provides all details. When neces-
sary, the Am386DX/DXL microprocessor performs an
additional 16-bit bus cycle, using D15-D0 in place of
D31-D16.

Terminating a Read cycle or Write cycle, like any bus cy-
cle, requires acknowledging the cycle by asserting the
READY input. Until acknowledged, the processor in-
serts wait states into the bus cycle to allow adjustment

forthe speed of any external device. External hardware,
that has decoded the address and bus cycle type as-
serts the READY input at the appropriate time.

Atthe end of the second bus state within the bus cycle,
READY is sampled. At that time, if extemal hardware
acknowledges the bus cycle by asserting READY, the
bus cycle terminates as shown in Figure 51. lf READY is
negated as in Figure 52, the cycle continues another
bus state (a wait state) and READY is sampled again at
the end of that state. This continues indefinitely until the
cycle is acknowledged by READY asserted.

When the current cycle is acknowledged, the
Am386DX/DXL microprocessor terminates it. When a
Read cycle is acknowledged, the Am386DX/DXL CPU
latches the information present at its data pins. When a
Write cycle is acknowledged, the Am386DX/DXL CPU
write data remains valid throughout phase one of the
next bus state to provide write data hold time.

82

Am386 Microprocessors for Personal Computers

AMD a

Idle Cycle 1 Cycle 2
Non-Pipelined Non-Pipelined
(Write) (Read)

T T2 T1 T2

el ML L U Lo o o
/" "

Cycle 3 idle Cycle 4 Idle
Non-Pipelined Non-Pipelined
(Write) (Read)

T T2 Ti i T2

ek [N NN NN NS NSNS
BE3-BED,
A31-A2, [Valid 1 Valid 2 Valid 3 Valid 4
MAO, D/C
wim [XXXXXY
7os [N\ N\ /
% [XXX XXX XXX KX KKK XX
32-Bit 32-Bit 32-Bit 32-Bit
Bus Size Bus Size Bus Size Bus Size
S
reRoY [XXXXXXXXX XXX
End Cycle 1 End Cycle 2 End Cycle 3 End Cycle 4
[OCK [Valid 1 Valid 2 Valid 3 Valid 4

D31-D0 [—f———1 -—— out

1D o T

==t =G

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can

immediately follow the write cycle.

16021B-054

Figure 51. Various Bus Cycles and Idle States with Non-Pipelined Address (Zero Wait States)

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined ad-
dress timing. For example, Figure 51 shows a mixture of
Read and Write cycles with non-pipelined address tim-
ing. Figure 51 shows that the fastest possible cycles
with non-pipelined address have two bus states per bus
cycle. The states are named T1 and T2. In phase one of
the T1, the address signals and bus cycle definition sig-
nals are driven valid, and to signal their availability,
address status (ADS) is simultaneously assened.

During Read or Write cycles, the data bus behaves as
follows. If the cycle is a read, the Am386DX/DXL micro-
processor floats its data signals to allow driving by the
external device being addressed. The Am386DX/DXL
device requires that all data bus pins be at a valid logic
state (High or Low) at the end of each read cycle, when
READY is asserted, even if all byte enables are not as-
serted. The system must be designed to meet this re-
quirement. If the cycle is a write, data signals are driven
by the Am386DX/DXL device beginning in phase two of

Am386DX/DXL Microprocessor Data Sheet 83

n AMD

T1 until phase one of the bus state following cycle
acknowledgment.

Figure 52 illustrates non-pipelined bus cycles with one
wait added to Cycles 2 and 3. READY is sampled
negated at the end of the first T2 in Cycles 2 and 3.
Therefore, Cycles 2 and 3 have T2 repeated. At the end
of the second T2, READY is sampled asserted.

When address pipelining is not used, the address and
bus cycle definition remain valid during all wait states.

When wait states are added and you desire to maintain
non-pipelined address timing, it is necessary to negate
NA during each T2 state exceptthe lastone, as shownin
Figure 52 Cycles 2 and 3. If NA is sampled asserted
during a T2 other than the last one, the next state
would be T2l (for pipelined address) or T2P (for pipe-
lined address) instead of another T2 (for non-pipelined
address).

Idle Cycle 1 Cycle 2 Idle Cycle 3 Idle
Non-Pipelined Non-Pipelined Non-Pipelined
(Read) {Write) (Read)

(CLK) |:]

M hhhhhhhhiiisiisiaigisigigl
Ve Ve Ve Va Va Vs Ve Va Vs Va Vs

T2

BET-BEQ,
A31-A2, [Valid Valid 2 Valid 3
M/io, DT
wr [
A0s [A \—4 /
A [XXXXXIXXXXXXXK XXXXDOXHXXKX OOIXXXX]
32-Bit 32-Bit 32-Bit
Bus Size Bus Size Bus Size
BST6 [
mEADY [OCKHIXKY w
End Cycle 1 End Cycle 2 End Cycle 3
| |
TooK [valid1 X Valid 2 Valid 3
p31-Do [—f———f———1— Out r—F—-—t——1- —-
1

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idie state. An active bus cycle can

immediately follow the Write cycle.

15021B-055

Figure 52. Various Bus Cycles and Idle States with Non-Pipelined Address
(Various Number of Wait States)

84

Am386 Microprocessors for Personal Computers

AMD u

HOLD Negated « No Request

HOLD Negated »

HOLD Negated »
Request Pending

HOLD Asserted

READY Asserted ¢ HOLD Negated e No Request

No Request Request Pending e

HOLD Negated

RESET
Asserted

Bus States:

/_\ ALWAYS A
{n] 1
v READY Asserted e

HOLD Asserted

READY Asserted e HOLD Asserted

HOLD Negated »
Request Pending

READY Negated ¢
NA Negated

T1— First clock of a non-pipelined bus cycle (Am386DX/DXL microprocessor drives new address and asserts ADS).
T2— Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle.

Ti — Idie state.

Th— Hold Acknowledge state (Am386DX/DXL microprocessor asserts HLDA).

The fastest bus cycle consists of two states: T1 and T2.

15022B-017

Four basic bus states describe bus operation when notusing pipelined address. These states do include BS16 usage for 32-bitand 16-bitbus
size. If asserting BS 16 requires second 16-bit bus cycle to be performed, it is performed before HOLD asserted acknowledged.

Figure 53. Bus States (Not Using Pipelined Address)

Figure 53 illustrates the bus states and transitions when
address pipelining is not used. The bus transitions be-
tween four possible states: T1, T2, Ti, and Th. Bus cy-
cles consist of T1 and T2, with T2 being repeated for
wait states. Otherwise, the bus may be idle in the Ti
state, or in hold acknowledge, the Th state.

When address pipelining is not used, the bus state dia-
gram is as shown in Figure 53. When the bus is idle, it is
in state Ti. Bus cycles always begin with T1. T1 always
leadsto T2. It abus cycle is not acknowledged during T2
and NA is negated, T2 is repeated. When a cycle is ac-
knowledged during T2, the following state will be T1 of
the next bus cycle it a bus request is pending internally,
or Ti if there is no bus request pending, or Th if the
HOLD input is being asserted.

The bus state diagram in Figure 53 also applies to the
use of BS16. lf the Am386DX/DXL microprocessor
makes internal adjustments for 16-bit bus size, the
adjustments do not affect the external bus states. If an
additional 16-bit bus cycle is required to complete a
transter on a 16-bit bus, it also follows the state transi-
tions shown in Figure 53.

Use of pipelined address allows the Am386DX/DXL
CPU to enter three additional bus states not shown
in Figure 53. Figure 59 in Pipelined Address is the com-
plete bus state diagram, including pipelined address
cycles.

Non-Pipelined Address With Dynamic Data Bus
Sizing

The physical data bus width for any non-pipelined bus
cycle can be either 32 or 16 bits. At the beginning of the
bus cycle, the processor behaves as if the data bus is
32-bits wide. When the bus cycle is acknowledged by
asserting READY at the end of a T2 state, the most
recent sampling of BS16 determines the data bus size
for the cycle being acknowledged. If BS16 was most re-
cently negated, the physical data bus size is defined as
32 bits. If BS16 was most recently asserted, the size is
defined as 16 bits.

When BS16 is asserted and two 16-bitbus cycles arere-
quired to complete the transter, BST6 must be asserted
during the second cycle; 16-bit bus size is not assumed.
Like any bus cycle, the second 16-bit cycle must be ac-
knowledged by asserting READY.

Am386DX/DXL Microprocessor Data Sheet 85

u AMD

A transfer requiring two A transfer requiring two
cycles on 16-bit data bus cycles on 16-bit data bus
P ~ P
Cycle 1 Cycle 1A Cycle 2 Cycle 2A
Idle Non-Pipelined Non-Pipelined Non-Pipelined Non-Pipelined Idle
(Write ———® Write) (Read ——1—P» Read)
Part One Part Two Part One Part Two

Ti T1 T2 T1 T2 T T2 T1 T2

cve [LML UL L 1
iV Ve Va Va Va2 Va Vs "

Always Always
e7-880 [XPOOKIX_ Valia 1 Negated Valid 3 Negated
During Part Two During Part Two
so-8E, |
A31-A2, [XXXXZX«— Valid 1 > Valid 2
MAC, DS

—_ \/ VVVVV
NA [X 2o XXOXXX
Bsis [XIXXXX lKOIOI X
16-Bit 16-Bit 16-Bit 16-Bit
Bus Size Bus Size Bus Size Bus Size|
[ooK [id 1 Valid 2
d31-d16 d15—ld0 d31-d16
p15-00 [— X_ o *“‘@““@“
d31-d16 Ignored Ignored
D31-D16 [— +——(< ot ———) |— -1 —
I [I I J
Key: Dn = Physical data pin n
dn = Logical data pin n
15021B-057

Figure 54. Asserting BS16 (Zero-Wait-States, Non-Pipelined Address)

86 Am386 Microprocessors for Personal Computers

AMD n

A transfer requiring two

cycles on 16-bit data bus
P

~ ™~
Cycle 1 Cycle 1A
Idte Non-Pipelined Non-Pipelined N ng?'e |2 g
(Read N S Read) °"'W‘Pe ine
Part One Part Two (Write)

Ti Tt T2 T2 T1 T2 T2 T1 T2 T2
cve [MU U Uyoyuryuyuyiy
e[NSNS N NN NN NSNS NS

BET-BES I: Valid 1 Ne%atsdeuring Valid 2
art Two
BE3-BEZ2, | I
A31-A2, — Valid 1 _— Valid 2
Ja-re. [XXXXXX
wa [
s [% % %
Note: NA must be negated here to
allow recognition of asserted
BS16 in final T2.
NA [R B
32-Bit
Bus Size
5576 [X
16-Bit 16-Bit
Bus Size Bus Size
READY [VAKX [R | XXX [R
ook [Valid 1 Valid 2
1 1 1
d15-d0 d31-d16 I d15‘—d0
D15-Do |: ----t--—t—-—1— —_————— Out
T
Ignored Ignored d31|—d16
D31-D16 [—f———fp———f———— —g———]— Out
I [
Key: Dn Physical data pin n

non

dn Logicai data pin n

15021B-058

Figure 55. Asserting BS16 (One-Wait-State, Non-Pipelined Address)

Am386DX/DXL. Microprocessor Data Sheet 87

u AMD

When a second 16-bit bus cycle is required to complete
the transfer over a 16-bit bus, the addresses generated
for the two 16-bit bus cycles are closely related to each
other. The addresses are the same, except BEO and
BET are always negated for the second cycle. This is be-
cause data on D15-D0 was already transferred during
the first 16-bit cycle.

Figures 54 and 55 show cases where assertion of BS16
requires a second 16-bit cycle for complete operand
transfer. Figure 54 illustrates cycles without wait states.
Figure 55 illustrates cycles with one wait state. In Figure
55 Cycle 1, the bus cycle during which BS16 is asserted,
note that NA must be negated in the T2 state(s) prior to
the last T2 state. This is to allow the recognition of BS16
asserted in the final T2 state. The relation of NA and
BS16 is given fully in Pipelined Address, but Figure 55
illustrates this only precaution you need to know when
using BS16 with non-pipelined address.

Pipelined Address

Address pipelining is the option of requesting the ad-
dress and the bus cycle definition of the next internally
pending bus cycle before the current bus cycle is
acknowledged with READY asserted. ADS is asserted
by the Am386DX/DXL microprocessor when the next
address is issued. The address pipelining option is
controlled on a cycle-by-cycle basis with the NA input
signal.

Once abus cycle is in progress and the current address
has been valid for at least one entire bus state, the NA
input is sampled at the end of every phase one until the
bus cycle is acknowledged. During non-pipelined bus
cycles, therefore, NAis sampled atthe end of phase one
in every T2. An example is Cycle 2 in Figure 56, during
which NA is sampled at the end of phase one of every
T2 (it was asserted once during the first T2 and has no
further effect during that bus cycle).

If NA is sampled asserted, the Am386DX/DXL micro-
processor is free to drive the address and bus cycle defi-
nition of the next bus cycle, and assert ADS, as soon as
it has a bus request internally pending. It may drive the
next address as early as the next bus state, whetherthe
current bus cycle is acknowledged at that time or not.

Regarding the details of address pipelining, the
Am386DX/DXL CPU has the following characteristics.

1. For NA to be sampled asserted, BS16 must be
negated at the sampling window (see Figure 56
Cycles 2 through 4, and Figure 57 Cycles 1 through
4). if NA and BS16 are both sampled asserted during

the last T2 period of a bus cycle, BS16 asserted has
priority. Therefore, if both are asserted, the current
bus size is taken to be 16 bits and the next address is
not pipelined.

2. The next address may appear as early as the bus
state after NA was sampied asserted (see Figure 56
or 57). In that case, state T2P is entered immedi-
ately, However, when there is not an internal bus
request already pending, the next address will not be
available immediately after NA is asserted and T2l
is entered instead of T2P (see Figure 58 Cycle 3).
Provided the current bus cycle is not yet acknow-
ledged by READY asserted, T2P will be entered as
soon as the Am386DX/DXL microprocessor does
drive the next address. External hardware should
therefore observe the ADS output as confirmation
the next address is actually being driven on the bus.

3. Once NA is sampled asserted, the Am386DX/DXL
microprocessor commits itself to the highest priority
bus request that is pending internally. It can no
longer perform another 16-bit transfer to the same
address shouid BS16 be asserted externally, so
thereafter must assume the current bus size is 32
bits. Therefore, if NA is sampled asserted within a
bus cycle, BS16 must be negated thereafter in
that bus cycle (see Figures 56, 57, 58). Con-
sequently, do not assert NA during bus cycles that
must have BS16 driven asserted. See Dynamic Bus
Sizing with Pipelined Address.

4. Any address which is validated by a pulse on the
Am386DX/DXL CPU ADS output will remain stable
on the address pins for at least two processor clock
periods. The Am386DX/DXL microprocessor cannot
produce a new address more frequently than every
two processor clock periods (see Figures 56,57, 58).

5. Only the address and bus cycle definition of the very
next bus cycle is available. The pipelining capability
cannot look further than one bus cycle ahead (see
Figure 68 Cycle 1).

The complete bus state transition diagram, including op-
eration with pipelined address is given by Figure 59.
Note it is a superset of the diagram for non-pipelined
address only and the three additional bus states for
pipelined address are drawn in bold.

The fastest bus cycle with pipelined address consists of
just two bus states, TIP and T2P (recall for non-
pipelined address it is T1 and T2). T1P is the first bus
state of a pipelined cycle.

88 Am386 Microprocessors for Personal Computers

AMD u

idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) {Read)

Ti T1 T2 T1 T2 T2P T1P T2P TP T2l Ti
cve[MU uyuyduyuyyyuyuy iy
Wl N NN NNV NNV NNV N

BE3-BEO,
A31-A2, [Valid 1 Valid 2 Valid 3 Valid 4
M/O, D/C [» /,v
wr [
s [NV TN VTNV
W[X

To Allow To Allow To Allow
Recognizing Recognizing Recognizing
NA NA NA

1 1 1

B576 |

READY [AN

Lotk [Valid 1 Valid 2 Valid 3 Valid 4

D31-Do [—f——— -——< Oout 1 ——— -—@P{ out 1-— —

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA is only sampled during wait
states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least
one wait state (Cycle 2 above).

15021B-059

Figure 56. Transitioning to Pipelined Address During Burst of Bus Cycles

Am386DX/DXL Microprocessor Data Sheet 89

n AMD

CLK2 |:

(CLK) |:

BE3-BED,
A31-A2,
MAG, DIC

wr[

>

[

—[zzxlezxx%'l

reaDY [IXXXXXXKKKRN,

TooK [

D31-D0 [

Idle Cycle 1 Cycle 2 Cycle 3 Cycle 4 Idle
Non-Pipelined Non-Pipelined Pipelined Pipelined
(Write) (Read) (Write) (Read)
Ti T T2 T2P T1P T2P TP T2P | TP T2| T2i

JUuuuyuy
‘\/__/_\/—\/—\/—

(L LTL
N/ \/ |

Uy uUyuy
N N NN/

2

XXXXXX

XXXXXY

Valid 1 Valid 2 Valid 3 Valid 4
/[/ ! /[!
To Allow To Allow To Allow To Allow
Recognizing Recognizing Recognizing Recognizing
NA NA NA NA

!

!

!

O

LAXXXX |

%4

[R AXXXN

o

XXX

Valid 1

Vall

id 2

Valid 3

Valid 4

V4
—

Out

).._

Out

>__

Note: Following any idle bus state (Ti), the address is always non-pipelined and NA is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The pipelined cycles (2, 3, 4 above) are shown
with various numbers of wait states.

Figure 57. Fastest Transition to Pipelined Address Following Idle Bus State

15021B—060

Am386 Microprocessors for Personal Computers

AMD a

Initiating and Maintaining Pipelined Address

Using the state diagram Figure 59, observe the transi-
tions from an idle state, Ti, to the beginning of a
pipelined bus cycle, T1P. From an idle state Ti, the first
bus cycle must begin with T1, and is therefore a non-
pipelined bus cycle. The next bus cycle will be pipelined,
however, provided NA is asserted and the first bus cycle
ends in a T2P state (the address for the nextbus cycle is
driven during T2P). The fastest path from anidle state to
a bus cycle with pipelined address is shown in below:

Ti, Ti, Ti T1-T2-T2P T1P-T2P
Idle Non-Pipelined Pipelined
States Cycle Cycle

T1-T2-T2P are the states of the bus cycle that estab-
lishes address pipelining for the next bus cycle, which
begins with T1P. The same is true after a bus hold state,
shown below:

Th, Th, Th T1-T2-T2P T1P-T2P
Hold Non-Pipelined Pipelined
Acknowledge Cycle Cycle
States

The transitionto pipelined address is shown functionalty
by Figure 57 Cycle 1. Note that Cycle 1 is used to transi-
tion into pipelined address timing for the subsequent
Cycles 2, 3, and 4 that are pipelined. The NA input is as-
serted at the appropriate time to select address pipe-
lining for Cycles 2, 3, and 4.

Once abus cycle is in progress and the current address
has become valid, the NA input is sampled at the end of
every phase one, beginning with the next bus state, until
the bus cycle is acknowledged. During Figure 57 Cycle
1 therefore, sampling begins in T2. Once NA is sampled
asserted during the current cycle, the Am386DX/DXL
microprocessor is free to drive a new address and bus
cycle definition on the bus as early as the next bus state.
In Figure 56 Cycle 1 for example, the next address
is driven during state T2P. Thus, Cycle 1 makes the
transition to pipelined address timing, since it begins

with T1 but ends with T2P. Because the address for Cy-
cle 2 is available before Cycle 2 begins, Cycle 2is called
a pipelined bus cycle, and it begins with T1P. Cycle 2
begins as soon as READY asserted terminates Cycle 1.

Example transition bus cycles are Figure 57 Cycle 1 and
Figure 56 Cycle 2. Figure 57 shows transition during the
very first cycle after anidle bus state, which is the fastest
possible transition into address pipelining. Figure 56
Cycle 2, shows a transition cycle occurring during a
burst of bus cycles. In any case, a transition cycle is the
same whenever it occurs: it consists at least of T1, T2
(you assert NA at that time), and T2P (provided the
Am386DX/DXL microprocessor has an internal bus
request already pending, which it almost always has).
T2P states are repeated if wait states are added to the
cycle.

Note three states (T1, T2, and T2P) are only required in
a bus cycle performing a transition from non-pipelined
address into pipelined address timing; for example,
Figure 57 Cycle 1. Figure 57 Cycles 2, 3, and 4 show
that address pipelining can be maintained with two-
state bus cycles consisting only of T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined tim-
ing is maintained for the next cycle by asserting NA and
detecting that the Am386DX/DXL CPU enters T2P dur-
ing the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in the
nextcycle. T2P is identified by the assertion of ADS. Fig-
ures 56 and 57 however, show pipelining ending after
Cycle 4, because Cycle 4 ends in T2P. This indicates
the Am386DX/DXL CPU did not have aninternal bus re-
quest prior to the acknowledgment of Cycle 4. If a cycle
ends with a T2 or T2I, the next cycle will not be pipelined.

Realistically, address pipelining is almost always main-
tained as long as NA is sampled asserted. This is so,
because in the absence of any other request a code
prefetch request is always internally pending until the
instruction decoder and code prefetch queue are
completely full. Therefore, address pipelining is main-
tained forlong bursts of bus cycles, if the bus is available
(i.e., HOLD negated) and NA is sampled asserted in
each of the bus cycles.

Am386DX/DXL Microprocessor Data Sheet 91

u AMD

Cycle 1 Cycle 2 Cycle 3 Cycle 4
Pipelined Pipelined Pipelined Pipelined
(Write) (Read) (Write) ‘ (Read)

TIP] T2P T2P TP T2 T2P T1P T2 T2P TP

e [MM LMJ U YUy uyy
ek [‘\/—\/_\/“\/_\/“\/—\/‘\/—\/‘\/—\

BET1-BED,
A31-A2, ["] Valid 1 Valid 2 Valid 3 Valid 4
MAG, DIC d of | |
1 ADS is asserted as soon
as Am386DX/DXL CPU has
another bus cycle to perform,
which is not always immedi-
ately after NA is asserted.
W/R [| ! / {
ADS [/ /

Note: ADS is asserted T2P state during Cycle 3, address pipe-

/ Aslong as Am386DX/DXL CPU enters the
in every T2P state. lining is maintained in Cycle 4.

Asserting NA morethan | NA could have been asserted
once during any cycle | in T1P if desired. Assertion now is

has no additional the latest time possible to allow

effects. Am386DX/DXL CPU 1o enter T2P
state to maintain pipelining in
Cycle 3.

s [XY
meAoY [e N \Q_JX%X

ook [Vaiid 1 Valid 2 Valid 3 Valid 4

D31-Do [X i)ut - —_"“—‘G'D—(?m

15021B-061

Figure 58. Details of Address Pipelining During Cycles with Wait States

92 Am386 Microprocessors for Personal Computers

AMD u

HOLD Asserted

HOLD Negated ®
No Request

HOLD Negated o
Request Pending

HOLD
Asserted

READY Asserted o
HOLD Asserted

READY Asserted
HOLD Asserted

{No Request +
HOLD Asserted) o

NA Asserted NA Asserted o

RESET AEADY Asserteds RAEADY Negated (HOLD Asserted+
Asserted HOLD Negated e No ~ Request)

. No Request ' '

) ™~ : !

1]

Always 1 NA Negated '

Request Pending
'y HOLD Negated READY Asserted »

HOLD Negated +
No Request

READY Asserted
HOLD Negated »
Request Pending

HOLD Negated e
Request Pending

READY Negatede
NA Negated

READY Negated «
NA Asserted »
HOLD Negated

Request Pending

READY Asserted e HOLD Negated ¢« No Request

Bus States:

T1 — First clock of a non-pipelined bus cycle (Am386DX/DXL CPU drives new
address and asserts ADS),

T2 — Subsequent clocks of a bus cycle when NA has notbeen sampled asserted
in the current bus cycle.

T2|— Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle but there is not yet an internal bus request pending
(Am386DX/DXL CPU will not drive new address or assert ADS).

T2P—Subsequent clocks of a bus cycle when NA has been sampled asserted in
the current bus cycle and there is an internal bus request panding
(Am386DX/DXL CPU drives new address and asserts ADS).

T1P—First clock of a pipelined bus cycle.

Ti — ldle state.

Th — Hold Acknowledge state (Am386DX/DXL CPU asserts HLDA).

Asserting NA for pipelined address gives access to three more bus states: T2,
T2P, and T1P.

Using pipelined address, the fastest bus cycle consists of T1P and T2P.

READY Negatede
(No Request+
HOLD Asserted)

NA Asserted o
HOLD Negated o
Request Pending

READY Asserted

READY Negated

15021B-062

Figure 59. Am386DX/DXL Microprocessor Complete Bus States (Including Pipelined Address)

Am386DX/DXL Microprocessor Data Sheet

93

u AMD

Pipelined Address With Dynamic Data Bus Sizing

The BS16 feature allows easy interface to 16-bit data
buses. When asserted, the Am386DX/DXL micropro-
cessor bus interface hardware performs appropriate
action to make the transfer using a 16-bit data bus
connected on D15-D0.

There is a degree of interaction, however, between the
use of Address Pipelining and the use of Bus Size 16.
The interaction results from the multiple bus cycles re-
quired when transferring 32-bit operands over a 16-bit
bus. If the operand requires both 16-bit halves of the
32-bit bus, the appropriate Am386DX/DXL micropro-
cessor action is a second bus cycle to complete the op-
erand's transfer. This necessity conflicts with NA usage.

When NA is sampled asserted, the Am386DX/DXL mi-
croprocessor commits itself to perform the next inter-
nally pending bus request, and is allowed to drive the
next internally pending address onto the bus. Asserting
NA therefore makes it impossible for the next bus cycle
to again access the current address on A31-A2, suchas
may be required when BS16 is asserted by the external
hardware.

To avoid conflict, the Am386DX/DXL microprocessor is
designed with following two provisions.

1. To avoid conflict, BS16 mustbe negated in the current
bus cycle if NA has already been sampled asserted
in the current cycle. It NA is sampled asserted, the
current data bus size is assumed to be 32 bits.

2. Also to avoid confiict, if NA and BS16 are both
asserted during the same sampling window, BS16
asserted has priority and the Am386DX/DXL micro-
processor acts as if NA was negated at that time.

Centain types of 16- or 8-bit operands require no adjust-
ment for correcttransferon a 16-bit bus. Those are read
or write operands using only the lower half of the data
bus, and write operands using only the upper half
of the bus, since the Am386DX/DXL CPU simultane-
ously duplicates the write data on the lower half of the
data bus. For these patterns of Byte Enables and
the W/R signals, BS16 need not be asserted at the
Am386DX/DXL CPU allowing NA to be asserted during
the bus cycle if desired.

Interrupt Acknowledge (INTA) Cycles

In response to an interrupt request on the INTR input
when interrupts are enabled, the Am386DX/DXL micro-
processor performs two interrupt acknowledge cycles.
These bus cycles are similar to read cycles in that bus
definition signals define the type of bus activity taking
place, and each cycle continues until acknowledged by
READY sampled asserted.

The state of A2 distinguishes the first and second in-
terrupt acknowledge cycles. The byte address driven
during the first interrupt acknowledge cycle is 4 (A31-
A3 Low, A2 High, BE3-BET High, and BEO Low). The
address driven during the second interrupt acknowl-
edge cycle is 0 (A31-A2 Low, BE3-BET High, BEO
Low).

The LOCK output is asserted from the beginning of the
first interrupt acknowledge cycle until the end of the sec-
ond interrupt acknowledge cycle. Four idle bus states,
Ti, are inserted by the Am386DX/DXL microprocessor
between the two interrupt acknowledge cycles, aliowing
for compatibility with spec TRHRL of the 8259A Interrupt
Controller.

During both interrupt acknowledge cycles, D31-D0
float. No data is read at the end of the first interrupt ac-
knowledge cycle. At the end of the second interrupt
acknowledge cycle, the Am386DX/DXL microprocessor
will read an external interrupt vector from D7-D0 of the
data bus. The vector indicates the specific interrupt
number (from 0-255) requiring service.

Halt Indication Cycle

The Am386DX/DXL microprocessor halts as a result of
executing a HALT instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed. The
halt indication cycle is identified by the state of the bus
definition signals shown in Bus cycle Definition and a
byte address of 2. BEO and BE2 are the only signals
distinguishing halt indication from shutdown indication,
that drives an address of 0. During the halt cycle
undefined data is driven on D31-D0. The halt indication
cycle must be acknowledged by READY asserted.

A halted Am386DX/DXL CPU resumes execution when
INTR (if interrupts are enabled) or NMI or RESET is
asserted.

Shutdown Indication Cycle

The Am386DX/DXL microprocessor shuts down as a
result of a protection fault while attempting to process a
double fault. Signaling its entrance into the shutdown
state, a shutdown indication cycle is performed. The
shutdown indication cycle is identified by the state of the
bus definition signals shown in Bus Cycle Definition and
a byte address of 0. BEO and BE2 are the only signals
distinguishing shutdown indication from halt indication,
which drives an address of 2. During the shutdown
c¢ycle, undefined data is driven on D31-D0. The shut-
down indication cycle must be acknowledged by
READY asserted.

A shutdown Am386DX/DXL microprocessor resumes
execution when NMI or RESET is asserted.

94 Am386 Microprocessors for Personal Computers

AMD
A transfer requiring two
cycles on 16-bit data bus
e - ™
Previous Cycle 1 Cycle 1A Cycle 2
Cycle Pipelined Non-Pipelined Non-Pipelined
(Write 1 Write) (Read)
Part One Part Two
T2P TP T2 T2 T T2 T2 T T2 T2P
e[MUY UYUYuUyuuyuyoy
Wl NSNS NN NN NSNS NSNS
_| Always
seT-BEs [X Valid 1 Negated During Valid 2 Valid 3
BE3-BEZ, . _
A31-a2, [X< Valid 1 > Valid 2 Valid 3
MAG,DC —
wr [|/
s N_Y / /N

[Note: NA must be negated in these Ts to allow
recognition of asserted BS16 in fin

al T2s.

NA I: Don't Care Don't Care
1 32-Bit
Bus Size
BST6 [-
v
16-Bit 16-Bit
Bus Size Bus Size|
reroy [OO\ | AXXXXY || AXKXXY || AKX [X
ook [. Valid 1 > Valid 2
d15-do disdo | d31-d16 d15-do
p15-Do [—-— < Out X Out t———A F——(n|
|
d31-d16 Id31—d16I d31-d16
D31-D16 [—f~— < Out out) S E—— - ——(in]
I] | ! I |
Key: Dn = Physical data pin n Cycle 1 is pipelined. Cycle 1A cannot be pipelined, but its address can be inferred from
dn = Logical data pin n that of Cycle 1, to externally simulate address pipelining during Cycle 1A.

Figure 60. Using NA and BS16

15021B-063

Am386DX/DXL Microprocessor Data Sheet

n AMD

Previous Interrupt Idle Interrupt Idle
Cycle Acknowledge (4 Bus States) Acknowledge
Cycle 1 Cycle 2

T2 T2 T2 Ti Ti Ti Ti T T2 T2i

mhhnhhhhhhiiiahihhibi
e Vs Ve Ve Ve Ve Va Va Va Va Va

ses 51 [RKKXY
2 [KKK (| d

Wio, DIS,
WR

w2 [

AXXXXXXX

AXXXXXXX

TocK [

s [% %
W[

BS16|: Ignored

resov [L AXX
Ignored Vector

07-00 [~~~ ~——F— =~~~ (D
Ignored Ignored

Interrupt Vector (0-255) is read on D7-DO0 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA has no practical effect. Choose the
approach that is simplest for your system hardware design.

15021B-064

Figure 61. Interrupt Acknowledge Cycles

96 Am386 Microprocessors for Personal Computers

AMD u

CLK2

NA

D31-D0

[
-

Cycle 1
Non-Pipelined
(Write)

T2

st
Va Vs

Cycle 1A
Non-Pipelined
(Halt)

T T2

(LU UL
YA\

Idle

Valid 1

BE2 is Low
for Halt Cycle

Valid 1

-

\ A

Va Vs

[— Halt state.

N__V

Ignored

Note: Halt cycle must be

acknowledged by READY
asserted. Wait states may
be added to the cycle if
desired.

Valid 1

Valid 2

[©o

ut X

Out 1

X Undefined

)— (Floating)

Figure 62. Halt Indication Cycle

|~ Am386DX/DXL CPU remains
halted untit INTR, NMI, or
[— RESET is asserted.

| Am386DX/DXL CPU responds
to HOLD input while in the

15021B-065

Am386DX/DXL Microprocessor Data Sheet

97

u AMD

Cycle 1 Cycle 2 Idle
Pipelined Pipelined
(Read) (Shutdown)
TP T2P TP T2l Ti Ti Ti Ti

cve [MUY UL UHUYLY
/|

(CLK) [_/—_/—_/__/__/_
Am386DX/DXL CPU re-
BE3-BET [Vald 1 mains shutdown untit NMI or
MO, WR o | RESET is asserted.
' BEO is Low
for Shutdown
— Cycle | Am386DX/DXL CPU re-
BEQ, |: Valid 1 sponds to HOLD input
A31-A2, D/ [— while in the Shutdown
state.

]

:

»
m

rerny [| AXXXX |

Note: Shutdown cycle must

be acknowledged by READY
asserted. Wait states may be
added to the cycle if desired.

ook [Valid 1 Valid 2

031-00 [{Cin »---|- - - {in 1) {_ Undefined >—(F|Ioating)-—-———————

15021B-066

Figure 63. Shutdown Indication Cycle

98 Am386 Microprocessors for Personal Computers

AMD a

Other Functional Descriptions
Entering and Exiting Hold Acknowledge

The Bus Hold Acknowledge State, Th, is entered in
response to the HOLD input being asserted. In the
Bus Hold Acknowledge state, the Am386DX/DXL
microprocessor floats all output or bidirectional signals,
except for HLDA. HLDA is asserted as long as the

Am386DX/DXL CPU remains in the bus hold acknowl-
edge state. In the Bus Hold Acknowledge state, all in-
puts except HOLD, FLT, RESET, BUSY, ERROR, and
PEREQ are ignored (also up to one rising edge on NMI
is remembered for processing when HOLD is no longer
asserted).

Idle

Th

(LI

CLK2 |: |

Hold
44— Acknowledge —

syl
"

Idle

Th

-

/"]

L
o [N NS
Vs

(Floating ————m

HOLD |: |
HLDA [
BE3-BED,
vt [RRER)-——
ADS [\
A [XD

BST6 [

reasy [XDXOXXX
ook [

p3t-Do [—

\-——- (Floating) ' ———-

XXXXXOPOOPXOOXXX

>———- (Floating) ———

- ——— (Floating) ———

Note: For maximum design flexibility, the Am386DX/DXL CPU has no internal pullup resistors on its outputs. The design may
require an external pullup on ADS and other Am386DX/DXL CPU outputs to keep them negated during float periods.

15021B-067

Flgure 64. Requesting Hold from Idle Bus

Am386DX/DXL Microprocessor Data Sheet 99

a AMD

Th may be entered from a bus idle state, as in Figure 64,
or after the acknowledgment of the current physical bus
cycle if the LOCK signal is not asserted, as in Figures 65
and 66. If HOLD is asserted during a locked bus cycle,
the Am386DX/DXL microprocessor may execute one
unlocked bus cycle before acknowledging HOLD. If as-
serting BS16 requires a second 16-bit bus cycle to com-
plete a physical operand transfer, it is performed before
HOLD is acknowledged, although the bus state dia-
grams in Figures 53 and 59 do not indicate that detail.

Th is exited in response to the HOLD input being ne-
gated. The following state will be Ti as in Figure 64 if no
bus request is pending. The following bus state will be
T1 if abus request is internally pending, as in Figures 65
and 66.

This also exited in response to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI in-
put while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exited,
unless of course, the Am386DX/DXL microprocessor is
reset before Th is exited.

RESET During HOLD Acknowledge

RESET being asserted takes priority over HOLD being
asserted. Therefore, Th is exited in response to the
RESET input being asserted. If RESET is asserted
while HOLD remains asserted, the Am386DX/DXL mi-
croprocessor drives its pins to defined states during
reset, as in Table 15 Pin State During RESET, and
performs internal reset activity as usual.

It HOLD remains asserted when RESET is negated, the
Am386DX/DXL microprocessor enters the hold ac-
knowledge state before performing its first bus cycle,
provided HOLD is still asserted when the Am386DX/
DXL microprocessor would otherwise perform its first
bus cycle. If HOLD remains asserted when RESET is
negated, the BUSY input is still sampled as usual to de-
termine whether a self test is being requested, and ER-
ROR is still sampled as usual to determine whether a
387DX math coprocessor versus an 80287 (or none) is
present.

Float

Activating the FLT input floats all Am386DX/DXL CPU
bidirectional and output signals, including HLDA. As-
serting FLT isolates the Am386DX/DXL CPU from the
surrounding circuitry.

As the Am386DX/DXL microprocessor is packaged in a
surface mount PQFP, it cannot be removed from the
motherboard when In-Circuit Emulation (ICE) is
needed. The FLT input allows the Am386DX/DXL CPU
to be electrically isolated from the surrounding circuitry.
This allows connection of an emulator to the Am386DX/
DXL microprocessor PQFP without removing it from the
PCB. This method of emulation is referred to as ON-
Circuit Emulation (ONCE).

Entering and Exiting Float

FLT is an asynchronous, active Low input. It is recog-
nized on the rising edge of CLK2. When recognized, it
aborts the current bus cycle and fioats the outputs of the
Am386DX/DXL microprocessor (Figure 68). FLT must
be held Low for a minimum of 16-CLK2 cycles. Reset
shouid be asserted and held asserted until after FLT is
deasserted. This will ensure that the Am386DX/DXL
CPU will exit Float in a valid state.

Asserting the FLT input unconditionally aborts the cur-
rent bus cycle and forces the Am386DX/DXL micro-
processor into the Float mode. Since activating FLT
unconditionally forces the Am386DX/DXL CPU into
Float mode, the Am386DX/DXL CPU is not guaranteed
to enter Float in a valid state. After deactivating FLT, the
Am386DX/DXL CPU is not guaranteed to exit Float
mode in a valid state. This is not a problem, as the FLT
pin is meant to be used only during ONCE. After exiting
Float, the Am386DX/DXL CPU must be resetto return it
to a valid state. Reset should be asserted before FLT is
deasserted. This will ensure that the Am386DX/DXL.
CPU will exit Float in a valid state.

FLT has aninternal pull-up resistor, and if it is not used it
should be unconnected.

Bus Activity During and Following Reset

RESET is the highest priority input signal capable of in-
terrupting any processor activity when it is asserted. A
bus cycle in progress can be aborted at any stage; or
idle states or bus hold acknowledge states discontinued
so that the RESET state is established.

RESET should remain asserted for at least 15-CLK2
periods to ensure it is recognized throughout the
Am386DX/DXL microprocessor, and at least 80-CLK2
periods if Am386DX/DXL device self-test is going to be
requested at the falling edge. RESET asserted pulses
less than 15 CLK2 periods may not be recognized.
RESET pulses less than 80 CLK2 periods followed by
a self-test may cause the self-test to report a failure
when no true failure exists.

The additional RESET pulse width is required to clear
additional state prior to valid selif-test.

Provided the RESET falling edge meets setup and hold
times, t25 and 126, the internal processor clock phase is
defined at that time, as illustrated by Figure 67.

An Am386DX/DXL microprocessor self-test may be re-
quested at the time RESET is negated by having the
BUSY input at a Low level, as shown in Figure 67. The
self-test requires (22°) + approximately 60-CLK2 periods
to complete. The self-test duration is not affected by the
test results. Evenif the self-test indicates a problem, the
Am386DX/DXL device attempts to proceed with the re-
set sequence afterward.

100 Am386 Microprocessors for Personal Computers

AMD n

After the RESET falling edge (and after the self-test if
it was requested) the Am386DX/DXL microprocessor
performs an internal initialization sequence for approxi-
mately 350 to 450 CLK2 periods.

The Am386DX/DXL microprocessor samples its ER-
ROR input some time after the falling edge of RESET
and before executing the first ESC instruction. During

this sampling period BUSY must be High. If ERROR
was sampled active, the Am386DX/DXL device em-
ploys the 32-bit protocol of a 387DX math coprocessor.
Even though this protocol was selected, it is still neces-
sary to use a software recognition test to determine the
presence or identity of the coprocessor and to assure
compatibility with future processors.

Cycle 1 Hold Cycle 2
Non-Pipelined Acknowledge Non-Pipelined
(Read) (Write)
T1 T2 T2 Th Th T T2
cve [LT LT LML L L Ly L
e [N N N N NS N N
HoLD [N\
— | HOLD asserted no later
than READY asserted
HLDA [I
PO — (Floating)
M/G, BE3-BED, vaid1 | | >ccccmcpozoaao] Valid 2
pore o wm L < = f < =
- (Floating)
ADS |: N\ L/ U ot Va
W [
32-BitBus Size §
BST16 [©
Note: If asserting BS16 requires a second
bus cycle to be performed, the second cy-
cle is performed before Hold Acknowledge.
|
READY |:
]
(Negated, or Last Locked Cycle) Floati
oatin
ook [Valid 1 s (foating) K Valid 2
Floatin Floatin
D31-DO l: -------- (__[_g_) ----------- < In >=-----F- ¢ ____9)_______< Out

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (123 and t24) requirements

are met. This waveform is useful for determining Hold Acknowledge latency.

150218068

Figure 65. Requesting Hoid from Active Bus (NA Negated)

Am386DX/DXL Microprocessor Data Sheet 101

u AMD

CLK2
(CLK)

HOLD

HLDA

MG, BE3-BEG,
A31-A2, DIC, WR

%gﬁaﬁ

[N e R e I e E e B e B e B s |

D31-Do

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (23 and 124) requirements

[

TiP

Cycle 1
Pipelined
(Write)

T21

Hold Cycle 2
Acknowledge Non-Pipelined
(Read)

Th

JEjSpEpEpNpEnEnE

[N N N NS

"

|- state as NA asserted

HOLD asserted in same bus

gl
N |

(Floating)
Valid | 1 DX XXX DX D> ------ l- -------- K Valid 2
(Floating)
YT 1T \ a8
b
(Negated or Last Locked Cycle)
Floati
Vaid 1 oo Hoatng) | K Valid 2
Floati
out X Out >___(__o_a_m_gl ---------- --=-<in

are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 66. Requesting Hold from Active Bus (NA Asserted)

15021B-069

Table 21. Component and Revision identifier History

Inte! hll\.m:%ssDX/DXL Component Revision

1386 leroprocessor Identifier Identifier
Stepping Name Revision

D1 D 03 08

102

Am386 Microprocessors for Personal Computers

AMD a

CLK2

Reset

CLK (Internal)

ERROR

BE3-BED, WA
M/IC, HLDA

A31-A2,
D/C, LTOCK

ADS

READY

D31-Do

[XXX

[THUUUL

+—— Reset
> 15 CLK2 duration if not
going to request self-test.

> 80 CLK2 duration before
requesting self-test.

i
6’006l

v
h

Internal
Initialization Cycle 1
Non-Pipelined

If seff-test is performed, add (Read)
((2%°) + 60" to these numbers T1 T2
1 2 3 |[17 18 |19 ||395 |396 397 |398
) Approximately

[e2]o1]o2]let]|o2]|e1|lo 2[61]02

KX XXX\

No self-test

(Note 1)

Low to begin self-test (Note 2)

Negated to allow sensing of a
387DX math coprocessor

Asserted to indicate 387DX

[
[—> math coprocessor protocol
Up to 30 CLK2 —¥
[Low || During Reset KXXXX)‘ Valid 1
Up to 30 CLK2 —» |
[High|| During Reset NOOOO Valid 1
Up to 30 CLK2 —™
I: High|} During Reset] \ /_

[XXXRXRXKKK
[
[XXRRKRR) -

Notes: 1. BUSY should be heid stable for 8-CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.
2. If self-test is requested, the Am386DX/DXL microprocessor outputs remain in their reset state as shown here and in Table 14.

Figure 67. Bus Activity from Reset Until First Code Fetch

15021B-070
ck2 [
T [\ /
T G < X
e [-~ { WA r-emmomeeemmamen e < X
Address [X Valid R bR < X
Reset [/
15022B-029
Figure 68. Entering and Exiting FLT
Am386DX/DXL Microprocessor Data Sheet 103

u AMD

Self-Test Signature

Upon completion of self-test, (if self-test was requested
by holding BUSY Low at least eight CLK2 periods before
and after the falling edge of RESET), the EAX register
will contain a signature of 00000000h indicating the
AmM386DX/DXL CPU passed its self-test of microcode
and major PLA contents with no problems detected. The
passing signature in EAX, 00000000h, applies to all
Am386DX/DXL microprocessor revision levels. Any
non-zero signature indicates the Am386DX/DXL CPU
unit is faulty.

Component and Revision Identifiers

To assist Am386DX/DXL microprocessor users, the mi-
croprocessor after reset holds a component identifier
and a revision identifier in its DX register. The upper 8
bits of DX hold 03h as identification of the Am386DX/
DXL CPU component. The lower 8 bits of DX hold an
8-bit unsigned binary number related to the component
revision level. The revision identifier begins chronologi-
cally with a value zero andis subject to change (typically
it will be incremented) with component steppings in-
tended to have certain improvements or distinctions
from previous steppings.

These features are intended to assist Am386DX/DXL
microprocessor users to a practical extent. However,
the revision identifier value is not guaranteed to change
with every stepping revision nor to follow a completely
uniform numerical sequence, depending on the type or
intention of revision or manufacturing materials required
to be changed.

Coprocessor Interfacing

The Am386DX/DXL microprocessor provides an auto-
matic interface for a 387DX floating-point math co-
processor. A 387DX math coprocessor uses an I/O-
mapped interface driven automatically by the
Am386DX/DXL microprocessor and assisted by three
dedicated signals: BUSY, ERROR, and PEREQ.

As the Am386DX/DXL CPU begins supporting a
coprocessor instruction, it tests the BUSY and ERROR
signals to determine if the coprocessor can accept its
next instruction. Thus, the BUSY and ERROR inputs
eliminate the need for any preamble bus cycles for com-
munication between processor and coprocessor. A
387DX math coprocessor can be given its command
op-code immediately. The dedicated signals provide
instruction synchronization, and eliminate the need of
using the Am386DX/DXL CPU WAIT op-code (9Bh) for
387DX math coprocessor instruction synchronization
(the WAIT op-code was required when 8086 or 8088
was used with the 8087 coprocessor).

Custom coprocessors can be included in Am386DX/
DXL microprocessor based systems, via memory-
mapped or I/O-mapped interfaces. Such coprocessor
interfaces allow a completely custom protocol, and are
not limited to a set of coprocessor protocol primitives. In-
stead, memory-mapped or I/O-mapped interfaces may
use all applicable Am386DX/DXL microprocessor in-
structions for high-speed coprocessor communication.
The BUSY and ERROR inputs of the Am386DX/DXL
CPU may also be used for the custom coprocessor in-
terface, if such hardware assist is desired. These sig-
nals canbe tested by the Am386DX/DXL CPU WAIT op-
code (9Bh). The WAIT instruction will wait until the
BUSY input is negated (interruptable by an NM! or en-
able INTR input), but generates an Exception 16 fauit if
the ERROR pin is in the asserted state when the BUSY
goes (or is) negated. If the custom coprocessor inter-
face is memory-mapped, protection of the addresses
used for the interface can be provided with the
Am386DX/DXL microprocessor on-chip paging or seg-
mentation mechanisms. If the custom interface is I/O-
mapped, protection of the interface can be provided with
the Am386DX/DXL microprocessor [OPL (IO Privilege
Level) mechanism.

A 387DX math coprocessor interface is /0 mapped as
shown in Table 22. Note that a 387DX math coproces-
sorinterface addresses are beyond the OhFFFFh range
for programmed /0. When the Am386DX/DXL CPU
supports a 387DX math coprocessor, the Am386DX/
DXL microprocessor automatically generates bus cy-
cles to the coprocessor interface addresses.

Table 22. Math Coprocessor Port Addresses

Address in Am386DX/DXL
CPU I/O Space

387DX
Coprocessor Register

Opcode Register

800000F8h (32-bit port)

80000OFCh Operand Register

(32-bit port)

To correctly map a 387DX math coprocessor registers
to the appropriate /O addresses, connect a 387DX
math coprocessor CMDO pin directly to the A2 output of
the Am386DX/DXL microprocessor.

Software Testing for Coprocessor Presence

When software is used to test for coprocessor (387DX)
presence, it should use only the following coprocessor
op-codes: FINIT, FNINIT, FSTCW mem, FSTSW mem,
FSTSW AX. To use other coprocessor op-codes whena
coprocessor is known to be not present, first set EM =1
in Am386DX/DXL microprocessor CRO.

104 Am386 Microprocessors for Personal Computers

AMD a

ABSOLUTE MAXIMUM RATINGS

Storage Temperature —65°C to +150°C
Ambient Temperature Under Bias . . ~65°C to +125°C
Supply Voltage with Respect

toVss oo -05Vto+7V
Voltage on Other Pins —05VtoVec+0.5V

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to Absolute
Maximum Ratings for extended periods may affect device
reliability.

DC CHARACTERISTICS over COMMERCIAL operating ranges

Vee=5 V +5%; Tease = 0°C to +85°C (PGA)

Vee=5 V+10%; Tease =0°C to +100°C (PQFP —20, 25, and 33 MHz)

Ve =5 V15%,; Tease = 0°C to +100°C (PQFP — 40 MHz)

Symbol Parameter Description Notes Min Max Unit
Vi Input Low Voltage (Note 1) -0.3 0.8 Vv
Vi Input High Voltage 2.0 Vec+0.3 \'J
Vi CLK2 Input Low Voltage (Note 1) -0.3 0.8 \)
Vine CLK2 Input High Voltage 27 Vee +0.3 \
Voo Output Low Voltage
lo.=4 mA: A31-A2, D31-D0 (Note 6} 0.45 \
lo.=5 mA: BE3-BEO, W/R, 0.45 \%
D/C, MNO, LOCK, ADS, HLDA
Von Output High Voltage
lon=1 mA: A31-A2, D31-D0 (Note 6) 2.4 \
lon=0.9 mA: ﬁa—aﬁ, 2.4 \")
W/R, D/C, M/15, LOCK,
ADS, HLDA
lu Input Leakage Current 0V Vi< Vee +15 HA
Mns&cept BS16, PEREQ,
BUSY, FLT, and ERROR)
™ Input Leakage Current V=24V 200 pA
(PEREQ Pin) (Note 2)
he Input Leakage Current Vi=0.45 —400 LA
(BS16, BUSY, FLT, and ERROR) (Note 3)
ho Output Leakage Current 0.45V<Vour<Vee +15 uA
loc Supply Current (Note 7) Vec = 5.0V Vec =55V
CLK2 =40 MHz: with —20 lec Typ=130 155 mA
CLK2 =50 MHz: with —25 lec Typ =160 190 mA
CLK2 =66 MHz: with 33 lec Typ=210 245 mA
CLK2 =80 MHz: with —40 lec Typ =330 400 mA
locss Standby Current lecss Typ=20 pA
(Am386DXL microprocessor) (Note 5) 150 HA
Cw Input or /O Capacitance Fe=1 MHz (Note 4) 10 pF
Cour Output Capacitance Fc=1 MHz (Note 4) 12 pF
Cewc CLK2 Capacitance Fc=1 MHz (Note 4) 20 pF
Notes: 1. The Min value, -0.3, is not 100% tested.

. PEREQ input has an internal pulldown resistor.

. BS16, BUSY, FLT, and ERROR inputs each have an internal pullup resistor.

. Measurement taken with inputs at rails, outputs unloaded, BS16, BUSY, FLT, and ERROR at Vec voltage level, PEREQ at Gnd.

. Outputs are CMOS and will pull to rail if load is not resistive.

1
2
3
4. Not 100% tested.
5
6
7

. Inputs at rails {Vcc or Vss).

Am386DX/DXL Microprocessor Data Sheet 105

a AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating range — 40 MHz

Vee=5 V £5%,; Tease =0°C to +85°C (PGA)
Vee =5 V +5%; Tease = 0°C to +100°C (PQFP)

No. | Parameter Description Notes Ref Figure Min Max Unit
Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 40 MHz
Am386DXL CPU Half CLK2 freq. 0 40 MHz
1 CLK2 Period: Am386DX CPU 71 12.5 250 ns
Am386DXL CPU 71 12.5 ns
2 CLK2 High Time at Viue 71 4 ns
3 CLK2 Low Time at 0.8V 71 5 ns
4 CLK2 Fall Time 2.7 V-0.8 V (Note 3) 71 ns
5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 ns
6 A31-A2 Valid Delay C.=50 pF 70,73, 81 4 13 ns
7 A31-A2 Float Delay (Note 1) 81 4 20 ns
8 BE3-BEO, LOCK Valid Delay C.=50 pF 70, 73, 81 4 13 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 20 ns
10 W/R, MAiG, D/C Valid Delay C.=50pF 70, 73, 81 4 13 ns
10a | ADS Valid Delay C.=50 pF 70,73, 81 4 13 ns
11 W/R, MAO, D/C, ADS Float Delay {Note 1) 81 4 20 ns
12 D31-D0 Write Data Valid Delay Ci=50 pF {Note 4) 70, 74, 81 7 18 ns
12a | D31-DO Write Data Hold Time C.=50 pF 70,75 2 ns
13 D31-D0 Float Delay {Note 1) 81 4 17 ns
14 HLDA Valid Delay CL=50 pF 70, 81 4 17 ns
14f HLDA Float Delay (PQFP Only) (Note 1) 70, 81 4 17 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 2 ns
17 BS16 Setup Time 72 5 ns
18 BS16 Hold Time 72 2 ns
19 READY Setup Time 72 7 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 4 ns
22 D31-D0 Read Hold Time 72 3 ns
23 HOLD Setup Time 72 4 ns
24 HOLD Hold Time 72 2 ns
25 RESET Setup Time 82 4 ns
26 RESET Hold Time 82 2 ns
27 NMI, INTR Setup Time (Note 2) 72 5 ns
28 NMI, INTR Hold Time {Note 2) 72 5 ns
29 PEREQ, ERROR, BUSY, (Note 2) 72 5 ns
FLT" Setup Time
30 E{EO, ERROR, BUSY, {Note 2) 72 4 ns
FLT* Hold Time
Notes: 1. Float condition occurs when maximum autput current becomes less than |io in magnitude. Float delay is not 100% tested.
2. These inputs are allowed to be asynchronaus to CLK2. The setup and hold specifications are given for testing purposes, to assure
recognition within a specific clock period.
3. Rise and fall imes are not tested.
4. Min time not 100% tested.
*PQFP package only.
106 Am386 Microprocessors for Personal Computers

AMD u

SWITCHING CHARACTERISTICS over COMMERCIAL operating range — 33 MHz

Vee=5 V £5%; Tease = 0°C to +85°C (PGA)

Vee=5 V £10%; Tease =0°C to +100°C (PQFP)

No. | Parameter Description Notes Ref Figure Min Max Unit
Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 333 MHz
Am386DXL CPU Half CLK2 freq. 0 33.3 MHz
1 CLK2 Period: Am386DX CPU 71 15 250 ns
Am386DXL CPU 71 15 ns
2 CLK2 High Time at Viue 71 4 ns
3 CLK2 Low Time at0.8V 71 5 ns
4 CLK2 Fall Time 2.7 V=0.8 V {Note 3) 71 4 ns
5 CLK2 Rise Time 0.8 V=2.7 V (Note 3) 71 4 ns
6 A31-A2 Valid Delay CL=50 pF 70,73, 81 4 15 ns
7 A31-A2 Float Delay {Note 1) 81 4 20 ns
8 BE3-BEO, LOCK Valid Delay C.=50 pF 70, 73, 81 4 15 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 20 ns
10 W/R, MAIG, D/C Valid Delay C.=50 pF 70, 73, 81 4 15 ns
10a | ADS Valid Delay CL=50 pF 70, 73, 81 4 14,5 ns
11 W/R, MAIG, D/C, ADS Float Delay (Note 1) 81 4 20 ns
12 D31-D0 Write Data Valid Delay CL=50 pF (Note 4) 70, 74, 81 7 23 ns
12a | D31-DO Write Data Hold Time C.=50 pF 70,75 2 ns
13 D31-DoO Float Delay (Note 1) 81 4 17 ns
14 HLDA Valid Delay C.=50 pF 70, 81 4 20 ns
14f HLDA Float Delay (PQFP Only) (Note 1) 70, 81 4 20 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 2 ns
17 BS16 Setup Time 72 5 ns
18 BS16 Hold Time 72 2 ns
19 READY Setup Time 72 7 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 5 ns
22 D31-D0 Read Hold Time 72 3 ns
23 HOLD Setup Time 72 9 ns
24 HOLD Hold Time 72 2 ns
25 RESET Setup Time 82 5 ns
26 RESET Hold Time 82 2 ns
27 NMI, INTR Setup Time (Note 2) 72 5 ns
28 NMI, INTR Hold Time (Note 2) 72 5 ns
29 PEREQ, ERROR, BUSY, (Note 2) 72 5 ns
FLT* Setup Time
30 | PEREQ, ERROR, BUSY, (Note 2) 72 4 ns
FLT" Hold Time
Notes: 1. Float condition occurs when maximum output current becomes less than I.o in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure

recognition within a specific clock period.

3. Rise and fall times are not tested.
4. Min time not 100% tested.
*PQFP package only.

Am386DX/DXL Microprocessor Data Sheet

107

a AMD

SWITCHING CHARACTERISTICS over COMMERCIAL operating range — 25 MHz

Vee =5 V £5%; Tease = 0°C to +85°C (PGA)

Vee=5 V £10%; Tease =0°C to +100°C (PQFP)

No. | Parameter Description Notes Ref Figure Min Max Unit
Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 25 MHz
Am386DXL CPU Half CLK2 freq. 0 25 MHz
1 CLK2 Period: Am386DX CPU 71 20 250 ns
Am386DXL CPU 71 20 ns
2 CLK2 High Time at Vine 71 4 ns
3 CLK2 Low Time at 0.8V 71 5 ns
4 CLK2 Fall Time 2.7 V-0.8 V {(Note 3) 71 7 ns
5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 7 ns
6 A31-A2 Valid Delay C.=50pF 70, 73, 81 4 17 ns
7 A31-~A2 Float Delay (Note 1) 81 4 30 ns
8 BE3-BEO, LOCK Valid Delay C.=50 pF 70, 73, 81 4 17 ns
9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 30 ns
10 | W/AR, MO, D/C, ADS Valid Delay C.=50 pF 70, 73, 81 4 17 ns
11 W/R, MAO, D/C, ADS Float Delay (Note 1) 81 4 30 ns
12 D31-D0 Write Data Valid Delay C.=50 pF 70,74, 81 7 23 ns
12a | D31-D0 Write Data Hold Time C.=50 pF 70, 75 2 ns
13 D31-D0 Float Delay {Note 1) 81 4 22 ns
14 HLDA Valid Delay C.=50pF 70, 81 4 22 ns
14f HLDA Float Delay (PQFP Only) {Note 1) 70, 81 4 30 ns
15 NA Setup Time 72 5 ns
16 NA Hold Time 72 3 ns
17 BS16 Setup Time 72 5 ns
18 BS76 Hold Time 72 3 ns
19 READY Setup Time 72 9 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 7 ns
22 D31-D0 Read Hold Time 72 5 ns
23 HOLD Setup Time 72 9 ns
24 HOLD Hold Time 72 3 ns
25 RESET Setup Time 82 8 ns
26 RESET Hold Time 82 3 ns
27 NMI, INTR Setup Time (Note 2) 72 6 ns
28 NMI, INTR Hold Time {Note 2) 72 6 ns
29 PEREQ, ERROR, BUSY, FLT" (Note 2) 72 6 ns
Setup Time
30 PEREQ, ERROR, BUSY, FLT* (Note 2) 72 5 ns
Hold Time

Notes: 1. Float condition occurs when maximum output current becomes less than |0 in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure
recognition within a specific clock period.

3. Rise and fall times are not tested.

*PQFP package only.

108

Am386 Microprocessors for Personal Computers

AMD a

SWITCHING CHARACTERISTICS over COMMERCIAL operating range — 20 MHz

Vee=5 V £5%; Tcase =0°C to +85°C (PGA)

Vee =5 V £10%,; Tease =0°C to +100°C (PQFP)

Hold Time

No. | Parameter Description Notes Ref Figure Min Max Unit

Oper. Frequency: Am386DX CPU Half CLK2 freq. 2 20 MHz

Am386DXL CPU Half CLK2 freq. 0 20 MHz
1 CLK2 Period: Am386DX CPU 71 25 250 ns
Am386DXL CPU 71 25 ns
2 CLK2 High Time at Viue 7 6 ns
3 CLK2 Low Time at0.8V 71 6 ns
4 CLK2 Fall Time 2.7 V-0.8 V (Note 3) 71 8 ns
5 CLK2 Rise Time 0.8 V=2.7 V (Note 3) 71 8 ns
6 A31-A2 Valid Delay C.=120pF 70, 73, 81 4 30 ns
7 A31-A2 Float Delay (Note 1) 81 4 32 ns
8 BE3-BEO, LOCK Valid Delay C.=75pF 70,73, 81 4 30 ns
9 BE3-BEO, LOCK Float Delay {Note 1) 81 4 32 ns
10 W/R, MO, D/C, ADS Valid Delay C.=75pF 70,73, 81 4 28 ns
11 W/R, M/IO, D/C, ADS Float Delay {Note 1) 81 4 30 ns
12 D31-D0 Write Data Valid Delay C.=120 pF 70, 74, 81 4 3s ns
13 D31-D0 Float Delay (Note 1) 81 4 27 ns
14 HLDA Valid Delay C.=75pF 70, 81 6 28 ns
14f HLDA Float Delay (PQFP Only) (Note 1) 70, 81 4 30 ns
15 NA Setup Time 72 9 ns
16 NA Hold Time 72 14 ns
17 BS16 Setup Time 72 13 ns
18 BS186 Hold Time 72 21 ns
19 READY Setup Time 72 12 ns
20 READY Hold Time 72 4 ns
21 D31-D0 Read Setup Time 72 1 ns
22 D31-D0 Read Hold Time 72 6 ns
23 HOLD Setup Time 72 17 ns
24 HOLD Hold Time 72 5 ns
25 RESET Setup Time 82 12 ns
26 RESET Hold Time 82 4 ns
27 NMI, INTR Setup Time (Note 2) 72 16 ns
28 NMI, INTR Hold Time {Note 2) 72 16 ns
29 PEREQ, ERROR, BUSY, FLT* (Note 2) 72 14 ns

Setup Time

30 PEREQ, ERROR, BUSY, FLT* {(Note 2) 72 5 ns

Notes: 1. Float condition occurs when maximum output current becomes less than | in magnitude. Float delay is not 100% tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure

recognition within a specific clock period.

3. Rise and fall times are not tested.
*PQFP package only.

Am386DX/DXL Microprocessor Data Sheet

109

a AMD

SWITCHING WAVEFORMS

The switching characteristics consist of output delays,
input setup requirements, and input hold requirements.
All characteristics are relative to the CLK2 rising edge
crossing the 2.0 V level.

Switching characteristic measurement is defined by
Figure 69. Inputs must be drivento the voltage levels in-
dicated by this diagram. Am386DX/DXL CPU output de-
lays are specified with minimum and maximum limits
measured as shown. The minimum Am386DX/DXL
microprocessor delay times are hold times provided to
external circuitry. Am386DX/DXL microprocessor input
setup and hold time are specified as minimums, defining

the smallest acceptable sampling window. Within the
sampling window, a synchronous input signal must
be stable for correct Am386DX/DXL microprocessor
operation.

Outputs ADS, W/R, D/C, MO, LOCK, BE3-BEO,
A31-A2, and HLDA only change at the beginning of
phase one. D31-DO0 (write cycles) only change at the
beginning of phase two. The READY, HOLD, BUSY,
ERROR, PEREQ, FLT, and D31-D0 (read cycles) in-
puts are sampled at the beginning of phase one. The
NA, BST16, INTR, and NM! inputs are sampled at the
beginning of phase two.

A31-A2, ADS, DIC, |: Valid Valid
LOCK, MO, WR, [oWiid 15V 5V g)
BE3 BED. HLDA utput n utput n+
‘ A—
B Min Max
Valid X’ Valid
D31-Do I: Cutput n 5V 1.5V Oupat e
. 30V
NA, BS16,
INTR, NMI
ov <

READY, HOLD,
FLT, ERROR,
BUSY, PEREQ,
D31-Do

Legend: A—Maximum Output Delay Spec
B—Minimum Output Delay Spec
C—Minimum Input Setup Spec
D—Minimum Input Hold Spec

Note: Input waveforms have tr <2.0 ns from 0.8 Vto 20 V.

3.0V

e

Valid
Input

ov

15021B-071

Figure 69. Drive Levels and Measurement Points

110 Am386 Microprocessors for Personal Computers

AMD a

Am386DX/DXL CPU Output 0—4|_

Ctincludes all parasitic capacitances.

C.

150218072
Figure 70. AC Test Load
_ t1
12
Vec—-0.8V —\ __Zl_!_
CLK2 20V \ —
08VFI——3\
15 13 14
< < . »
Figure 71. CLK2 Timing 15021B-073
Am386DX/DXL Microprocessor Data Sheet m

u AMD

CLK2

HOLD

L 29 130

BUSY
ERROR
PEREQ

116

[
[
[
o0 |
[
[
[

BST6
27 128 |
INTR, NMI |:
15021B-074
Figure 72. Input Setup and Hold Timing
02 01 Tx 02 01
vz | f__/__iw
18 - s
BE3-BEQ,)
m [Valid
t10 t10a
W/R, M/iG,)
D/§, ADS [Valid n
16 - o
A31-A2 |: Valid n Valid n+1
!
HLDA [
15021B-075

Figure 73. Qutput Valid Delay Timing

112 Am386 Microprocessors for Personal Computers

AMD n

T
01 02

we [£ N_A _F __

t12 Min, Max
D31D0 [meeeeeeeeeeeeee --- vain
150218-076
Figure 74. Write Data Valid Delay Timing (25, 33, and 40 MHz)
T
1 92
we [A A F _
wr [
Min
t12a
D31-D0 [Valid n
15021B-077
Figure 75. Write Data Hold Timing (25, 33, 40 MHz)
T
o1 02
we [_F A _F __
WA [/
t12 Min, Max
D31-D0 I: Valid n < Valid n+1
15021B-078
Figure 76. Write Data Valid Delay Timing (20 MHz)
Am386DX/DXL Microprocessor Data Sheet 113

a AMD

nom + 6 T 1

nom + 3 — —

nom
Output Valid Delay (ns)

nom -3

nom -6

nom -9 | I
50 75 100 125 150

C. {picofarads)

Note: This graph will not be linear outside of the Ci. range shown. 15021B-079

Figure 77. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (CL=120 pF)

nom +9 [I T 1

nom + 6

nom+3

Output Valid Delay (ns)

nom
|
|
nom -3 I
!
nom ~6 | | |
75 100 1256 150
C. (picofarads)
Note: This graph will not be linear outside of the C range shown. 150218080

Figure 78. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (C.=75 pF)

114 Am386 Microprocessors for Personal Computers

AMD a

nom + 9 [— —

nom + 6

Output Valid Delay (ns})

nom + 3

nom

nom -3 |—
I | I

50 75 100 125 150
C. {picofarads)

Note: This graph will not be linear outside of the C. range shown.

15021B-081
Figure 79. Typical Output Valid Delay Versus Load Capacitance
at Maximum Operating Temperature (C.=50 pF)
8 I I
Rise Time (ns) 0.8 V-2.0V
2 — —_—
8 | I |
50 75 100 125 150
C. (picofarads)
Note: This graph will not be linear outside of the C. range shown. 15021B-082
Figure 80. Typical Output Rise Time Versus Load Capacitance
at Maximum Operating Temperature
Am386DX/DXL Microprocessor Data Sheet 115

a AMD

Th Tior T1
%2 61 02 01 02
cue C N\ A \ 7
1" Vi Max ® Min | Max
BE3-BEO, | — 1]
LOCK (High 2)
t11 ${t10 t10a —je—» »
_ Min Max Min Max
W/R, MAS, Iy i R P P
D/C, ADS (High 2)
t7 —e —>
Min Max 16 Min Max
A31-A2 — — 1T — | — T —
(High 2)
R Min | Max t2 Min Max
D31-Do — — 11Tt —— | —
(High 2)
t13—Also applies to data float when write
cycle is followed by read or idle
114 t14f g »|t14 t14f el >
Max Min Max
HLDA
150218083
Figure 81. Output Float Delay and HLDA Valid Delay Timing
_ RESET . Initialization Sequence R
d20rd1 d2o0rd1 ¢ 2 %1
CLK2 [
t26
RESET [N
125
The second internal processor phase following RESET High-to-Low transition (provided t25 and 126 are met) is ¢2. 15021B-084

Figure 82. RESET Setup and Hold Timing and Internal Phase

116

Am386 Microprocessors for Personal Computers

AMD u

INSTRUCTION SET

This section describes the Am386DX/DXL micropro-
cessor instruction set. A table lists all instructions along
with instruction encoding diagrams and clock counts.
Further details of the instruction encoding are then pro-
vided in the following sections, which completely de-
scribe the encoding structure and the definition of all
fields occurring within Am386DX/DXL CPU instructions.

Am386DX/DXL Microprocessor Instruc-
tion Encoding and Clock Count Summary
To calculate elapsed time for an instruction, multiply the
instruction clock count, as listed in Table 23, by
the processor clock period (8.g., 50 ns for a 20-MHz,
40 ns for a 25-MHz, 30 ns for a 33-MHz, and 25 ns for a
40-MHz Am386DX/DXL microprocessor).

For more detailed information on the encodings of
instructions refer to Section Instruction Encodings. Sec-
tion Instruction Encodings explains the general struc-
ture of instruction encodings and defines exactly the
encodings of all fields contained within the instruction.

Instruction Clock Count Assumptions

1. The instruction has been prefetched and decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No Exceptions are detected during instruction
execution.

5. If an effective address is calculated, it does not use
two general register components. One register,
scaling, and displacement can be used within the
clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count shown.

Instruction Clock Count Notation

1. Iftwo clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand.

2. n=number of times repeated.

3. m = number of components in the next instruction
executed, where the entire displacement (if any)
counts as one component; the entire immediate data
(if any) counts as one component; and each of the
other bytes of the instruction and prefix(es) each
count as one component.

Am386DX/DXL Microprocessor Data Sheet 117

n AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary

Clock Count Comments
Protected Protected
Real Virtual Real Virtual
Add Add Add Address
Instruction Format Mods Mode | Mode | Mode
GENERAL DATA TRANSFER
MOV =Move:
Register to Register/Memory 1000100w modreg r/m 22 22 b h
Register/Memory to Register 1000101wW modreg r/m 2/4 2/4 b h
Immediate to Register/Memory 1100011w |mod000 ©m |immediate data 22 22 b h
Immediate 1o Register (short form) 1011wreg immediate data 2 2
Memory to Accumulator (short form) 1010000w full displacement 4 4 b h
Accumulator to Memaory (short form) 1010001w full displacement 2 2 b h
Register/Memory to Segment Register | 10001110 mod sreg3 r/m 5 18,19 b h,i,j
Segment Register to Register/Memory | 10001100 mod reg /m 272 22 b h
MOVSX =Move with Sign Extension
Register from Register/Memory | 00001111 I 1011111w | modreg r/m | 36 3/6 b h
MOVZX = Move with Zero Extension
Register from Register/Memory I 00001111 l 1011011w | modreg /m | 3/6 e b h
PUSH =Push:
Register/Memory 11111111 mod110 ©m l 5 5 b h
Register (short form) 01010 reg 2 2 b h
Segment Register (ES,CS,88,0rDS) | 000sreg2110 2 2 b h
Segment Register (FS or GS) 00001111 10sreg3000 | 2 2 b h
Immediate 01101080 immediate data 2 2 b h
PUSHA =Push Ali 01100000 18 18 b
POP=Pop
Register/Memory 10001111 mod0C80 rm | 5 5 b h
Register (short form) 01011 reg 4 4 b h
Segment Register (ES, SS, or DS) 000sreg21t11 7 21 b h,ij
Segment Register (FS or GS) 00001111 10sreg3001 | 7 21 b h,ij
POPA =Pop Al 01100001 24 24 b h
XCHG=Exchange
Register/Memory with Register 1000011w modreg ©m I 3/5 3/5 b, f f.h
Register with Accumulator (shortform) | 10010 reg Clock Count 3 3
IN =Input from: M\;Isnuu:de
Fixed Port 1110010w port number 028 12 6*/26"* m
Variable Port 1110110w 027 13 727 m
OUT = Output to:
Fixed Port 1110011w port number 024 10 4724 m
Variable Port 1110111w 025 1" 525 m
LEA = Load EA to Register 10001101 modreg r/m 2 2

*1fCPL<IOPL ** i CPL>I10PL
0 Clock count shown applies it VO permission allows 1O to the port in Virtual 8086 Mode. If VO bit map denies permission, Exception 13 fault occurs; refer to clock counts for INT 3
instruction.

118 Am386 Microprocessors for Personal Computers

AMD u

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Reel :LVImnl Resl &thd
Address | Address | Address| Address
Instruction Format Mode | Mode Mode | Mode
SEGMENT CONTROL
LDS = Load pointer to DS 11000101 modreg r/m 7 22 b h.i,j
LES = Load pointer to ES 11000100 modreg r/m 7 22 b h,ij
LFS = Load pointer to FS 00001111 10110100 modreg ©/m 7 25 b hi,j
LGS = Load pointer to GS 00001111 10110101 modreg r/m 7 25 b h,i,j
LSS =Load pointer to SS 00001111 10110010 modreg ©/m 7 22 b h.i,j
FLAG CONTROL
CLC =Clear Carry Flag 11111000 2 2
CLD =Clear Direction Flag 11111100 2 2
CLI=Clear Interrupt Enable Flag 11111010 8 8 m
CLTS=Clear Task Switched Flag 000011114 00000110 6 6 c i
CMC = Complement Carry Flag 11110101 2 2
LAHF = Load AH into Flag 10011111 2 2
POPF = Pop Flag 10011101 5 5 b h,n
PUSHF = Push Flag 10011100 4 4 b h
SAHF = Store AH into Flag 10011110 3 3
STC=Set Carry Flag 11111001 2 2
STD = Set Direction Flag 11111101 2 2
STl=Set Interrupt Enable Flag 11111011 8 8 m
ARITHMETIC
ADD=Add
Register to Register 000000dw | modreg 1/m 2 2
Register to Memory 0000000W mod reg /m 7 7 b h
Memory to Register 0000001tw | modreg ©/m 6 6 b h
Immediate to Register/Memory 100000sw mod000 ©/m immediate data 7 27 b h
Immediate 1o Accumulator (shortform) | 600001 0w | immediate data 2 2
ADC = Add with carry
Register to Register 000100dw | modreg /m 2 2
Register to Memory 0001000w | modreg ©/m 7 7 b h
Memory to Register 0001001w | modreg r/m 6 6 b h
Immediate to Register/Memory 100000sw mod010 r/m immediate data 27 27 b h
immediate to Accumulator (shortform) | 000101 0w immediate data 2 2
INC =increment
Register/Memory 1111111w | mod000 ©vm 26 26 b h
Register (short form) 01000 reg 2 2
SUB =Subtract
Register from Register 001010dw modreg /m 2 2
Register from Memory 0010100w modreg r/m 7 7 b h
Memory from Register 0010101w | modreg t/m 6 6 b h
Am386DX/DXL Microprocessor Data Sheet 19

n AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protecied
Real Virtusl Real | Virtual
Address | Address | Address| Address
Instruction Format Mode Mode Mode | Mode
ARITHMETIC (continued)
Immediate from Register/Memory 0010011w mod101 rm | immediate data 27 217 b h
Immediate from Accumulator 0001110w | immediate data 2 2
{short form)
SBB = Subtract with Borrow
Register from Register 000110dw modreg ©/m 2 2
Register from Memory 0001100w modreg /m 7 7 b h
Memory from Register 0001101w modreg r/m 6 6 b h
Immediate from Register/Memory 100000sw mod011 /m immediate data 217 27 b h
Immediate from Accumulator 0001110w immediate data 2 2
DEC=Decrement
Register/Memory 11111 11w reg001 ©m 2/6 2/6 b h
Register {short form) 01001 reg 2 2
CMP =Compare
Register with Register 001110dw modreg ©/m 2 2
Memory with Register 0011100w mod reg __/m 5 5 b h
Register with Memory 0011101w modreg t/m 6 6 b h
Immediate with Register/Memory 100000sw mod111 r/m | immediate data 2/5 2/5 b h
Immediate with Accumulator(shortform)l 0011110w immediate data 2 2
NEG =Change Sign 1111011w | mod011 t/m 6 26 b h
AAA = ASCIi Adjust for Add 00110111 4 4
DAA =Decimat Adjust for Add 00111111 4 4
AAS = ASCIl Adjust for Subtract 00100111 4 4
DAS =Decimal Adjust for Sub 00101111 4 4
MUL =Mutltiply (Unsigned)
Accumulator with Register/Memory | 1111011 w | mod100 vm |
Multiplier -Byte 12-17/15-20|12-17/15-20| b,d dh
-Word 12-25/15-28 | 12-25/15-28| b,d d,h
-Doubleword 124111544 |12-41/1544| b,d d,h
IMUL = Integer Multiply (signed)
Accumulator with Register/Memory I 1111011 w | mod101 m |
Multipiier -Byte 12-17/15-20|12-17/15-20| b,d d,h
-Word 12-25/15-28|12-25/15-28 | b,d dh
-Doubleword 12-41/15-44 [12-41/15-44| b,d dh
Register with Register/Memory l 00001111 I 10101111 I mod reg 1/m
Multiplier -Byte 12-17/15-20|12-17/15-20| b,d dh
-Word 12-25/15-28 | 12-25/15-28| b,d dh
-Doubleword 12-41/15-44]1241/1544| b,d dh
Register/Memory with Immediate
to Register l 011010s1 | modreg r/m | immediate data
-Word 13-26/14-27|13-26/14-27| bd d,h
-Doubieword 13421443 1342/1443| b,d dh
120 Am386 MiCI’OpI’OCGSSOI’S for Personal Computers

AMD a

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Real Virtual Reel ’ Vigtueal
Address | Addross | Address| Address
Instruction Format Mode Mode Mode | Mode
ARITHMETIC (continued)
DIV =Divide (Unsigned)
Accumulator by Register/Memory | 1111011 w I mod110 ©m |
Divisor -Byte 14/17 1417 b,e e, h
-Word 22/25 225 be e h
-Doubleword 38/41 38/41 be eh
IDIV = Integer Divide (Signed)
Accumulator by Register/Memory l 11110112 | mod111 om |
Divisor -Byte 19/22 19/22 be e h
-Word 27/30 27/30 b.e e h
-Doubteword 43/46 43/46 b.e e,h
AAD = ASCIi Adjust for Divide 11010101 00001010 19 19
AAM = ASCII Adjust for Multiply 11010100 00001010 17 17
CBW =Convert Byte to Word 10011000 3 3
CWD=Convert Word to 10011001 2 2
Double Word
LoGIC
Shift/Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)
Register/Memory by 1 1101000w | modTTT ©m 37 37 b h
Register/Memory by CL 1101001w mod TTT /m 377 377 b h
Register Memory by Immediate Count| 1100000w mod TTT ©m | immediate 8-bit data 37 37 b h
Through Carry (RCL and RCR)
Register/Memory by 1 1101000w |modTTT wm 9/10 910 b h
Register/Memory by CL 1101001w | modTTT ©m 910 910 b h
Register/Memory by Immediate Count| 1100000w mod TTT t/m | immediate 8-bit data 910 9/10 b h
T Instruction
600 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
SHLD =Shift Left Doubie
Register/Memory by Immediate 00001111 10100100 modreg 1/m |immediate 8-bit data 317 37
Register/Memory by CL 00001111 10100101 modreg r/m 37 37
SHRD =Shift Right Doubls
Register/Memory by immediate 00001111 10101100 modreg /m |immediate 8-bit data 377 317
Register/Memory by CL 00001111 10101101 modreg ©vm 377 377
AND=And
Register to Register 001000dw | modreg rm 2 2
Register to Memory 0010000w mod reg tm 7 7 b h
Memory to Register 0010001w mod reg m 6 6 b h
Immediate to Register/Memory 1000000w mod110 om | immediate data 217 7 b h
Immediate to Accumulator (shertform) | 0010010w immediate data 2 2
TEST = And Function to Flags, no Result
Register/Memory and Register 1000010w modreg r/m 25 2/5 b h
Immediate Data and Register/Memory| 111101 1w mod000 rm | immediate data 2/5 2/5 b h
Immediate Data and Accumulator 1010100w immediate data 2 2

Am386DX/DXL Microprocessor Data Sheet 121

n AMD

Table 23. Am386DX/DXL Microprocessor instruction Set Summary (continued)

Clock Count Comments
Protocted Protected
Roal Virtul | Real Virtusl
Instruction Format Mode Mode | Mode | Mode
LOGIC (continued)
OR=0r
Register to Register 000010dw mod reg r/m 2 2
Register 1o Memory 0000100w mod reg /m 7 7 b h
Memory to Register 0000101w mod reg r/m 6 6 b h
Immediate and Register/Memory 1000000w mod G0 1 /m immediate data 27 277 b h
Immediate to Accumulator (shortform) | 00001 10w immediate data 2 2
XOR =Exclusive or
Register to Register 001100dw mod reg r/m 2 2
Register 1o Memory 0011000w mod reg /m 7 7 b h
Memory to Register 0011001w mod reg r/m 6] b h
Immediate to Register/Memory 1000000w mod 11 0rm immediate data 27 277 b h
Immediate to Accumulator (shortform} | 0011010w | immediate data 2 2
NOT =Invert Register/Memory 1111011 w mod 01 0r/m 26 2/6 b h
STRING MANIPULATION Clock Count
Virtual 8086
CMPS =Compare Byte/Word 101001 1w Mode 10 10 b h
INS =Input Byte/Wd from DX Port 0110110w | 029 15 9'/29* b h,m
LODS = Load Byte/Wd to AL/AX 1010110w 5 s b h
MOVS =Move Byte/Word 1010010w 8 8 b h
OUTS =Output Byte’WdtoDXPort | 01101 11w 028 14 8'/28* b h,m
SCAS =Scan Byte/Word 1010111 w 8 8 b h
STOS =Store Byte/Word from AL/AXEX| 1010101 w 5 5 b h
XLAT =Translate String 11010111 5 5 h
REPEATED STRING MANIPULATION Repeated by Count in CX or ECX
REPE CMPS = Compare string
{Find Non-Match) 11110011 1010011w 5+9n 548n b h
Clock Count
REPNE CMPS = Compare String Virtual 8086
(Find Match) 11110010 | 1010011w Mode 5+9n 54+9n b h
REP INS =Input String 11110010 0110110w l 028 +6n 14 +6n 8+6nY b h,m
2B+6n**
REP LODS = Load String 11110010 1010110w 5+6n 5+6n b h
REP MOVS =Move String 11110010 1010010w 8+4n 8+4n b h
REP OUTS = Output String 11110010 0110111w I 026 +5n 12+5n 6+5n* b h,m
26 +5n**
REPE SCAS =Scan String
(Find Non-AL/AX/EAX) 11110011 1010111w 5+8n 5+8n b h
REPNE SCAS =Store String
(Find ALVAX/EAX) 11110010 1010111w 5+8n 549n b h
REP STOS = Store String 11110010 1010101w 5+5n 5+5n b h
BIT MANIPULATION
BSF=Scan Bit Forward Q00001111 10111100 mod reg r/m 11+3n 11+3n b h
BSR=Scan Bit Reverse 00001111 10111101 mod reg r/m 8+3n 9+3n b h

* HCPLLIOPL ** It CPL > IOPL

¢ Clock count shown applies if VO permission aliows VO to the port in Virtual 8086 Mode. Hf O bit map denies

permission, Exception 13 fauk occurs; refer to clock counts for INT 3 instruction.

122

Am386 Microprocessors for Personal Computers

AMD n

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Reel | Viruel | Real | Vietun
Address | Address | Address| Address
Instruction Format Mode Mode | Mode | Mode
BIT MANIPULATION (continued)
BT =Test Bit
Register/Memory, Immediate 00001111 10111010 mod10 0 rm |immediate 8-bitdata | 3/6 3/6 b h
Register/Memory, Register 00001111 10100011 modreg ©m 312 3/12 b h
BTC = Test Bit and Complement
Register/Memory, Immediate 00001111 10111010 mod 111 ©r/m |immediate 8-bitdata | &8 &/8 b h
Register/Memory, Register 00001111 10111011 modreg r/m 6/13 6/13 b h
BTR =Test Bit and Reset
Register/Memory, Immediate 00001111 10111010 mod 110 r/m |immediate 8-bitdata | 6/8 6/8 b h
Register/Memory, Register 00001111 10110011 modreg r/m 6/13 6/13 b h
BTS =Test Bit and Set
Register/Memory, Immediate 00001111 10111010 mod 101 r/m |immediate B-bitdata | &8 6/8 b h
Register/Memory, Register 00001111 10101011 modreg r/m 613 6/13 b h
CONTROL TRANSFER
CALL= Calt
Direct Within Segment 11101000 full dispiacement 7+m 7+m b r
Register/Memory 11111111 mod010 rm 7+m 7+m b hr
Indirect Within Segment 10+m 10+m
Direct intersegment unsigned full offset, selector 17+m 34+m b kT
Protected Mode Only {Direct Intersegment)
Via Call Gate to Same Privilege Level 52+m hjkr
Via Call Gate to Different Privilege Level, (No Parameters) 86+m h,j.kr
Via Call Gate to Different Privilege Level, (x Parameters} 94+dxem hjkr
From 80286 Task to 80286 TSS 273 hjkr
From 80286 Task to Am386DX/DXL CPU TSS 208 hj.kr
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 218 bkt
From Am386DX/DXL CPU Task to 80286 TSS 273 h.jkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 300 hjkr
From Am386DX/DXL CPU Task to Virtual 8086 Task {Am386DX/DXL. CPU TSS) 218 hijkr
Indirect Intersegment r1 1111111 Fnod 011 ©m 22+m 38+m b hj k. r
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 56+ m h.j k. r
Via Call Gate to Different Privilege Level (No Parameters} 90+m h,j.kr
Via Call Gate to Different Privilege Level (x Parameters) 98+4x+m h,j k1
From 80286 Task to 80286 TSS 278 hjkr
From B0286 Task to Am386DX/DXL CPU TSS 303 bk, r
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 222 hj k.t
From Am386DX/DXL CPU Task to 80286 TSS 278 hjkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 305 h.j k1
From Am386DX/DXL CPU Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 222 hj k1
JMP = Unconditional Jump
Short 11101011 8-bit displacement 7+m 7+m r
Direct within Segment 11101001 full displacement 7+m 7+m r
Register/Memory 11111111 mod100 ©rm 7+m 7+m b hr
Indirect within Segment 10+m 10+m
Direct Intersegment unsigned full offset, selector 12+m 27+m LK T
Am386DX/DXL Microprocessor Data Sheet 123

a AMD

Table 23. Am386DX/DXL Microprocessor instruction Set Summary (continued)

Clock Count Comments
Protected| Prowected
Real Virtuel Reel Virtuel
Address | Address | Address| Address
Instruction Format Mode Mode | Mode | Mode
CONTROL TRANSFER (continued)
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 45+ m hjkr
From 80286 Task to 80286 TSS 274 hj.k,r
From 80286 Task to Am386DX/DXL CPU TSS 301 hjkr
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 219 hjkr
From Am386DX/DXL. CPU Task to 80286 TSS 270 hjkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 303 hikr
From Am386DX/DXL CPU Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 221 hjkr
Indirect Intersegment 11111111 mod101 ©m 17+m 31+m b h.j, kt
Protected Mode Only {Indirect Intersegment)
Via Call Gate to Same Privilege Level 49+ m h,j.kr
From 80286 Task to 80286 TSS 279 h,jkr
From 80286 Task to Am388DX/DXL CPU TSS 306 h,j, k.t
From 80286 Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 223 hjkr
From Am386DX/DXL CPU Task to 80286 TSS 275 hjkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 308 h,j k1
From Am386DX/DXL CPU Task to Virtual 8086 Task (Am386DX/DXL CPU TSS) 225 hj k.t
RET =Return from CALL
Within Segment 11000011 10+m 10+m b g.hr
Within Seg. Adding Inmediateto SP | 11000010 16-bit dsplacementl 10+m 10+m b g hr
Intersegment 11001011 18+m 32+m b g.h,j k1
Intersegment Adding Immediate o SP| 11001010 16-bit dlsplacementl 18+m 32+m b g.hjkr
Protected Mode Only (RET) to Different Privilege Level
Intersegment 69 h.j, k. r
Intersegment Adding Immediate to SP 69 hikr
CONDITIONAL JUMPS (Note: Times are Jump “Taken or Not Taken”)
JO =Jump on Overflow
8-bit Displacement 01110000 8-bit displacement 7+mor3 | 7+mor 3| r
Full Displacement 00001111 10000000 full displacement 7+mor3 | 7+mor 3 r
JNO =Jump on Not Overfiow
8-bit Displacement 01110001 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10000001 fult displacement 7+mor3 | 7+mor 3| r
JB/NAE = Jump on Below/Not Above or Equat
8-bit Displacement 01110010 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10000010 full displacement 7+mor3 | 7+mor 3} r
JNB/JAE = Jump on Not Below/Above or Equal
8-bit Displacement 01110011 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10000011 full displacement 7+mor3 | 7+mor 3| 4
JENZ =Jump on Equal/ Zero
8-bit Displacement 01110100 8-bit displacement 7+mor3 | 7+mor 3 4
Full Displacement 000011171 10000100 full displacement 7+mor3 | 7+mor 3 4
JNE/JNZ = Jump on Not Equal/Not Zero
8-bit Disptacement 01110101 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10000101 full disptacement 7+mor3 | 7+m or 3| r
JBE/JNA = Jump on Below or Equal/Not Above
8-bit Displacement 01110110 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10000110 full displacement 7+mor3 | 7+mor 3| r

124 Am386 Microprocessors for Personal Computers

AMD El
Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)
Clock Count Comments

Real Virtusl Real Virtusl
Address | Address | Address | Address

Instruction Format Mode Mode | Mode | Mode
CONDITIONAL JUMPS (continued)

JNBE/JA = Jump on Not Below or Equal/Above

8-bit Displacement 01110111 8-bit displacement 7+mor3 | 7+mor 3| r
Full Displacement 000011171 10000111 fuil displacement 7+mor3| 7+mor3 r

JS =Jump on Sign

8-bit Displacement 01111000 8-bit displacement 7+mor3 | 7+mor3 r

Full Displacement 00001111 10001000 full disptacement 7+mor3 | 7+mor3 r
JNS =Jump on Not Sign

8-bit Disptacement 01111001 8-bit displacement 7+mor3 | 7+4mor3 r

Full Displacement 00001111 10001001 full displacement 7+mor3 | 7+mor3 r

JP/JPE = Jump on Parity/Parity Even

8-bit Displacement 01111010 8-Dit displacement 7+mor3 | 7+mor3 r

Full Displacement 00001111 10001010 full displacemsnt 7+mor3] 7+mor3 r

JNP/JPO=Jump on Not Parity/Parity Odd

8-bit Displacement 01111011 8-bit displacernent 7+mor3 | 7+mor3 r

Full Displacement 00001111 10001011 full displacement 7+mor3 | 7+mor3 r

JUJINGE =Jump on Less/Not Greater or Equal

8-bit Displacement 01111100 8-bit displacement 7+mor3 | 7+mor3 r

Full Displacement 00001111 10001100 full displacement 7+mor3 | 7+4mor3 4

JNL/JGE = Jump on Not Less/Greater or Equal

8-bit Displacement 01111101 8-bit displacement 7+mor3 | 7+mor3 r

Full Displacement 00001111 10001101 full displacement 7+mor3] 7+mor 3 r

JLE/JNG = Jump on Less or Equal/Not Greater

8-bit Displacement 01111110 8-bit displacement 7+mor3 | 7+mor3 r
Fuli Displacement 00001111 10001110 {uil displacement 7+mor3 | 7+mor 3 4
JNLE/JG = Jump on Not Less or Equal/Greater

8-bit Displacement 01111111 8-bit displacement 7+mor3 | 7+mor 3 r
Full Displacement 00001111 10001111 full displacement 7+mor3 | 74mor3 r
JCXZ = Jump on CX Zero * 11100011 8-bit displacernent 9+mor5 | 9+mor5s r
JECXZ = Jump on ECX Zero * 11100011 8-bit displacement 9+mor5 | S+4mor 5 T
LOOP =Loop CX Times 11100010 8-bit displacement 11 +m 11+m r
LOOPZ/ILOOPE = Loop with Zero/Equal | 11100001 8-bit displacement 1+m 11+m r
LOOPNZ/LOOPNE=Loop white Not Zerol 1 1100000 | 8-bit displacement 11+m | 11+m r
CONDITIONAL BYTE SET (Note: Times are Register/Memory)

SETO=Set Byte on Overflow

To Register/Memory I&OHH |10010000 Imodooo m l 4/5 4/5 h
SETNO = Set Byte on Not Overflow

To Register/Memory Ioooo1111 |‘oo1ooo1 Imodooo vm | 45 45 h

SETB/SETNAE = Set Byte on Below/Not Above or Equal

To Register/Memory |00001111 |10010010 Imodooo r/ml 4/5 4/5 h
—

* Address Size Prefix Differentiates JCXZ from JECXZ.

Am386DX/DXL Microprocessor Data Sheet 125

a AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
Real Virtusl Real Vietual
Address | Address | Address | Address
Instruction Format Mode Mode | Mode | Mode
CONDITIONAL BYTE SET (continued)
SETNB =Set Byte on Not Below/Above or Equal
To Register/Memory I 00001111 |10010011 |mod000 t/m 4/5 4/5 h
SETE/SETZ = Set Byte on Equal/Zero
To Register/Memory | 00001111 |10010100 ImodOOD m 4/5 4/5 h
SETNE/SETNZ =Set Byte on Not Equal/Not Zero
To Register/Memory |00001111 I10010101 lmodooo m 4/5 4/5 h
SETBE/SETNA =Set Byte on Below or Equal/Not Above
To Register/Memory | 00001117 |10010110 lmodooo m 4/5 4/5 h
SETNBE/SETA = Set Byte on Not Below or Equal/Above
To Register/Memory | 00001111 |10010111 l mod000 ©/m 4/5 4/5 h
SETS = Set Byte on Sign
To Register/Memory | 00001111 |10011000 I mod000 om 4/5 4/5 h
SETNS =Set Byte on Not Sign
To Register/Memory | 00001111 I10011001 I mod000 r/m 4/5 45 h
SETP/SETPE = Set Byte on Parity/Parity Even
To Register/Memory |00001111 |10011010 |mod000 m 4/5 4/5 h
SETNP/SETPO = Set Byte on Not Parity/Parity Odd
To Register/Memory | 00001111 I10011011 | mod000 rm 4/5 4/5 h
SETL/SETNGE = Set Byte on Less/Not Greater or Equal
To Register/Memory I00001111]10011100 | mod000 ©m 4/5 4/5 h
SETNL/SETGE = Set Byte on Not Less/Greater or Equal
To Register/Memory l 00001111 |01111101 | mod 000 ©vm 4/5 4/5 h
SETLE/SETNG =Set Byte on Less or Equal/Not Greater
To Register/Memory l 00001111 | 10011110 I mod 000 r/m 4/5 4/5 h
SETNLE/SETG =Set Byte on Not Less or Equal/Greater
To Register/Memory 00001111 10011111 | mod000 rm 4/5 4/5 h
ENTER =Enter Procedure 11001000 16-bit displacement, 8-bit level
L=0 10 10 b h
L=1 12 12 b h
L>1 15+44(n-1) | 15+4(n-1)| b h
LEAVE = Leave Procedure 4 4 b h
INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified 11001101 type 37 b
Type 3 11001100 33
INTO =Interrupt 4 if Overflow FlagSet | 11001110
IfOF =1 35 b, e
IfOF =0 3 3 b,e

126 Am386 Microprocessors for Personal Computers

AMD n

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
Real Virtusl Resl Virtual
Address | Address |Address | Address
Instruction Format Mode Mode | Mode | Wode
INTERRUPT INSTRUCTIONS (continued)
Bound = Interrupt 5 if Detect 01100010 I modreg /m
Value Out of Range
If Out of Range 44 b,e |eghijkr
It in Range . 10 10 b e e,9.h,jk,r
Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate to Same Privilege Level 59 g kr
Via Interrupt or Trap Gate to Different Privilege Level 99 a.lkr
From 80286 Task 10 80286 TSS via Task Gate 282 g.i.kr
From 80286 Task to Am386DX/DXL CPU TSS via Task Gate 309 g.jkr
From 80286 Task to Virtual 8086 Mode via Task Gate 226 a.0.kr
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 284 g,).k r
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 311 g, k1
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 228 g5k r
From Virtual 8086 Mode to B0286 TSS via Task Gate 289 gk
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 316 g kr
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 118 gl kr
INT: Type 3
Via interrupt or Trap Gate to Same Privilege Leve! 59 aikr
Via Interrupt or Trap Gate to Different Privilege Level 99 g kr
From 80286 Task 1o 80286 TSS via Task Gate 278 g kr
From 80286 Task to Am386DX/DXL CPU TSS via Task Gate 305 a,)kr
From 80286 Task to Virtual 8086 Mode via Task Gate 222 agjkr
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 280 a.jkr
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 307 g, jkr
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 224 g.j.kr
From Virtual 8086 Mode to 80286 TSS via Task Gate 285 g,k
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 312 gk
From Virtual 8086 Mode to Priviiege Level 0 via Trap Gate or Interrupt Gate 119 9.k r
INTO
Via Interrupt or Trap Gate to Same Privilege Level 59 g.jkr
Via Interrupt or Trap Gate to Different Privilege Level 99 g.)kr
From 80286 Task to 80286 TSS via Task Gate 280 g k1
From 80286 Task to Am386DX/DXL CPU TSS via Task Gate 307 gk
From 80286 Task to Vinual 8086 Mode via Task Gate 224 g.i.kr
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 282 g k. r
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 309 g kr
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 225 g.ikr
From Virtual 8086 Mode to 80286 TSS via Task Gate 287 aikr
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 314 a,jkr
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 119 a.jkr
BOUND
Via Interrupt or Trap Gate to Same Privilege Level 59 g.j.kr
Via Interrupt or Trap Gate to Different Privilege Level 99 g, kr
From B0286 Task to 80286 TSS via Task Gate 254 g,k
From 80286 Task to Am386DX/DXL CPU TSS via Task Gats 284 gk r
From 80286 Task to Virtual 8086 Mode via Task Gate 231 g.jkr
From Am386DX/DXL CPU Task to 80286 TSS via Task Gate 264 g.)k r
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS via Task Gate 294 g.j.kr
From Am386DX/DXL CPU Task to Virtual 8086 Mode via Task Gate 243 g.)kr
From Virtual 8086 Mode to 80286 TSS via Task Gate 264 g kr
From Virtual 8086 Mode to Am386DX/DXL CPU TSS via Task Gate 294 g.j.kr
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 118 g kr
INTERRUPT RETURN
IRET = Interrupt Return 22 g. h kT
Protected Mode Only (IRET)
To the Same Privilege Level (within Task) 38 g, hjkr
To Different Privilege Level (within Task) 82 g.h.j,kr
From 80286 Task to 80286 TSS 232 hjkt
From 80286 Task to Am386DX/DXL CPU TSS 265 hjk,r
From B0286 Task to Virtual 8086 Task 213 hjkr
From 80286 Task to Virtual 8086 Mode (within Task) 60
From Am386DX/DXL CPU Task to 80286 TSS 271 hj kot
From Am386DX/DXL CPU Task to Am386DX/DXL CPU TSS 275 h,j, k1
From Am386DX/DXL CPU Task to Virtual 8086 Task 223 hjkr
From Am386DX/DXL CPU Task to Virtual 8086 Mode (within Task) 60

Am386DX/DXL Microprocessor Data Sheet 127

n AMD

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Reel NW Real rVlmﬂ
Address | Address | Address| Address
Instruction Format Mode Mode | Mode | WMode
PROCESSOR CONTROL
HLT=HALT 5 5 |
MOV =Move to and From Control/Debug/Test Registers
CRO/CR2/CR3 from register 00001111 00100010 11 eeereg 11/4/5 11/4/5 |
Register From CR3—-0 00001111 00100000 11eeereg 6 6 i
DR3--0 From Register 00001111 00100011 11 ecereg 22 22 |
DR7-6 From Register 00001111 00100011 11 eeereg 16 16 |
Register from DR7-6 00001111 00100001 11 eeereg 14 14 |
Register from DR3-0 00001111 00100001 11 eeereg 22 22 |
TR7-6 from Register 00001111 00100110 11 eeereg 12 12 |
Register from TR7-6 00001111 00100100 11 eeereg 12 12 |
NOP = No Operation 10010000 3 3
WAIT = Wait until BUSY 10011011 7 7
pin is negated
NOP =No Operation 3 3
PROCESSOR EXTENSION INSTRUCTIONS
Pr E: ion Escap I11011TTT |modLLL r/m h
TTT and LLL bits are op-code information for coprocessor
PREFIX BYTES
Address Size Prefix 01100111 0 0
LOCK =Bus Lock Prefix 11110000 0 0 m
Operand Size Prefix 01100110 0 o]
Segment Override Prefix
CS: 00101110 0]
Ds: 00111110 0 o}
ES: 00100110 o} [}
FS: 01100100 0 o}
GS: 01100101 0 0
8S: 00110110 0 0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From Register/Memory I 01100011 | modreg r/m | N/A 20721 a h
LAR=Load Access Rights
From Register/Memory , 00001111 | 00000010 | mod reg r/m | N/A 15/16 a g.hip
LGDT = Load Giobal Descriptor
Tabte Register |00001111 |00000001 |mod010 r/ml 11 11 b,c h,)
LIDT = Load Interrupt Descriptor
Table Register I00001111 I00000001 Imod011 r/ml 1 1 b.c h,1
LLDT=Load Local Descriptor
Table Register to Register/Memory | 00001111 I 00000000 l mod0t0 ©m | N/A 20/24 a g.hjl
LMSW = Load Machine Status Word
From Register/Memory 00001111 00000001 mod110 om 11/14 11/14 b.c h, 1

128 Am386 Microprocessors for Personal Computers

AMD u

Table 23. Am386DX/DXL Microprocessor Instruction Set Summary (continued)

Clock Count Comments
Protected Protected
Real Virtuel Roal Virtual
Address | Address | Address| Address

Instruction Format Mode Mode | Mode | Mode
PROTECTION CONTROL (continued)
LSL = Load Segment Limit
From Register/Memory I 00001111 [00 000011 | mod reg rm |

Byte-Granular Limit N/A 21/22 a g.hjp

Page-Granular Limit N/A 25/26 a g.hjp
LTR =Load Task Register
From Register/Memory | 00001111 | 00000000 | mod001 ©m | N/A 23727 a g.hjl
SGDT =Store Global Descriptor
Table Register |00001111 l00000001 |mod000 r/m | 9 9 b,c h
SIDT =Store interrupt Descriptor
Table Register |00001111 |00000001 Imod001 dul | 9 9 b, c h
SLDT =Store Locat Descriptor Table Register
To Register/Memory 00001111 00000000 mod000 rm N/A 22 a h
SMSW = Store Machine Status Word| 00001111 00000001 modt00 r/m 272 22 b,c h,1
STR =Store Task Register
To Register/Memory 00001111 00000000 mod 001 r/m N/A 22 a h
VERR = Verify Read Access
Register/Memory 00001111 00000000 modt00 ©m N/A 1011 a g.hjp
VERW = Verify Write Access 00001111 00000000 mod101 rm N/A 15/16 a g.hijp

Instruction Notes for Table 23.

Notes a through c apply to Am386DX/DXL. CPU Real Address
Mode only.

a.

c.

This is a Protected Mode instruction. Attempted execution in Real
Mode will result in Exception 6 (Invalid op-code).

. Exception 13 fault (General Protection) will occur in Real Mode if

an operand reference is made that partially or fully extends beyond
the maximum CS, DS, ES, FS, or GS limit, FFFFH. Exception 12
{fault stack segment limit violation or not present) will occur in Real
Mode if an operand reference is made that partially or fully extends
beyond the maximum S$ limit.

This instruction may be executed in Real Mode. In Real Mode, its
purpose is primarily to initialize the CPU for Protected Mode.

Notes d through g apply to Am386DX/DXL CPU Real Address
Mode and Am386DX/DXL CPU Protected Virtual Address Mode.

d.

g.

The Am386DX/DXL CPU uses an early-out multiply algorithm.
The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual
clocks, use the following formula:

Actual Clock =if m < > 0 then max ([logz [m|], 3} + b clocks: if m=0
then 3 +b clocks

In this formula, m is the multiplier, and

b =9 for register to register,

b =12 for memory to register,

b =10 for register with immediate to register,

b =11 for memory with immediate to register.

. An Exception may occur, depending on the value of the operand.
. LOCK is automatically asserted, regardless of the presence or

absence of the LOCK prefix.
LOCK is asserted during descriptor table accesses.

Notes h through r apply to Am386DX/DXL CPU Protected Virtual
Address Mode only.

h.

3

©

Exception 13 fault (General Protection Violation) will occur if the
memory operand in CS, DS, ES, FS, or GS cannot be used due to
either a segment limit violation or access rights violation. If a stack
limitis violated, an Exception 12 (Stack Segment Limit Violation or
Not Present) occurs.

For segment load operations, the CPL, RPL, and DPL must agree
with the privilege rules to avoid an Exception 13 fault (General
Protection Violation). The segment's descriptor must indicate
present or Exception 11 (CS, DS, ES, FS, GS Not Present). If the
SSregister is loaded and a stack segment not presentis detected,
an Exception 12 (Stack Segment Limit Violation or Not Present)
oceurs.

All segment descriptor accesses in the GDT or LDT made by this
instruction will automatically assert LOCK to maintain descriptor
integrity in multiprocessor systems.

. JMP, CALL, INT, RET, and IRET instructions referring to another

code segment will cause an Exception 13 (General Protection
Violation) if an applicable privilege rule is violated.

. An Exception 13 fault occurs if CPL is greater than 0 (0 is the most

privileged level).

. An Exception 13 fault occurs if CPL is greater than (OPL.
. The IF bit of the flag register is not updated if CPL is greater than

IOPL. The IOPL and VM fields of the flag register are updated only
if CPL=0.

. The PE bit of the MSW (CRO0) cannot be reset by this instruction.

Use MOV into CRO if desiring to reset the PE bit.

. Any violation of privilege rules as applied to the selector operand

does not cause a protection Exception; rather, the zero flag is
cleared.

Am386DX/DXL Microprocessor Data Sheet

129

u AMD

q. If the coprocessor's memory operand violates a segment limit or
segment access rights, an Exception 13 fault (General Protection
Exception) will occur before the ESC instruction is executed. An
Exception 12 fault (Stack Segment Limit Violation or Not Present)
will occur if the stack limit is violated by the operand’s starting
address.

r. The destination of a JMP, CALL, INT, RET, or IRET mustbe in the
defined limit of a code segment or an Exception 13 fault (General
Protection Violation) will occur.

Instruction Encoding
Overview

All instruction encodings are subsets of the general in-
struction format shown in Figure 83. Instructions consist
of one or two primary op-code bytes, possibly an ad-
dress specifier consisting of the mod r/m byte and
scaled index byte, adisplacement if required, and anim-
mediate data field if required.

Within the primary op-code or op-codes, smaller encod-
ing fields may be defined. These fields vary according to
the class of operation. The fields define such informa-
tion as direction of the operation, size of the displace-
ments, register encoding, or sign extension.

Almost all instructions reterring to an operand in mem-
ory have an addressing mode byte following the primary
op-code byte(s). This byte, the mod r/m byte, specifies
the address mode to be used. Certain encodings of the
mod r/m byte indicate a second addressing byte, the
scale-index-base byte, foliows the mod r/m byte to fully
specify the addressing mode.

Addressing modes can include a displacement immedi-
ately following the mod r/m byte, or scaled index byte. If
a displacement is present, the possible sizes are 8, 16,
or 32 bits.

If the instruction specifies an immediate operand, the
immediate operand follows any displacement bytes.
The immediate operand, if specified, is always the last
field of instruction.

Figure 83 illustrates several of the fields that can appear
in an instruction, such as the mod field and the r/m field,
but the Figure does not show all fields. Several smaller
fields also appear in certain instructions, sometimes

within the op-code bytes themselves. Table 24 is a com-
plete list of all fields appearing in the Am386DX/DXL mi-
croprocessor instruction set. Further ahead, following
Table 24, are detailed tables for each field.

32-Blt Extensions of the Instruction Set

With the Am386DX/DXL microprocessor, the 8086/
80186/80286 instruction set is extended in two ortho-
gonal directions: 32-bit forms of all 16-bit instructions
are added to support the 32-bit data types, and 32-bit
addressing modes are made available for all instruc-
tions referencing memory. This orthogonal instruction
set extension is accomplished having a Default (D) bit in
the code segment descriptor, and by having 2 prefixes
to the instruction set.

Whether the instruction defaults to operations of 16 or
32 bits depends on the setting of the D bit in the code
segment descriptor, which gives the defautt length
(either 32 or 16 bits) for both operands and effective ad-
dresses when executing that code segment. Inthe Real
Address Mode or Virtual 8086 Mode, no code segment
descriptors are used, but a D value of 0 is assumed in-
ternally by the Am386DX/DXL microprocessor when
operating in those modes (for 16-bit default sizes com-
patible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effective
Address Size Prefix, allow overriding individually the
Default selection of operand size and effective address
size. These prefixes may precede any op-code bytes
and affect only the instruction they precede. f neces-
sary, one or both of the prefixes may be placed before
the op-code bytes. The presence of the Operand Size
Prefix and the Effective Address Prefix will toggle the
operand size or the effective address size, respectively,
to the value opposite fromthe Default setting. For exam-
ple, if the default operand size is for 32-bit data opera-
tions, then presence of the Operand Size Prefix toggles
the instruction to 16-bit data operation. As another
example, if the default effective address size is 16 bits,
presence of the Effective Address Size prefix
toggles the instruction to use 32-bit effective address
computations.

[[TTTTT 77T TTTTTT T mod TTT /m] ss_index base] d32|16| 8 |none data 32| 16 | & | none

7 0 7 0 765320 765320
“ A I\ . I\ J
v v v v
opcode mod r/m s-i-b address immediate
(one or two bytes) byte byte displacement data
(T represents an opcode bit) ~ </ (4,2, 1bytes (4, 2, 1 bytes
register and address or none) or none)
mode specifier
15021B-085

Figure 83. General Instruction Format

130 Am386 Microprocessors for Personal Computers

AMD n

Table 24. Fields within Am386DX/DXL Microprocessor Instructions

Field Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 bits) 1

d Specifies Direction of Data Operation 1

s Specifies if an Immediate Data Field must be Sign-Extended 1

reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;

3 forr/m

ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3

fttn For Condition Instructions, specifies a Condition Asserted or a Condition Negated 4

Note: Table 23 shows encoding of individual instructions.

These 32-bit extensions are available in all Am386DX/
DXL microprocessor modes, including the Real Ad-
dress Mode or the Virtual 8086 Mode. In these modes

the default is always 16 bits, so prefixes are needed to Register Selected | Register Selected
specify 32-bit operands or addresses. For instructions Field D'-"t“’g‘g ‘5;,3" DDt“"(’)‘Q 32;?"
with more than one prefix, the order of prefixes is reg e ata Operations | Uata Operations
unimportant. 000 AX EAX
Unless specified otherwise, instructions with 8- and 001 CX ECX
16-bit operands do not affect the contents of the high- 010 DX EDX

order bits of the extended registers. 011 BX EBX
Encoding of Instruction Fields I gg Egg
Within the instruction are several fields indicating regis- 110 S| ESI

ter selection, addressing mode and so on. The exact en- 111 DI EDI

codings of these fields are defined immediately ahead.
Encoding of Operand Length (w) Field
For any given instruction performing a data operation,

Encoding of reg Field When w Field
is not Present in Instruction

Encoding of reg Field When w Field
is Present in Instruction

the instruction is executing as a 32- or 16-bit operation. Register Specified by reg Field
Within the constraints of the operation size, the w field Du‘:i,,g 16-pBit :Jlata c}’pe,ﬂﬁons
encodes the operand size as either one byte or the full - -
operation size, as shown in the table below. Function of w Fieid
N - reg (when w = 0) (whenw=1)
Operand Size Operand Size
During 16-Bit During 32-Bit 000 AL AX
w Field Data Operations Data Operations 001 CL CX
0 8 Bits 8 Bits ano gt o
1 16 Bit 32 Bit
s s 100 AH SP
Encoding of The General Register (reg) Field 101 CH BP
The general register is specified by the reg field, which 110 DH Si
may appear in the primary op-code bytes, or as the reg m BH ol
field of the mod r/m byte, or as the r/m field of the mod
r/m byte.
Am386DX/DXL Microprocessor Data Sheet 131

a AMD

Register Specified by reg Field
During 32-Bit Data Operations
Function of w Field

reg (when w = 0) {when w = 1)
000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI
1 BH EDI

Encoding of The Segment Register (sreg) Fleld
The sreg field in certain instructions is a 2-bit field allow-
ing one of the four 80286 segment registers to be speci-
fied. The sreg field in other instructions is a 3-bit field, al-
lowing the Am386DX/DXL microprocessor FS and GS
segment registers to be specified.

2-Bit sreg2 Field

2-Bit sreg2 Field Segment Register Selected
00 ES
01 cs
10 Ss
11 DS
3-Bit sreg3 Field
3-Bit sreg3 Field Segment Register Selected
000 ES
001 cS
010 SS
011 DS
100 FS
101 GS
110 do not use
111 do not use

Encoding of Address Mode

Except for special instructions, such as PUSH or POP,
where the addressing mode is pre-determined, the ad-
dressing mode for the current instruction is specified by
addressing bytes following the primary op-code. The
primary addressing byte is the mod r/m byte, and a sec-
ond byte of addressing information, the scale-index-
base (s-i-b) byte, can be specified.

The s-i-b byte is specified when using 32-bit addressing
mode and the mod r/m byte has r/m = 100 and mod = 00,
01, or 10. When the s-i-b byte is present, the 32-bit ad-
dressing mode is a function of the mod, ss, index, and
base fields.

The primary addressing byte, the mod r/m byte, also
contains three bits (shown as TTT in Figure 83) some-
times used as an extension of the primary op-code. The
three bits, however, may also be used as a register
field (reg).

When calculating an effective address, either 16-bit ad-
dressing or 32-bit addressing is used. 16-bit addressing
uses 16-bit address components to calculate the effec-
tive address while 32-bit addressing uses 32-bit ad-
dress components to calculate the effective address.
When 16-bit addressing is used, the mod r/m byte is in-
terpreted as a 16-bit addressing mode specifier. When
32-bit addressing is used, the mod r/m byte is inter-
preted as a 32-bit addressing mode specifier.

Tables on the following pages define all encodings of all
16- and 32-bit addressing modes.

132 Am386 Microprocessors for Personal Computers

AMD
Encoding of 16-Bit Address Mode with mod r/m Byte
mod r/'m Effective Address mod r/'m Effective Address
00 000 DS:[BX + Sl] 10 000 DS:[BX + Sl + d16]
00 001 DS BX + DI} 10 001 DS:[BX + DI + d16}
00 010 SS:[BP + Si} 10 010 SS:[BP + S| + d16]
o0 on DS:[BP + DI 10 011 SS:[BP + Dl +d16]
00 100 DS:si) 10 100 DS:[S! + d16]
00 101 DS:{DI] 10 101 DS:[Dl + d16]
00 110 DS:di6 10 110 SS:[BP +d16]
oo 111 Ds:BX] 10 111 DS:(BX + d16)
0t 000 DS:[BX + S| + d8] 11 000 Register— See Below
01 001 DS:BX + Dl +d8] 11 o001 Register— See Below
01 010 SS:[BP + Sl +d8] 11 010 Register— See Below
01 011 SS:[BP + DI + d8] 11 oNn Register— See Below
01 100 DS:[SI + d8] 11 100 Register— See Below
01 101 DS:{D! + d8] 11101 Register— See Below
01 110 SS:[BP +d8] 11 110 Register— See Below
o1 1M DS{BX + d8] 11 111 Register— See Below
Register Specified by r’'m Register Specified by r/m
During 32-Bit Data Operations During 16-Bit Data Operations
Function of w Field Function of w Field
mod r/m (when w = 0) (when w = 1) mod r/'m (when w = 0) (when w = 1)
11 000 AL EAX 11 000 AL AX
11 001 CL ECX 11 001 CL CX
11 o010 DL EDX 11 010 DL DX
11 011 BL EBX 11 o1l BL BX
11 100 AH ESP 11 100 AH SP
11 101 CH EBP 11 101 CH BP
11 110 DH ES! 11 110 DH Sl
11 111 BH EDI 1 111 BH Di
Am386DX/DXL Microprocessor Data Sheet 133

n AMD

Encoding of 32-Bit Address Mode with mod r/m byte
(No s-i-b Byte Present)

mod r/'m Effective Address mod r/'m Effective Address

00 000 DS:[EAX] 10 000 DS:{EAX + d32)

00 001 DS{ECX] 10 001 DS{ECX +d32]

00 010 DS:[EDX] 10 010 DS{EDX +d32]

00 o1 DS{EBX] 10 011 DS{EBX +d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:d32 10 10t SS:[EBP +d32]

00 110 DS{ESI] 10 110 DS{ESI + d32)

00 111 DS{EDI} 10 111 DS{EDI + d32]

01 000 DS:[EAX + d8] 11 000 Register— See Below
01 001 DS:[ECX + d8] 11 001 Register— See Below
01 010 DS:[EDX + d8] 11 010 Register— See Below
o1 o1t DS{EBX + d8} 11 o1 Register— See Below
o1 100 s-i-b is present 11 100 Register— See Below
01 101 SS:[EBP +d8] 11 101 Register— See Below
01 110 DS:[ES! + d8] 11 110 Register— See Below
o1 111 DS{EDI + d8] 11 111 Register— See Below

Register Specified by reg or r/m Register Specified by reg or r/im
During 32-Bit Data Operations During 16-Bit Data Operations
Function of w Field Function of w Field
mod r/m (when w =0) (when w = 1) mod r/m (when w = 0) (when w = 1)
11 000 AL EAX 11 000 AL AX
11 oot CL ECX 11 001 CL CcX
11 010 DL EDX 11 010 DL DX
11 011 BL EBX 11 011 BL BX
11 100 AH ESP 11 100 AH SP
11 101 CH EBP 11 101 CH BP
11 110 DH ES! 11 110 DH Sl
11 111 BH EDI 11 11 BH Di
134 Am386 Microprocessors for Personal Computers

AMD a

Encoding of 32-Bit Address Mode (mod r/m Byte and s-I-b present)

Note: Mod field in mod r/m byte; ss, index, base fields in s-i-b byte.

mod base Effective Address ss Scale Factor

00 000 DS:[EAX + {scaled index))] 00 x1

00 001 DS:[ECX + (scaled index)] 01 x2

00 010 DS:[EDX + (scaled index)] 10 x4

00 011 DS:{EBX + (scaled index)} 1 x8

00 100 SS:[ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:[ES! + (scaled index)) N

00 111 DS:[EDI + (scaled index)] Index Index Register
000 EAX

01 000 DS:[EAX + (scaled index) + d8] 001 ECX

01 001 DS:[ECX + (scaled index) + d8] 010 EDX

01 010 DS:[EDX + (scaled index) + d8] 011 EBX

01 o1 DS:[EBX + (scaled index) + d8] 100 no index reg (see note)

01 100 SS:[ESP + (scaled index) + d8] 101 EBP

01 101 SS:[EBP + (scaled index) + d8] 110 ESI

01 110 DS:[ESI + (scaled index) + d8] 111 EDI

01 111 DS:[ED! + (scaled index) + d8] Note: When index field is 100, indicating no index register, then ss field

must equal 00. If index is 100 and ss does not equal 00, the effective
address is undefined.

10 000 DS:[EAX + (scaled index) + d32]

10 001 DS:{ECX + (scaled index) + d32]

10 010 DS:[EDX + (scaled index) + d32]

10 011 DS:[EBX + (scaled index) + d32]

10 100 SS:[ESP + (scaled index) + d32)]

10 101 SS:[EBP + (scaled index) + d32]

10 110 DS:[ESI + (scaled index) + d32]

10 111 DS:[EDI + (scaled index) + d32]

Encoding of Operation Direction (d) Field

In many two-operand instructions the d field is present
to indicate which operand is considered the source and
which is the destination.

d Direction of Operation

Register/Memory €~ Register

0 reg Field indicates Source Operand;
mod r/m or mod ss index base indicates
Destination Operand.

Encoding of Sign-Extend (s) Fleld

The s field occurs primarily to instructions with immedi-
ate data fields. The s field has an effect only if the size of
the immediate data is 8 bits and is being placed in a 16-
or 32-bit destination.

Effect on Effect on
s Immediate Data 8 immediate Data 16|32

0 | None None

Register €— Register Memory

1 reg Field indicates Destination Operand,;

mod r/m or mod ss index base indicates Source
Operand.

1 | Sign-Extended Data 8 tofill| None
16-Bit or 32-Bit Destination

Am386DX/DXL Microprocessor Data Sheet 135

u AMD

Encoding of Conditional Test (tttn) Fleld

For the conditional instructions (conditional jumps and
set on condition), tttn is encoded with n indicating to use
the condition (n=0) or its negation (n=1), and ttt giving
the condition to test.

Mnemonic Condition titn
o} Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LENG Less Than or Equal/Not Greater Than | 1110
NLE/G Not Less Than or Equal/Greater Than | 1111

Encoding of Control or Debug or Test Register

(eee) Fleld

For the loading and storing of the Control, Debug and

Test registers.

When Interpreted as Control Register Field

eee Code Reg Name
000 CRoO
010 CR2
011 CR3

Do not use any other encoding.

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRo
001 DR1
010 DR2
011 DR3
110 DRé
111 DR7

Do not use any other encoding.

When Interpreted as Test Register Field

eee Code

Reg Name

110
111

TR6
TR7

Do not use any other encoding.

136 Am386 Microprocessors for Personal Computers

AMD u

MECHANICAL DATA

Introduction

In this section, the physical packaging and its connec-
tions are described in detail.

Package Dimensions and Mounting
The initial Am386DX/DXL microprocessor package is a
132-pin ceramic pin grid array (PGA). Pins of this pack-
age are arranged 0.100 inch (2.54 mm) center-to-
center, in a 14 x 14 matrix, three rows around.

A wide variety of available sockets allow low insertion
force or zero insertion force mountings, and a choice of
terminals such as soldertail, surface mount, or wire
wrap.

Package Thermal Specification

The Am386DX/DXL microprocessor is specified for
operation when ambient temperature is within the range
of 0°C-100°C. The ambient temperature may be meas-
ured in any environment, to determine whether the
Am386DX/DXL microprocessor is within specified oper-
ating range.

The PGA ambient temperature should be measured at
the center of the top surface opposite the pins.

ELECTRICAL DATA

Introduction

The following sections describe recommended electri-
cal connections for the Am386DX/DXL microprocessor
and its electrical specifications.

Power and Grounding
Power Connections

The Am386DX/DXL CPU is implemented in CS21S
technology and has modest power requirements. How-
ever, its high clock frequency and 72 output buffers (ad-
dress, data, control, and HLDA) can cause power
surges as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution at
high frequency, 20 Ve and 21 Vss pins separately feed
functional units of the Am386DX/DXL CPU.

Power and ground connections must be made to all
external Vcc and GND pins of the Am386DX/DXL CPU.
Onthe circuit board, all Vcc pins mustbe connectedon a
Veeplane. All Vss pins mustbe likewise connected to the
GND plane.

Power Decoupling Recommendations

Liberal decoupling capacitance should be placed near
the Am386DX/DXL CPU. The Am386DX/DXL micro-
processor driving its 32-bit parallel address and data
buses at high frequencies can cause transient power
surges, particularly when driving large capacitive loads.

Low inductance capacitors and interconnects are rec-
ommended for best high frequency electrical perform-
ance. Inductance can be reduced by shortening circuit
board traces between the Am386DX/DXL microproces-
sor and decoupling capacitors as much as possible. Ca-
pacitors specifically for PGA packages are also com-
mercially available, for the lowest possible inductance.

Resistor Recommendations

The ERROR, FLT, and BUSY inputs have resistor
pull-ups of approximately 20 Kohms built into the
Am386DX/DXL CPU to keep these signals negated
when no 387DX math coprocessor is present in the sys-
tem (or temporarily removed from its socket). The BS16
input also has an internal pull-up resistor of approxi-
mately 20 Kohms, and the PEREQ input has an internal
pull-down resistor of approximately 20 Kohms.

In typical designs, the external pull-up resistors are re-
commended. However, a particular design may have
reason to adjust the resistor values recommended here,
or alter the use of pull-up resistors in other ways.

Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. NC pins should always re-
main unconnected.

Particularly when not using interrupts or bus hold, (as
when first prototyping, perhaps) prevent any chance of
spurious activity by connecting these associated inputs
to GND.

Pin Signal
B7 INTR
B8 NMI
D14 HOLD

If not using address pipelining, pull-up D13 NA to Vce.
if not using 16-bit size, pull-up C14 BS16 to Vce.
Pull-ups in the range of 20 Kohms are recommended.

Am386DX/DXL. Microprocessor Data Sheet 137

u AMD

PHYSICAL DIMENSIONS

CGX 132
’ 1.440
Index Corner 1480 1.300
BSC
PPOEEEEEEOOO®
OPPPOPPPEPPOEPOPO®
oJol - JoJoloJollooYoleol - Xoe)
@O e
1.440 ©0e o299
Tise @O PO
| 000 OIOION
@ [000 e
©@e® PO
OJOLO)] e
©@® @00
©P0PPPPPEPPPOO®
PPOPPPEOPRIPEPPOO O
\@io).ﬂ‘@—@@@T'f@@@@@/
— l—
.080 .050 _-|003
MAX BSC BSC

Bottom View (Pins Facing Up)

Base Plang ————

Seating Plane ———#{

s =

o6 4
.020 T

.100

BSC
|_—-
105 |'
125 —
o I
e
i e
. .080
~— —
_ﬂ 140
Side View
16304C
BP 36
4/3091 CD

138 Am386 Microprocessors for Personal Computers

AMD n

PHYSICAL DIMENSIONS (continued)

PQB 132 —Plastic Quad Flat Pack (Trinmed and Formed)

\IAAAMAAAA AT

1
1

.075
.085

1.097
1.103

I
Q
N
(3]
)
m
m

0.130 | 0.1860

I R I e g
REF 0.020
0.040
Side View 11772E
Team2 G

Am386DX/DXL Microprocessor Data Sheet

139

a AMD

PHYSICAL DIMENSIONS (continued)

PQB 132 —Plastic Quad Flat Pack with Molded Carrier Ring
(Outer Ring measured in millimeters)

. 45.87 R
N 4550 46.13 -
T 45.90 41.37 L
T 37.87 41.63 o
N 35.15 38.00 —*
- 35.25 32.15 o
) 1097 3225 "
0944 1103
0.952

45.50|37.8732.15]0.944 J

45.87141.37 | 35.15|1.097

45.90138.0032.25|0.952 1

46.13|41.63|35.25|1.103

0.65 Typ IIIIHI][]Zi =T
-ﬁ—}/
—

] ooos
: E 0.0
E :~c‘l"
p . T i
h | |
] |)
] | |
. | |
. } |
; J FHHLLL
) -W"—
i (S I | e
s JLe
TOP VIEW 0.008
0.016
| e |
11
(_))I||llJI|llJl||l|l|llllI.lllllllllllllllllll.lllll.llll'(() IZOO 4.80
\ H\VAE I
SIDE VIEW
14826E
CB 51
7/28/92 SG

140

Am386 Microprocessors for Personal Computers

