

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD

1.5A Adjustable Three-terminal Positive Voltage Regulator

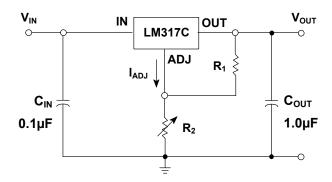
LM317C Adjustable Three-Terminal Regulator

1 Introduction

The LM317C is a three terminal positive voltage regulator with maximum 1.5A current output and adjustable output. The voltage regulator is very easy to use, which only needs two external resistors to set the output voltage, and the output voltage can be set in the range of 1.25V to 37V. In addition, the LM317C is also designed to integrate internal current limiting, thermal shutdown and safe working area compensation, which makes it relatively difficult to damage and basically prevent the burning of circuit fuses.

The LM317C serves a variety of applications, including local voltage stabilization and card voltage stabilization. It can also be used to make a programmable voltage regulator, or as a precision current regulator by connecting a fixed resistance between the adjustment point and the output.

2 Available Packages


PART NUMBER	PACKAGE
	SOT-223
LM317C	TO-220-3L
LIVISTAC	TO-252-2L
	TO-263-2L

3 Features

- The output current exceeds 1.5A
- The output is adjustable from 1.25V to 37 V
- Internal thermal overload protection
- Temperature independent internal short circuit current limit
- Output transistor safe working area compensation
- Commonly used TO-252 package, as well as other forms of three pin package
- Avoid preparing multiple fixed voltages

4 Applications

- Ethernet Switch, Public Server, Private Switch (PBX)
- Base Station
- Desktop Computer
- IP Telephone: Wired and Wireless
- Motor Control
- Refrigerator, Air Conditioner, Washing Machine
- Security Camera, Digital Sign
- Signal or Waveform Generator
- Substation Control, Power Quality Meter

Typical Application Circuits

5 Orderable Information

MODEL	DEVICE	PACKAGE	OP TJ	ECO PLAN	MSL	PACKING OPTION	SORT
	-	SOT-223	-40 ~ 125°C	RoHS & Green	Level 3 168 HR	Tape and Reel 2500 Units / Reel	Active
LM2470	-	TO-220-3L	-40 ~ 125°C	RoHS & Green	Level 3 168 HR	Tube 50 Units / Rail	Active
LM317C	-	TO-252-2L	-40 ~ 125°C	RoHS & Green	Level 3 168 HR	Tape and Reel 2500 Units / Reel	Active
	- TO-263-2L -40 ~ 125°C		RoHS & Green	Level 3 168 HR	Tape and Reel 800 Units / Reel	Active	
Others	-	-	-	-	-	-	Customized

Note:

ECO PLAN: For the RoHS and Green certification standards of this product, please refer to the official report provided by JSCJ.

MSL: Moisture Sensitivity Level. Determined according to JEDEC industry standard classification.

SORT: Specifically defined as follows:

Active: Recommended for new products;

Customized: Products manufactured to meet the specific needs of customers;

Preview: The device has been released and has not been fully mass produced. The sample may or may not be available;

NoRD: It is not recommended to use the device for new design. The device is only produced for the needs of existing customers;

Obsolete: The device has been discontinued.

6 Pin Configuration and Marking Information

6.1 Pin Configuration and Function

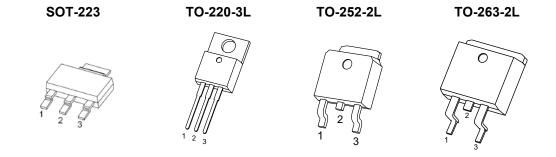
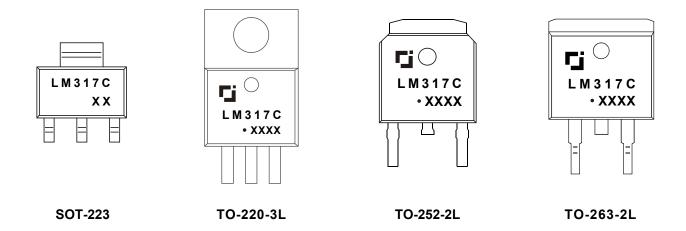



Figure 6-1. Package Top View

- DIN		LM3	17C			
PIN NAME	SOT-223	TO-220-3L	TO-252-2L	TO-263-2L	1/0	DESCRIPTION
IN	3	3	3	3	I	Supply input pin.
ADJ	1	1	1	1	-	Adjustment pin. Connect to a resistor divider to set V_{OUT} .
OUT	2	2	2	2	0	Voltage output pin.

6.2 Marking Information

[&]quot;LM317C": Device number.

www.jscj-elec.com 3 Rev. - 1.3

[&]quot;XX" & "XXXX": Code. Indicates weekly record information of production.

[&]quot; • ": Green molding compound device.

7.1 Absolute Maximum Ratings

(over operating free-air temperature range, unless otherwise specified)(1)

CHARACTERISTIC			SYMBOL	VALUE	UNITS
Maximum Inp	Maximum Input-to-output differential voltage			40	V
Programr	nable output vo	ltage range	V _{OUT}	37	V
		SOT-223			
Maximum power	LM2470	TO-220-3L		Internally Limited ⁽²⁾	W
dissipation	LM317C	TO-252-2L	P _{D Max}		
		TO-263-2L			
Maxim	Maximum junction temperature			150	°C
Storage temperature			T _{stg}	-65 ~ 150	°C
Soldering temperature & time			T _{solder}	260°C, 10s	-

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum rated conditions for extended periods may affect device reliability.

7.2 Recommended Operating Conditions

PARAMETER	SYMBOL	MIN.	NOM.	MAX.	UNIT
Input-to-output differential voltage	VIN - VOUT	3.0	-	40	V
Programmable output voltage	Vouт	1.25	-	37	V
Output current range	lout	0.01	-	1.5	Α
Operating junction temperature	TJ	-40	-	125	°C
Operating ambient temperature	TA	-	_(3)	-	°C

⁽³⁾ It is necessary to ensure that the operating junction temperature of the device does not exceed the rated value of the recommended operating conditions when using the device for design.

⁽²⁾ Refer to Thermal Information for details.

7.3 ESD Ratings

ESD RATINGS	SYMBOL	VALUE	UNIT	
Floatroatatio discharge(4)	Human body model	V _{ESD} -HBM	2000	\/
Electrostatic discharge ⁽⁴⁾	Machine model	V _{ESD-MM}	200	V

(4) ESD testing is conducted in accordance with the relevant specifications formulated by the Joint Electronic Equipment Engineering Commission (JEDEC). The human body mode (HBM) electrostatic discharge test is based on the JESD22-114D test standard, using a 100pF capacitor and discharging to each pin of the device through a resistance of $1.5k\Omega$. The electrostatic discharge test in mechanical mode (MM) is based on the JESD22-A115-A test standard and uses a 200pF capacitor to discharge directly to each pin of the device.

7.4 Thermal Information

THERMAL METRIC(5)	SYMBOL	LM3	UNIT				
		SOT-223	TO-220-3L				
Junction-to-ambient thermal		100.0	66.7	°C/M/			
resistance	Roja	TO-252-2L	TO-263-2L	°C/W			
		80.0	62.5				
	Rejc	SOT-223	TO-220-3L				
Junction-to-case thermal resistance		27.0	5.5	°C/W			
Junction-to-case thermal resistance		TO-252-2L	TO-263-2L	C/VV			
		14.5	5.5				
		SOT-223	TO-220-3L				
Maximum power dissipation for continuous operation	_	D	l D	D.	1.00	1.50	w
	P _{D Ref}	TO-252-2L	TO-263-2L	VV			
		1.25	1.60				

⁽⁵⁾ Thermal metric is measured in still air with $T_A = 25$ °C and installed on a 1 in² FR-4 board covered with 2 ounces of copper.

7.5 Electrical Characteristics

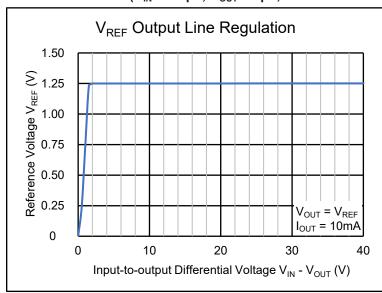
LM317C (V_{IN} - V_{OUT} = 5.0V, I_{OUT} = 500mA, C_{IN} = 1 μ F, C_{OUT} = 1 μ F, unless otherwise specified)

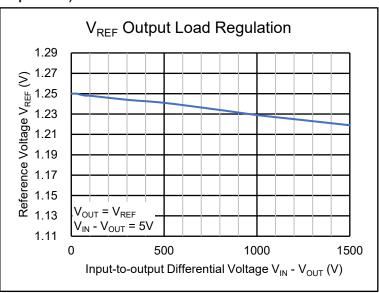
CHARACTERISTIC	SYMBOL	TEST CONDITIONS ⁽⁶⁾		MIN.	TYP. ⁽⁷⁾	MAX.	UNIT		
Line and die	LND(8)	., ., .	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		-	0.01	0.04	0/ 0/	
Line regulation	LNR ⁽⁸⁾	$V_{IN} - V_{OUT} = 3.0 \text{ to } 40V$		T _J = 0 to 125°C	-	0.02	0.07	%/V	
			V 450V	T _J = 25°C	-	5.0	25	\/	
Load regulation	LDR	I _{OUT} = 10 to	V _{OUT} < 5.0V	T _J = 0 to 125°C	1	20	70	mV	
Load regulation	LDK	1500mA	V _{o∪T} ≥ 5.0V	T _J = 25°C	ı	0.1	0.5	· %·V _{OUT}	
			V _{OUT} ≥ 5.0V	T _J = 0 to 125°C	-	0.3	1.5	70° V OUT	
ADJUST terminal current	l _{ADJ}	-		T _J = 25°C	-	50	100	μΑ	
Change in ADJUST terminal current	Δladj	$V_{IN} - V_{OUT} = 2.$ $I_{OUT} = 10 \text{ to } 15$		T _J = 25°C	-	0.2	5.0	μА	
Reference voltage	V_{REF}	V_{IN} - V_{OUT} = 3.0 to 40V I_{OUT} = 10 to 1500mA		T _J = 25°C	1.20	1.25	1.30	V	
Line regulation of reference voltage	LNR V _{REF}	V _{IN} - V _{OUT} = 3.	0 to 40V	T _J = 25°C	-	0.02	0.07	%/V	
Load regulation of	LDR V _{REF}	I _{OUT} = 10 to	V _{OUT} < 5.0V	T _J = 25°C	-	20	70	mV	
reference voltage	LUK VREF	1500mA	V _{OUT} ≥ 5.0V	T _J = 25°C		0.3	1.5	%·V _{OUT}	
Output voltage temperature stability	ΔV _{OUT} /	-		T _J = 0 to 125°C	-	1.0	-	%	
Minimum load current to maintain regulation	lout min	V _{IN} - V _{OUT} = 40	DV	T _J = 0 to 125°C	-	3.5	10	mA	
Maximum autaut aurrant	1	V _{IN} - V _{OUT} ≤ 15	5V	T _J = 0 to 125°C	1.5	2.2	-	^	
Maximum output current	TOUT MAX	V _{IN} - V _{OUT} = 40)V	T _J = 25°C	0.15	0.4	-	Α	
Output noise voltage (percentage of V _{OUT})	eN	f = 10 to 10kHz		T _J = 25°C	-	0.003	-	%	
		f = 4001 l=	$C_{ADJ}^{(9)} = 0\mu F$		-	60	-		
Dipple relection	DD	f = 100Hz	$C_{ADJ}^{(9)} = 10 \mu F$	T = 25°C	-	65	-	4D	
Ripple rejection	RR	f = 1kHz	$C_{ADJ}^{(9)} = 0\mu F$	T _A = 25°C	-	64	-	dB	
		I - INIIZ	$C_{ADJ}^{(9)} = 10 \mu F$		-	75	-		

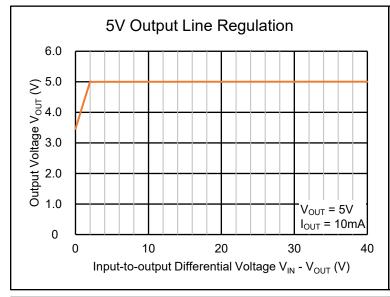
Note:

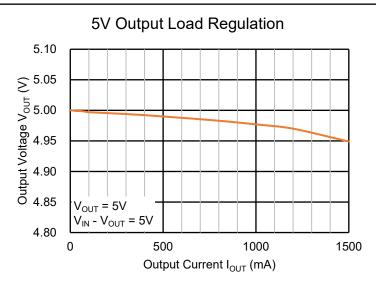
- (6) Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible.
- (7) Typical numbers represent the most likely norm.
- (8) The line regulation is calculated by the following formula:

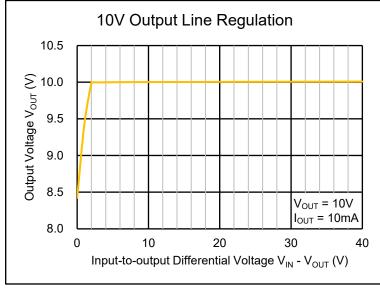
$$LNR = \frac{\Delta V_{OUT}}{V_{OUT} \times \Delta V_{IN}}$$

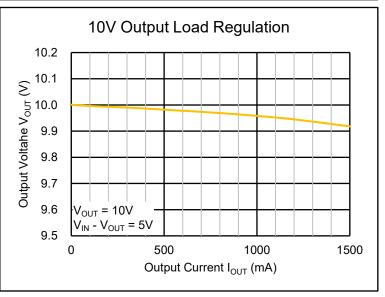

where, ΔV_{OUT} is the variation of the output voltage, ΔV_{IN} is the variation of the input voltage.


(9) C_{ADJ} is connected between the ADJ terminal and GND.

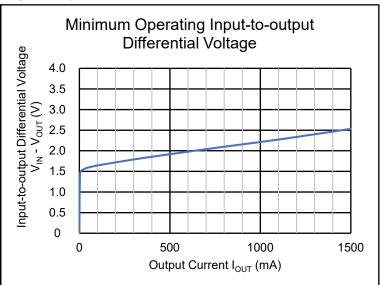


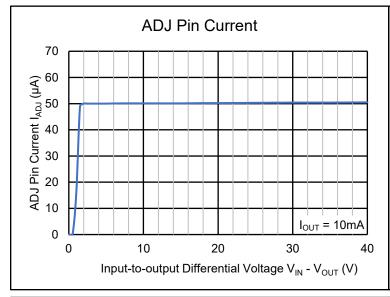

7.6 Typical Characteristics

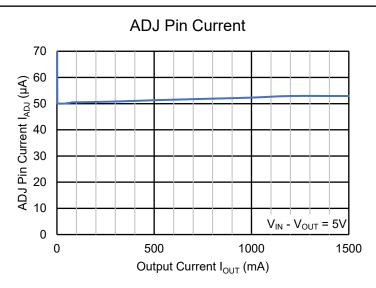

LM317C (C_{IN} = 0.1 μ F, C_{OUT} = 1 μ F, unless otherwise specified)

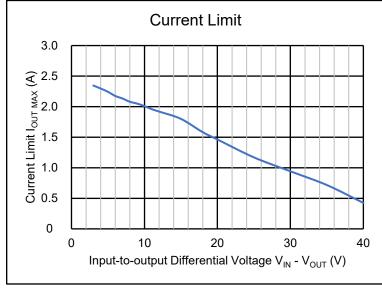


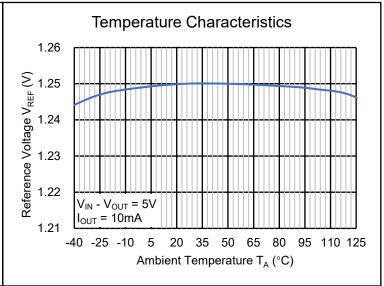


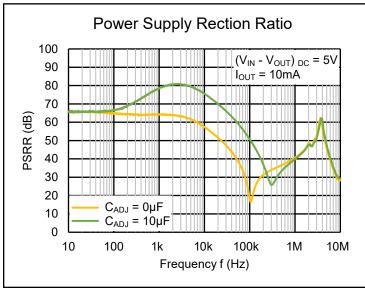


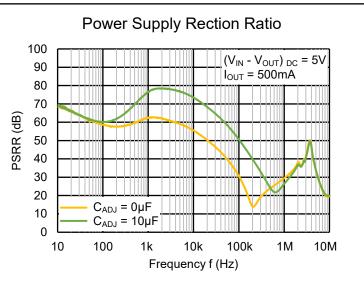


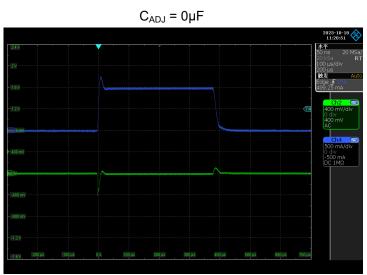

7.6 Typical Characteristics (continued)

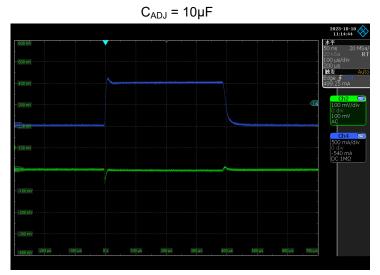

LM317C (C $_{\text{IN}}$ = 0.1 μ F, C $_{\text{OUT}}$ = 1 μ F, unless otherwise specified)

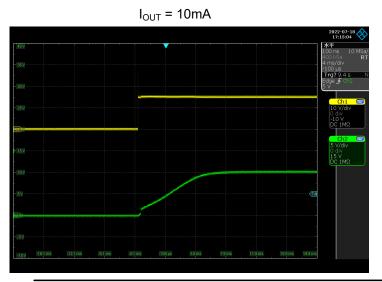







7.6 Typical Characteristics (continued)

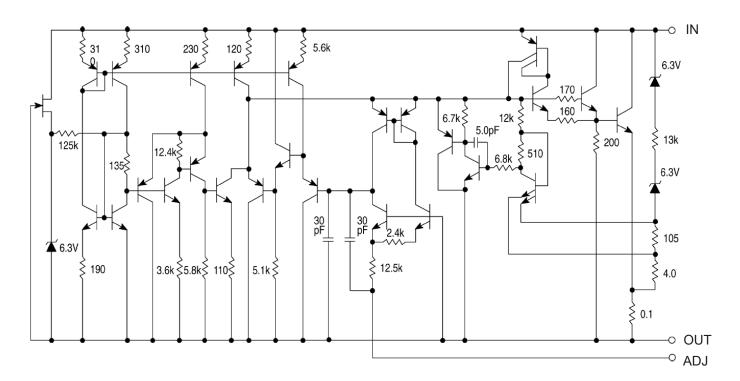

LM317C ($C_{IN} = 0.1 \mu F$, $C_{OUT} = 1 \mu F$, unless otherwise specified)




Load Transient (V_{OUT} = 10V, V_{IN} - V_{OUT} = 5V, I_{OUT} = 10 ~ 1000mA, CH₂: V_{OUT}, CH₄: I_{OUT})

Power up Response ($V_{OUT} = 10V$, $V_{IN} = 0 \sim (V_{OUT} + 5V)$, $C_{ADJ} = 10 \mu F$, CH_1 : V_{IN} , CH_2 : V_{OUT})

 $I_{OUT} = 1000 \text{mA}$



8 Detailed Description

8.1 Description

The LM317C is a three terminal positive voltage regulator with adjustable output. By setting two peripheral resistors, the output voltage range of the device can be set from 1.25V to 37V, and the current up to 1.5A can be provided. The LM317C integrates current limiting, thermal overload protection and safe operation area protection internally, and corresponding capacitors can be added to improve transient response. Therefore, the device is very easy to use, which is difficult to achieve with a standard three terminal regulator.

8.2 Representative Schematic Diagram

LM317C contains 29 transistors.

8.3 Feature Description

Comprehensive Overload Protection

The LM317C is internally integrated with current limit and thermal shutdown protection. When the output current is large or the junction temperature is higher than the rated range of the data sheet to a certain extent, the LM317C will enter the protection state and shut down the device to prevent accidental damage to the device. After the output current or junction temperature decreases to a certain extent, the LM317C will be released from the protection state and output normally.

When the output is short circuited, the LM317C will also enter the protection state and maintain the current at a low level. If the short circuit is removed, the LM317C will release the protection status and output normally.

8 Detailed Description

8.3 Feature Description (continued)

Minimum Operating Current

The LM317C needs to provide bias current between OUT and ADJ to make the device work normally. The load or feedback must consume this minimum current for regulation, otherwise the output may be too high. Refer to the *Electrical Characteristics* for the minimum load current required to maintain regulation.

Minimum Operating Voltage Difference

The LM317C requires a voltage difference (V_{IN} - V_{OUT}) of at least 3V between input and output before it can operate in the normal working state, otherwise the device may not maintain the normal output state.

Programmable Feedback

The device will provide 1.25V (typical value) bias voltage between OUT and ADJ, and the output voltage or current (not both) can be easily programmed through external resistance. For current regulation applications, a single resistor with a resistance value of $(1.25V / I_{OUT})$ and a rated power greater than $((1.25V)^2 / R)$ shall be used. For voltage regulation applications, two resistors set the output voltage.

Normal Operation

The LM317C is a three terminal positive voltage regulator with adjustable output. During normal operation, the LM317C will maintain a reference voltage V_{REF} of 1.25V between OUT and ADJ This reference voltage V_{REF} is converted from R_1 to programming current I_{PROG} (see Figure 8-1), which flows to ground through R_2 . The regulated output voltage is given by the following formula:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right) + I_{ADJ} \times R_2$$

As an error term in the formula, I_{ADJ} is designed to be less than $100\mu A$ and keep constant. Therefore, in most applications, this item can be negligible.

Since the LM317C requires the minimum operating current and the minimum operating voltage difference for normal operation, the corresponding conditions shall be met in the circuit design.

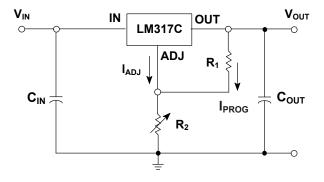


Figure 8-1. Basic Normal Operation

9 Application and Implementation

9.1 Application Information

Load Regulation

Following the following design recommendations can help the LM317C achieve better load regulation. The switching resistor R_1 shall be connected as close to the voltage regulator as possible to minimize the voltage drop of the line effectively connected in series with the reference voltage and avoid poor adjustment rate. The grounding terminal of R_2 can be returned close to the load grounding terminal to provide remote grounding sampling and improve the load adjustment rate.

External Capacitors

A $0.1\mu F$ disc or $1.0\mu F$ tantalum input bypass capacitor C_{IN} is recommended to reduce the sensitivity to input line impedance. The adjustment terminal may be bypassed to ground to improve ripple rejection.

A C_{ADJ} of $10\mu F$ (between OUT and GND) is recommended to improve ripple rejection. It prevents amplification of the ripple as the output voltage is adjusted higher.

Although the LM317C is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance C_{OUT} in the form of a 1.0µF tantalum or 25µF aluminum electrolytic capacitor on the output swamps this effect and insures stability. The C_{IN} and C_{OUT} should be placed as close to the corresponding device pins as possible.

When the LM317C is used as a reference voltage source instead of a peripheral resistor, it is recommended to use an input capacitor of 1.0µF or more to obtain better voltage stability.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Figure 9-1 shows the LM317C with the recommended protection diodes for output voltages in excess of 25V or high capacitance values $(C_{OUT} > 25\mu F, C_{ADJ} > 10\mu F)$. Diode D_1 prevents C_{OUT} from discharging through the IC during an input short circuit. Diode D_2 protects against capacitor C_{ADJ} discharging through the IC during an output short circuit. The combination of diodes D_1 and D_2 prevents C_{ADJ} from discharging through the IC during an input short circuit.

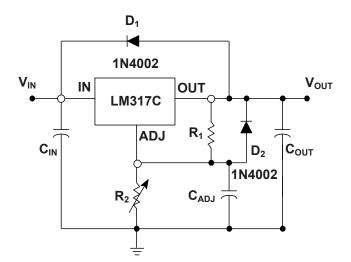


Figure 9-1. Voltage Regulator with Protection Diodes

9 Application and Implementation

9.2 System Example

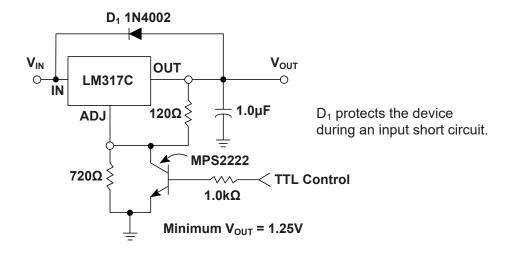


Figure 9-2. 5V Electronic Shutdown Regulator

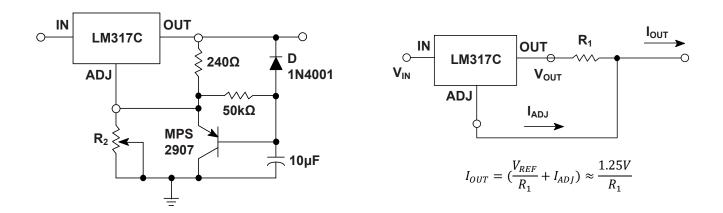
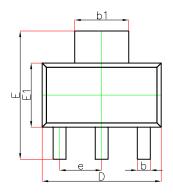
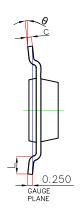


Figure 9-3. Slow Turn-On Regulator

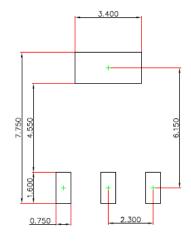
Figure 9-4. Current Regulator


NOTE


The application information in this section is not part of the data sheet component specification, and JSCJ makes no commitment or statement to guarantee its accuracy or completeness. Customers are responsible for determining the rationality of corresponding components in their circuit design and making tests and verifications to ensure the normal realization of their circuit design.

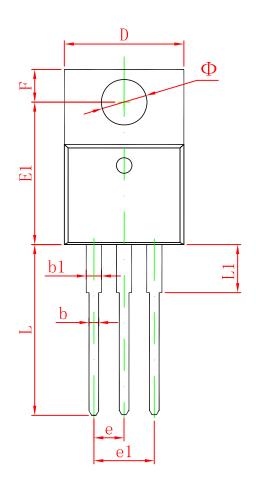
10.1 SOT-223 Mechanical Information

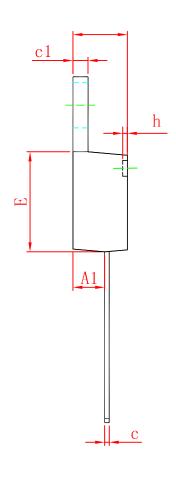
SOT-223 Outline Dimensions



	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Dillielisions	1	Dillielisio	1	
-	Min.	Max.	Min.	Max.	
Α		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
E	6.700	7.300	0.264	0.287	
E1	3.300	3.700	0.130	0.146	
е	2.300(BSC)		0.091	1(BSC)	
L	0.750		0.030		
θ	0°	10°	0°	10°	

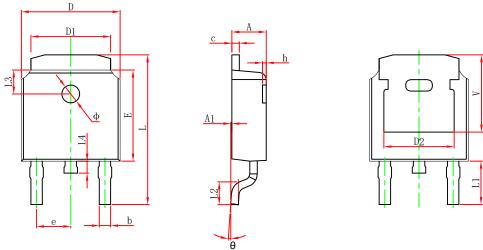
SOT-223 Suggested Pad Layout


Note:

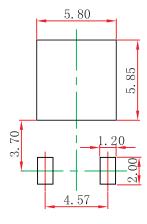

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

10.2 TO-220-3L Mechanical Information

TO-220-3L Outline Dimensions



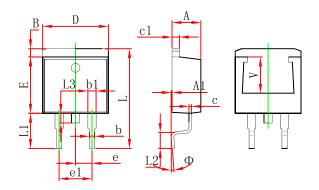
Cumbal	Dimensions	In Millimeters	Dimension	Dimensions In Inches		
Symbol	Min	Max	Min	Max		
Α	4.470	4.670	0.176	0.184		
A1	2.520	2.820	0.099	0.111		
b	0.710	0.910	0.028	0.036		
b1	1.170	1.370	0.046	0.054		
С	0.310	0.530	0.012	0.021		
c1	1.170	1.370	0.046	0.054		
D	10.010	10.310	0.394	0.406		
Е	8.500	8.900	0.335	0.350		
E1	12.060	12.460	0.475	0.491		
е	2.540	2.540 TYP) TYP		
e1	4.980	5.180	0.196	0.204		
F	2.590	2.890	0.102	0.114		
h	0.000	0.300	0.000	0.012		
L	13.400	13.800	0.528	0.543		
L1	3.560	3.960	0.140	0.156		
Ф	3.735	3.935	0.147	0.155		


10.3 TO-252-2L Mechanical Information

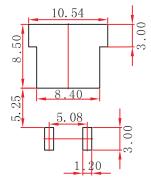
TO-252-2L Outline Dimensions

Cumbal	Dimensions	In Millimeters	Dimension	ns In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.635	0.770	0.025	0.030	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830	REF.	0.190 REF.		
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.712	10.312	0.382	0.406	
L1	2.90	REF.	0.114	REF.	
L2	1.400	1.700	0.055	0.067	
L3	1.600	REF.	0.063	REF.	
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.250	REF.	0.207	7 REF.	

TO-252-2L Suggest Pad Layout


Note:

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

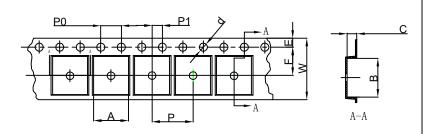

10.4 TO-263-2L Mechanical Information

TO-263-2L Outline Dimensions

Completed	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.470	4.670	0.176	0.184
A1	0.000	0.150	0.000	0.006
В	1.120	1.420	0.044	0.056
b	0.710	0.910	0.028	0.036
b1	1.170	1.370	0.046	0.054
С	0.310	0.530	0.012	0.021
c1	1.170	1.370	0.046	0.054
D	10.010	10.310	0.394	0.406
E	8.500	8.900	0.335	0.350
е	2.540	TYP.	0.100	TYP.
e1	4.980	5.180	0.196	0.204
L	14.940	15.500	0.588	0.610
L1	4.950	5.450	0.195	0.215
L2	2.340	2.740	0.092	0.108
L3	1.300	1.700	0.051	0.067
Φ	0°	8°	0°	8°
V	5.600	REF.	0.220	REF.

TO-263-2L Suggest Pad Layout

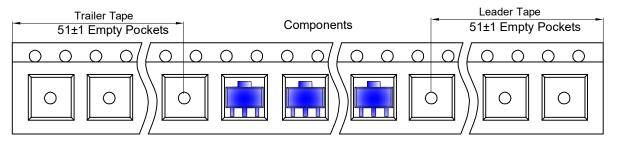
Note:

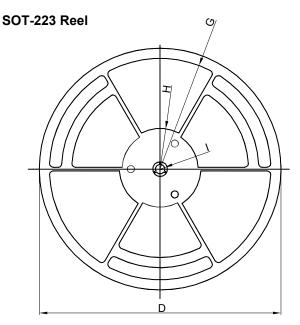

- 1. Controlling dimension: in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purposes only.

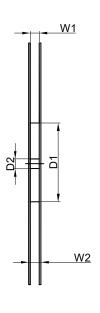
11 Packaging Information

11.1 SOT-223 Tape and Reel Information

SOT-223 Embossed Carrier Tape



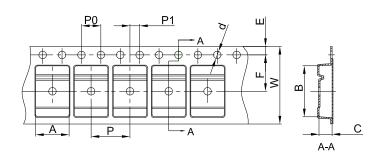

Packaging Description:


SOT-223 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13" or 33.0cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).

	Dimensions are in millimeter									
Pkg type	Pkg type A B C d E F P0 P P1 W									
SOT-223	SOT-223 6.765 7.335 1.88 Ø1.50 1.75 5.50 4.00 8.00 2.00 12.00									

SOT-223 Tape Leader and Trailer

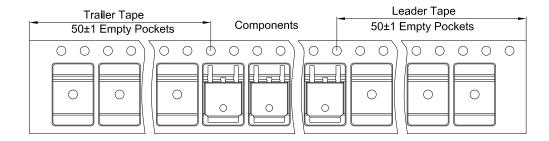
	Dimensions are in millimeter									
Reel Option	Reel Option D D1 D2 G H I W1 W2									
13"Dia Ø330.00 100.00 13.00 R151.00 R56.00 R6.50 12.40 17.60										


REEL	Reel Size	Box	Box Size(mm)	Carton	Carton Size(mm)	G.W.(kg)
2,500 pcs	13 inch	2,500 pcs	336×336×48	20,000 pcs	445×355×365	

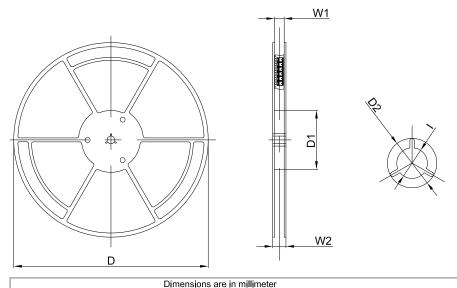
Packaging Information

11.2 TO-252-2L Tape and Reel Information

TO-252-2L Embossed Carrier Tape



Packaging Description:

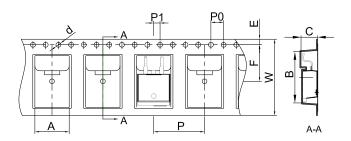

TO-252 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 25,00 units per 13" or 33.0 cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).

	Dimensions are in millimeter									
Pkg type A B C d E F P0 P P1 W								W		
TO-252	TO-252 6.90 10.50 2.70 Ø1.55 1.75 7.50 4.00 8.00 2.00 16.00									

TO-252-2L Tape Leader and Trailer

TO-252-2L Reel

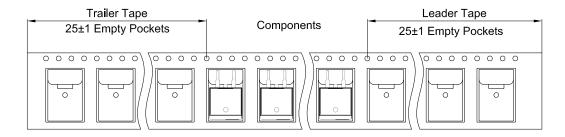
Reel Option	D	D1	D2	W1	W2	I
13"Dia	330.00	100.00	Ø21.00	16.40	21.00	Ø13.00
13 DIA	330.00	100.00	921.00	10.40	21.00	\$13.00

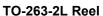

REEL	Reel Size	Вох	Box Size(mm)	Carton	Carton Size(mm)	G.W.(kg)
2,500 pcs	13inch	2,500 pcs	340×336×29	25,000 pcs	353×346×365	

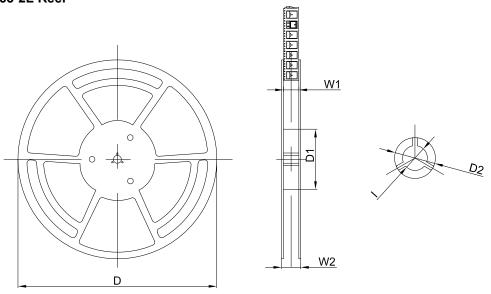
11 Packaging Information

11.3 TO-263-2L Tape and Reel Information

TO-263-2L Embossed Carrier Tape




Packaging Description:


TO-263-2L parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 800 units per 13" or 33.0 cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).

	Dimensions are in millimeter									
Pkg type	Pkg type A B C d E F P0 P P1 W									
TO-263-2L	TO-263-2L 10.80 16.13 5.21 Ø1.55 1.75 11.50 4.00 16.00 2.00 24.00									

TO-263-2L Tape Leader and Trailer

Dimensions are in millimeter									
Reel Option D D1 D2 W1 W2 I									
13"Dia	Ø330.00	100.00	24.4	30.4	Ø13.00				
•	-								

REEL	Reel Size	Box	Box Size(mm)	Carton	Carton Size(mm)	G.W.(kg)
800 pcs	13 inch	800 pcs	340×336×36	8,000 pcs	400×353×365	

12 Notes and Revision History

12.1 Associated Product Family and Others

To view other products of the same type or IC products of other types, click the official website of JSCJ https: **www.jscj-elec.com** for more details.

12.2 Notes

Electrostatic Discharge Caution

This IC may be damaged by ESD. Relevant personnel shall comply with correct installation and use specifications to avoid ESD damage to the IC. If appropriate measures are not taken to prevent ESD damage, the hazards caused by ESD include but are not limited to degradation of integrated circuit performance or complete damage of integrated circuit. For some precision integrated circuits, a very small parameter change may cause the whole device to be inconsistent with its published specifications.

12.3 Revision History

October, 2023: changed from rev - 1.2 to rev - 1.3:

- Page 1, Features, output adjustable range changed from "1.2V to 37V" to "1.25V to 37V";
- Page 4, Recommend Operating Conditions, output adjustable range changed from "1.2V to 37V" to "1.25V to 37V":
- Page 6, Electrical Characteristics, PSRR is changed from "120Hz" to "100Hz and 1kHz";
- Page 8, Typical Characteristics, added the figure of the "Temperature Characteristics";
- Page 9, Typical Characteristics, removed the figures of the "SCP";
- Page 21, removed the notes of the thermal metric.

February, 2023: changed from rev - 1.1 to rev - 1.2:

Page 5, Thermal Information, added junction-to-case thermal resistance R_{O.IC}.

August 2022: changed from rev - 1.0 to rev - 1.1:

- Modified data sheet format: All data sheet, added headers, changed font size;
- · Page 1, modified footer;
- Page 1, Introduction, Features, ouput voltage range changed from 1.25V to 1.2V;
- Page 2, Orderable Information, changed Max OP T_J: 125°C to OP T_J: -40 to 125°C;
- Page 4, Recommended Operating Conditions, changed OP T_J from 0 to 125°C to -40 to 125°C;
- Page 4, Absolute Maximum Ratings, Recommended Operating Conditions, changed OP T_J from 0 to 125°C to -40 to 125°C.

June 2022: released LM317C rev - 1.0.

DISCLAIMER

IMPORTANT NOTICE, PLEASE READ CAREFULLY

The information in this data sheet is intended to describe the operation and characteristics of our products. JSCJ has the right to make any modification, enhancement, improvement, correction or other changes to any content in this data sheet, including but not limited to specification parameters, circuit design and application information, without prior notice.

Any person who purchases or uses JSCJ products for design shall: 1. Select products suitable for circuit application and design; 2. Design, verify and test the rationality of circuit design; 3. Procedures to ensure that the design complies with relevant laws and regulations and the requirements of such laws and regulations. JSCJ makes no warranty or representation as to the accuracy or completeness of the information contained in this data sheet and assumes no responsibility for the application or use of any of the products described in this data sheet.

Without the written consent of JSCJ, this product shall not be used in occasions requiring high quality or high reliability, including but not limited to the following occasions: medical equipment, military facilities and aerospace. JSCJ shall not be responsible for casualties or property losses caused by abnormal use or application of this product.

Official Website: www.jscj-elec.com

Copyright © JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.