SCOPE

This specification describes AFOIO0 to AF25I2 chip resistors with anti-sulfuration capabilities.

APPLICATIONS

- Industrial Equipment
- Power Application
- Networking Application
- High-end Computer \& Multimedia Electronics in high sulfur environment
- Automotive electronics

FEATURES

- AEC-Q200 qualified for size 0201~25I2
- Superior resistance against sulfur containing atmosphere
- Halogen free product and production
- RoHS compliant
- Reduces environmentally hazardous waste
- High component and equipment reliability
- Saving of PCB space
- Moisture sensitivity level: MSL I
- 50ppm available

ORDERNG INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AF XXXX X X XX XXXX L
(1) (2) (3) (4) (5) (6) (7)
(I) SIZE

0|00/020|/0402/0603/0805/I206/I2|0/I2|8/20|0/25|2
(2) TOLERANCE
$D= \pm 0.5 \%$
$\mathrm{F}= \pm \mathrm{l} \%$
$\mathrm{J}= \pm 5 \%$ (for jumper ordering, use code of J)
(3) PACKAGING TYPE
$R=$ Paper taping reel
$\mathrm{K}=$ Embossed plastic tape reel
(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
$\mathrm{E}= \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
(5) TAPING REEL
$07=7$ inch dia. Reel
$13=13$ inch dia. Reel
7W $=7$ inch dia. Reel $\& 2 \times$ standard power
(6) RESISTANCE VALUE

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point.
Detailed resistance rules are displayed in the table of "Resistance rule of global part number' ${ }^{\prime \prime}$
(7) DEFAULT CODE

Letter L is system default code for ordering only (Note)

Resistance rule of global part number	
Resistance coding rule	rule Example
$\begin{aligned} & \text { XRXX } \\ & \text { (I to } 9.76 \Omega \text {) } \end{aligned}$	$\begin{array}{r} 1 R=1 \Omega \\ 1 R 5=1.5 \Omega \\ 9 R 76=9.76 \Omega \end{array}$
$\begin{aligned} & \text { XXRX } \\ & (10 \text { to } 97.6 \Omega) \\ & \hline \end{aligned}$	$\begin{array}{r} 10 R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$100 \mathrm{R}=100 \Omega$
$X K X X$ (I to $9.76 \mathrm{~K} \Omega$)	$\begin{array}{r} 1 \mathrm{~K}=1,000 \Omega \\ 9 \mathrm{~K} 76=9760 \Omega \end{array}$
$\begin{aligned} & \text { XMXX } \\ & (1 \text { to } 9.76 \mathrm{M} \Omega) \end{aligned}$	$\begin{array}{r} \text { IM }=1,000,000 \Omega \\ 9 \text { M } 76=9,760,000 \Omega \end{array}$

Ordering example

The ordering code for an AF0402 chip resistor, value $100 \mathrm{~K} \Omega$ with $\pm 1 \%$ tolerance, supplied in 7 -inch tape reel with IOKpcs quantity is: AF0402FR-07I00KL

NOTE

I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
2. On customized label, "LFP" or specific symbol can be printed

AF0603 / AF0805 / AFI206 / AFI210 / AF20I0 / AF25I2

『ヨ

Fig. 2 Value $=10 \mathrm{~K} \Omega$

E-24 series: 3 digits, $\pm 5 \%, \geq 10 \Omega$
First two digits for significant figure and 3 rd digit for number of zeros

AF0603

240

E-24 series: 3 digits, $\pm \mathrm{I} \%$
One short bar under marking letter
Fig. 3 Value $=24 \Omega$

II[

E-96 series: 3 digits, $\pm 1 \%$
First two digits for E-96 marking rule and 3rd letter for number of zeros
Fig. 4 Value $=12.4 \mathrm{~K} \Omega$

AF0805 / AFI206 / AFI2I0 / AF20I0 / AF25I2

10 D 2 Both E-24 and E-96 series: 4 digits, $\pm \mathrm{I} \%$
First three digits for significant figure and 4th digit for number of zeros

Fig. $5 \quad$ Value $=10 \mathrm{~K} \Omega$
AFI218

Fig. 6 Value $=10 \mathrm{~K} \Omega$

E-24 series: 3 digits, $\pm 5 \%$
First two digits for significant figure and 3 rd digit for number of zeros

1002

Fig. $7 \quad$ Value $=10 \mathrm{~K} \Omega$

Both E-24 and E-96 series: 4 digits, $\pm 1 \%$
First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please see special data sheet "Chip resistors marking". Marking of AF series is the same as RC series

CONSTRUCTION

The resistors are constructed on top of a high grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a glass.
The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations ($\mathrm{Ni} /$ matte tin) are added. See fig. 8

DJMENSIONS

Table I For outlines see fig. 8

TYPE	$\mathrm{L}(\mathrm{mm})$	$W(\mathrm{~mm})$	$H(\mathrm{~mm})$	$\mathrm{I}_{1}(\mathrm{~mm})$	$\mathrm{I}_{2}(\mathrm{~mm})$
AFOIO0	0.40 ± 0.02	0.20 ± 0.02	0.14 ± 0.02	0.10 ± 0.03	0.10 ± 0.03
AF020I	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.12 ± 0.05	0.15 ± 0.05
AF0402	1.00 ± 0.05	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
AF0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
AF0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
AFI206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.50 ± 0.20
AFI2I0	3.10 ± 0.10	2.60 ± 0.15	0.57 ± 0.10	0.45 ± 0.20	0.50 ± 0.20
AFI2I8	3.10 ± 0.10	4.60 ± 0.10	0.57 ± 0.10	0.45 ± 0.20	0.50 ± 0.20
AF20I0	5.00 ± 0.10	2.50 ± 0.15	0.57 ± 0.10	0.55 ± 0.20	0.55 ± 0.20
AF25I2	6.35 ± 0.10	3.20 ± 0.15	0.57 ± 0.10	0.60 ± 0.20	0.60 ± 0.20

OUTLINES

ELECTRJCAL CHARACTERISTJCS

Table 2

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AFOIOO	1/32 W	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	15 V	30 V	30 V	$\begin{array}{r} 5 \%(\text { E24 }) \\ 10 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ 1 \%(\text { E24/E96) } \\ 10 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 10 \Omega \leq R<100 \Omega \\ \pm 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 0.5A Max. Current 1.0A
AFO20 ${ }^{\text {I }}$	I/20 W		25 V	50 V	50V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R \leq 10 \Omega \\ -100 /+350 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 0.5A Max. Current I.0A
AF0402	1/16 W		50 V	100 V	IOOV	$\begin{array}{r} 5 \%(\mathrm{E} 24) \\ 1 \Omega \leq \mathrm{R} \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R \leq 10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq \mathrm{R} \leq 1 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current IA Max. Current 2A
	I/8W		75 V	100 V	IOOV	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 10 M \Omega \\ 0.5 \%, 1 \%,(\text { E24/E96) } \\ 1 \Omega \leq R \leq 10 M \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF0603	1/10 W		75 V	150 V	I50V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leq R \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current IA Max. Current 2A
	$1 / 5 \mathrm{~W}$	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	75 V	150 V	I50V	$\begin{array}{r} 5 \%(\text { E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%,(\text { (E24/E96) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF0805	$1 / 8 \mathrm{~W}$		150 V	300 V	300 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current 5A
	I/4 W		I50V	300 V	300 V	$\begin{array}{r} 5 \%(\text { E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%,(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AFI206	$1 / 4 \mathrm{~W}$		200 V	400 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 22 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current 10A
	$1 / 2 \mathrm{~W}$		200 V	400 V	500 V	$\begin{array}{r} 5 \%(\text { E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%,(\text { (E24/E96) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	

ELECTRJCAL CHARACTERISTICS

Table 2

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AFI2IO	1/2W		200 V	500 V	500 V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current IOA
	I W		200 V	500 V	500 V	$\begin{array}{r} 5 \%(\mathrm{E} 24) \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AFI218	I W		200 V	500 V	500 V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leq R \leq I M \Omega \\ 0.5 \%, 1 \%(E 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{aligned} & 1 \Omega \leq R<10 \Omega \\ & \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 10 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ & \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & 100 \Omega \leq R \leq 2.2 \mathrm{M} \Omega \\ & \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	Rated Current 2A Max. Current IOA
	1.5 W	$-55^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$	200V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq \mathrm{R} \leq \mathrm{IM} \Omega \\ 0.5 \%, 1 \% \text { (E24/E96) } \\ 1 \Omega \leq \mathrm{R} \leq \mathrm{IM} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 1 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF2010	$3 / 4 \mathrm{~W}$		200V	500 V	500 V	$\begin{array}{r} 5 \%(E 24) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current IOA
	1.25 W		200V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ \mathrm{I} \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	
AF25I2	I W		200 V	500 V	500 V	$\begin{array}{r} 5 \% \text { (E24) } \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(E 24 / \mathrm{E} 96) \\ 1 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \text { Jumper }<50 \mathrm{~m} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq R \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 100 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	Rated Current 2A Max. Current 10A
	2 W		200V	500 V	500 V	$\begin{array}{r} 5 \%(\mathrm{E} 24) \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ 0.5 \%, 1 \%(\mathrm{E} 24 / \mathrm{E} 96) \\ 1 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 1 \Omega \leq R<10 \Omega \\ \pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ 10 \Omega \leq \mathrm{R} \leq 10 \mathrm{M} \Omega \\ \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{array}$	

POOTPRINT AND SOLDERING PROFULES

For recommended footprint and soldering profiles of AF-series is the same as RC-series. Please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AFOIOO	AFO20	AF0402	$\begin{aligned} & \text { AF0603 } \\ & \text { AF0805 } \\ & \text { AFI206 } \\ & \hline \end{aligned}$	AFI2IO	AFI2I8 AF2010 AF25I2
Paper taping reel (R)	7" (178 mm)	20,000	10,000/20,000	10,000/20,000	5,000	5,000	
	13 " (330 mm)	--	50,000	50,000	20,000	20,000	--
Embossed taping reel (K)	7" (178 mm)	--	--	--	--	--	4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

AFOIOO Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AF020I - AF25I2 Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$:
AFOIOO $=1 / 32 \mathrm{~W}(0.03 \mathrm{I} 25 \mathrm{~W})$
AFO20I $=1 / 20 \mathrm{~W}(0.05 \mathrm{~W})$
AF0402= I/I6 W (0.0625W); I/8W (0.125W)
AF0603= I/I0 W (0.IW); I/5W (0.2W)
AF0805 $=\mathrm{I} / 8 \mathrm{~W}(0.125 \mathrm{~W}) ; \mathrm{I} / 4 \mathrm{~W}(0.25 \mathrm{~W})$
AFI206=I/4 W (0.25W); I/2W (0.5W)

Fig. 9 Maximum dissipation $\left(P_{\max }\right)$ in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

AFI2IO=I/2W (0.5W); IW
AFI218=IW; 1.5W
AF2010=3/4W (0.75W); 1.25W
AF25I2=IW, 2 W

Rated voltage

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:
$V=\sqrt{(P \times R)}$
Where
$\mathrm{V}=$ Continuous rated DC or AC (rms) working
voltage (V)
$P=$ Rated power (W)
$R=$ Resistance value (Ω)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3	0100: 1,000 hours at $125^{\circ} \mathrm{C}$	0100: $\pm(2.0 \%+0.05 \Omega)$
	MIL-STD-202 Method I08	Others: I,000 hours at $155 \pm 3^{\circ} \mathrm{C}$ unpowered	$<50 \mathrm{~m} \Omega$ for Jumper
			$\begin{aligned} & \text { Others: } \pm(1.0 \%+0.05 \Omega) \\ & <100 \mathrm{~m} \Omega \text { for Jumper } \end{aligned}$
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method I06F), 3 cycles / 24 hours for IOd. with $25^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C} 95 \%$ R.H, without steps 7a \& 7b, unpowered	0100: $\pm(2.0 \%+0.05 \Omega)$
			$<50 \mathrm{~m} \Omega$ for Jumper
			Others:
			$\pm(0.5 \%+0.05 \Omega)$ for 0.5\%, 1\% tol.
			$\pm(1.0 \%+0.05 \Omega)$ for 5% tol.
			$<100 \mathrm{~m} \Omega$ for Jumper
Biased	AEC-Q200 Test 7	I,000 hours; $85^{\circ} \mathrm{C} / 85 \%$ RH	0\|00: \pm (5\%+0.05 $)^{\text {) }}$
Humidity	MIL-STD-202 Method I03	10% of operating power	$<50 \mathrm{~m} \Omega$ for Jumper
		Measurement at 24 ± 4 hours after test conclusion.	Others:
			$1 \Omega \leq R \leq 1 M \Omega: \pm(3 \%+0.05 \Omega)$
			$1 \mathrm{M} \Omega<\mathrm{R} \leq 10 \mathrm{M}$: $\pm \pm(5 \%+0.05 \Omega)$
			$<100 \mathrm{~m} \Omega$ for Jumper

Operational Life	AEC-Q200 Test 8 IEC 60II5-I 4.25	I,000 hours at $70^{\circ} \mathrm{C}$ for $01005,125^{\circ} \mathrm{C}$ for others, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm(3.0 \%+0.05 \Omega)$ $<100 \mathrm{~m} \Omega$ for Jumper
	MIL-STD-202 Method I08		

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test I8 J-STD-002	Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat, dipping at $235 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds. (b) Method B, steam aging 8 hours, dipping at $215 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds. (c) Method D , steam aging 8 hours, dipping at $260 \pm 3^{\circ} \mathrm{C}$ for 30 ± 0.5 seconds.	Well tinned ($\geq 95 \%$ covered) No visible damage
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a $100 \mathrm{~mm} \times 40 \mathrm{~mm}$ glass epoxy resin PCB (FR4) Bending for 020 I/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	$\begin{aligned} & \pm(1.0 \%+0.05 \Omega) \\ & <50 \mathrm{~m} \Omega \text { for Jumper } \end{aligned}$
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$ Formula: $\text { T.C.R }=\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ Where $t_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature $t_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature $R_{I}=$ resistance at reference temperature in ohms $R_{2}=$ resistance at test temperature in ohms	Refer to table 2
Short Time Overload	IEC60\|I5-I 8.1	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	0। 00: $\pm(2.0 \%+0.05 \Omega)$ Others: $\pm(1.0 \%+0.05 \Omega)$ $<50 \mathrm{~m} \Omega$ for Jumper No visible damage
FOS	ASTM-B-809-95* * Modified	Sulfur 750 hours, $105^{\circ} \mathrm{C}$. unpowered	$\begin{aligned} & 0100: \pm(5.0 \%+0.05 \Omega) \\ & \text { Others: } \pm(4.0 \%+0.05 \Omega) \\ & <100 \mathrm{~m} \Omega \text { for Jumper } \end{aligned}$

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Jan. 03, 2023	-	- I Oohm TCR upgrade to 100 ppm , for 0603~25I2 normal power and 0402~25I2 double power.
Version 8	Mar. 26, 2021	-	- Add TCR 50ppm and size 01005 extend
Version 7	Nov. 1, 2019	-	- Add in AF double power
Version 6	Sep. 05, 2019	-	- Updated dimensions
Version 5	Jun. 21, 2016	-	- Update test and requirement
Version 4	Dec. 24, 2015	-	- Update Dielectric Withstanding Voltage\& Resistance value
Version 3	Apr. 01,2015	-	- Modified test and requirements
Version 2	Nov. 20, 2014	-	- Tests and requirement update
Version I	Sep. 27, 2013	-	- Size 0201/I210/I218/2010/2512 extend
Version 0	Jan 07, 2011	-	- First issue of this specification

LEGAL DISCLAJMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, bo dy or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial, automotive, and/or COTS grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

YAGEO:

AF0603FR-07100RL AF0603FR-0710KL AF0603FR-07120KL AF0603FR-07127KL AF0603FR-0712KL AF0603FR07130RL AF0603FR-07180KL AF0603FR-0718KL AF0603FR-071ML AF0603FR-0720RL AF0603FR-0722KL AF0603FR-072K2L AF0603FR-07330KL AF0603FR-07330RL AF0603FR-07332RL AF0603FR-0733KL AF0603FR07390KL AF0603FR-073K9L AF0603FR-07470RL AF0603FR-0747KL AF0603FR-074K32L AF0603FR-0756RL AF0603FR-075K6L AF0603FR-0768KL AF0603FR-076K8L AF0603FR-07820RL AF0805FR-07100RL AF0805FR073K3L AF1206FR-07680RL AF1206FR-0782RL AF0201JR-07120RL AF0603FR-07324KL AF0402FR-0722K1L AF0402JR-0710KL AF0402JR-0762RL AF0402FR-0715KL AF0402JR-0722RL AF0402JR-0710RL AF0402JR07820RL AF0402JR-073KL AF0603FR-073K16L AF0402FR-073K92L AF0402JR-073K3L AF0603FR-0715KL AF0201FR-07240RL AF0402JR-07220RL AF0402FR-07487KL AF0402FR-0710KL AF0603FR-073KL AF1206FR0710KL AF0402FR-072K05L AF0402FR-076K19L AF0402JR-070RL AF0402JR-071KL AF0603FR-0710RL AF0402JR-071K5L AF0402JR-07330RL AF0603FR-073K92L AF0603FR-072K05L AF0201JR-0722RL AF0402JR07100RL AF0402JR-074K7L AF0402FR-0747K5L AF0402FR-07324KL AF0402FR-07240RL AF0201JR-0775RL AF0402JR-0775RL AF0603JR-074K7L AF0603DR-075K11L AF0402FR-075K11L AF0402JR-07120RL AF0201JR0736RL AF0402FR-0710ML AF0402JR-071RL AF0805FR-0710KL AF0402FR-0724K9L AF0603FR-073K3L AF0402JR-0733KL AF0603FR-073K32L AF0201JR-0715RL AF0805FR-075K11L AF0603JR-07100RL AF0201FR0735K7L AF0805FR-0747RL AF0402JR-0736RL AF0603JR-073KL AF0603FR-074K7L AF0402JR-0739RL AF0201JR-070RL AF0805JR-070RL AF0201FR-0721K5L AF1206FR-07560RL AF0201JR-07270RL AF0402JR0730RL AF0402JR-0751KL AF0603FR-07150KL AF0603FR-0727KL AF0603FR-07825KL AF0805FR-0752K3L AF0805FR-0775KL

