Specification for Approval

－DEVICE NUMBER：BL－HGE32X

SAM PLES ATTACHED AREA

PATE	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$			CONTENTS
$2017 / 10 / 17$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			Initial Released
$2021 / 03 / 19$	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1			Modify IV，VF，drawings
$2023 / 5 / 24$	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2			Update Package Dimensions

FOR CUSTOMER＇S APPROVAL STAMP OR SIGNATURE

APPROVED	PURCHASE	MANUFACTURE	QUALITY	ENGINEERING

佰鴻工業股份有限公司 BRIGHT LED ELECTRONICS CORP．新北市板橋區和平路 19 號 3 樓 3F．，No．19，He Ping Road，
Ban Qiao Dist．，New Taipei City， Taiwan
Tel：＋886－2－29591090

Approved By	Confirmed By	Prepared By
曾 2023.05 .24 慶 霖	毛 2023.05 .24 曉 峰	羅 2023.05 .24 培 娟

Fax：＋886－2－29547006／29558809 www．brtled．com BRIGHT LED ELECTRONICS CORP.

Features:

1. Emitted Color: Yellow Green.
2. Lens Appearance: Water Clear.
3. $3.5 \times 2.8 \times 1.9 \mathrm{~mm}$ standard package.
4. Suitable for all SMT assembly methods.
5. Compatible with infrared and vapor phase reflow solder process.
6. Compatible with automatic placement equipment.
7. This product doesn't contain restriction Substance, comply ROHS standard.

- Applications:

1. Automotive lighting.
2. Backlighting: LCDs, Key pads advertising.
3. Status indicators: Consumer \& industrial electronics.
4. General use.

-Package Dimensions:

CATHODE
ANODE

NOTES:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.10 \mathrm{~mm}$ (0.004 ") unless otherwise specified.
3. Specifications are subject to change without notice.

- Absolute Maximum Ratings($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Power Dissipation	Pd	75	mW
Forward Current	I_{F}	30	mA
Peak Forward Current*1	I_{FP}	100	mA
Reverse Voltage	V_{R}	5	V
Operating Temperature	Topr	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Soldering Temperature	Tsol	See Page 6	-

*1 Condition for I_{FP} is pulse of $1 / 10$ duty and 0.1 msec width.

BRIGHT LED ELECTRONICS CORP.

Electrical and optical characteristics($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Forward Voltage	Vf	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	2.0	2.4	V
Luminous Intensity	Iv	$\mathrm{I}_{\mathrm{F}=20 \mathrm{~mA}}$	-	140	-	mcd
Peak Wavelength	$\lambda \mathrm{p}$	$\mathrm{I}_{\mathrm{F}=20 \mathrm{~mA}}$	-	570	-	nm
Dominant Wavelength	$\lambda \mathrm{d}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	566	-	576	nm
Spectral Line Half-width	$\Delta \lambda$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	30	-	nm
Reverse Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	-	-	10	Ma
Viewing Angle	$2 \theta_{1 / 2}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	120	-	deg

- Typical Electro-Optical Characteristics Curves

WAVELENGTH 竹 (nm)

Fig. 5 RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

Fig. 2 FORWARD CURRENT
VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta(\perp)

Fig. 4 RELATIVE LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE

ORWARD CURRENT (mA)

BRIGHT LED ELECTRONICS CORP.

Tapping and packaging specifications(Units: mm)

NOTE:2000 PCS PER REEL

Package Method(Unit: mm)

12 bag/box

BRIGHT LED ELECTRONICS CORP.

- Bin Limits

Intensity Bin Limits (At 20 mA)

BIN CODE	Min. (mcd)	Max. (mcd)
P	63	94
Q	94	140
R	140	210
S	210	317

Tolerance for each Bin limit is $\pm 15 \%$.

Color Bin Limits (At 20 mA)

BIN CODE	Min. (nm)	Max. (nm)
4	566	568
5	568	570
6	570	572
7	572	574
8	574	576

Tolerance for each Bin limit is $\pm 1 \mathrm{~nm}$.

Forward Voltage Bin Limits (At 20 mA)

BIN CODE	Min.(V)	Max.(V)
B	1.8	2.0
C	2.0	2.2
D	2.2	2.4

Tolerance for each Bin limit is $\pm 0.02 \mathrm{~V}$.

[^0] BRIGHT LED ELECTRONICS CORP.

Classification	Test Item	Reference Standard	Test Conditions	Result
Endurance Test	Operation Life	$\begin{aligned} & \text { MIL-STD-750:1026 } \\ & \text { MIL-STD-883:1005 } \\ & \text { JIS-C-7021 }: \text { :B-1 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Ta=Under room temperature } \\ & \text { Test time }=1,000 \mathrm{hrs} \end{aligned}$	0/20
	High Temperature High Humidity Storage	$\left\lvert\, \begin{aligned} & \text { MIL-STD-202:103B } \\ & \text { JIS-C-7021 } \end{aligned}\right. \text { :B-11 }$	$\begin{aligned} & \mathrm{Ta}=+65^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \mathrm{RH}=90 \%-95 \% \\ & \text { Test time }=240 \mathrm{hrs} \end{aligned}$	0/20
	High Temperature Storage	$\left\lvert\, \begin{aligned} & \text { MIL-STD-883:1008 } \\ & \text { JIS-C-7021 } \\ & \text { :B-10 } \end{aligned}\right.$	High $\mathrm{Ta}=+85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Test time $=1,000 \mathrm{hr}$	0/20
	Low Temperature Storage	JIS-C-7021 :B-12	Low $\mathrm{Ta}=-35^{\circ} \mathrm{C} \pm 5^{\circ}$ Test time=1,000hrs	0/20
Environmental Test	Temperature Cycling	MIL-STD-202:107D MIL-STD-750:1051 MIL-STD-883:1010 JIS-C-7021 :A-4	$-35^{\circ} \mathrm{C} \sim+25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C} \quad \sim+25^{\circ} \mathrm{C}$ 60 min 20 min 60 min $\quad 20$ min Test Time $=5$ cycle	0/20
	Thermal Shock	MIL-STD-202:107D MIL-STD-750:1051 MIL-STD-883:1011	$-35^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \quad \sim+85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ 20 min $\quad 20 \mathrm{~min}$ Test Time $=10$ cycle	0/20
	Solder Resistance	$\begin{aligned} & \text { MIL-STD-202:201A } \\ & \text { MIL-STD-750:2031 } \\ & \text { JIS-C-7021 } \\ & \text { :A-1 } \end{aligned}$	Preheating: $140^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}$, within 2 minutes. Operation heating : $260^{\circ} \mathrm{C}$ (Max.), within 10 seconds. (Max.)	0/20

- Judgment criteria of failure for the reliability

Measuring items	Symbol	Measuring conditions	Judgment criteria for failure
Forward voltage	$\mathrm{V}_{\mathrm{F}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	Over U1$\times 1.2$
Reverse current	$\mathrm{I}_{\mathrm{R}}(\mathrm{uA})$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	Over U1$\times 2$
Luminous intensity	$\mathrm{Iv}(\mathrm{mcd})$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	Below $\mathrm{S}^{1} \times 0.5$

Note: 1. U means the upper limit of specified characteristics. S means initial value.
2. After each test, remove test pieces, wait for 2 hours and test pieces have returned to ambient temperature, then take next measurement.

BRIGHT LED ELECTRONICS CORP.

1. Avoid any external stress applied to the resin while the LEDs are at high temperature, especially during soldering.
2, Avoid rapid cooling or any excess vibration during temperature ramp-down process
2. Although the soldering condition is recommended above, soldering at the lowest possible temperature is feasible for the LEDs

-IRON Soldering

$350^{\circ} \mathrm{C}$ Within 3 sec , one time only. BRIGHT LED ELECTRONICS CORP.

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force.
As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools. (pic.1)
2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry. (pic.2, pic.3)
3. Do not stack together assembled PCBs, containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry. (pic.4)
4. The outer diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks. The inner diameter of the nozzle should be as large as possible. (pic.5)
5. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup. (pic.5)
6. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production. (pic.5)

Pic. 5

Notes for designing:
Care must be taken to provide the current limiting resistor in the circuit so as to drive the LEDs within the rated figures. Also, caution should be taken not to overload LEDs with instantaneous voltage at the turning ON and OFF of the circuit.
When using the pulse drive care must be taken to keep the average current within the rated figures. Also, the circuit should be designed so as be subjected to reverse voltage when turning off the LEDs.

- Storage:

In order to avoid the absorption of moisture, it is recommended to solder LEDs as soon as possible after unpacking the sealed envelope.
If the envelope is still packed, to store it in the environment as following:
(1) Temperature : $5^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right)$ Humidity : RH 60% Max.
(2) After this bag is opened, devices that will be applied to infrared reflow, vapor-phase reflow, or equivalent soldering process must be:
a. Completed within 24 hours.
b. Stored at less than 20% RH.
(3) Devices require baking before mounting, if: 2 a or 2 b is not met.
(4) If baking is required, devices must be baked under below conditions: 48 hours at $60^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

Package and Label of Products:

(1) Package: Products are packed in one bag of 2000 pcs (one taping reel) and a label is attached to each bag.
(2) Label:

Manufacture Location

[^0]: - BIN: $\underline{x} \quad \underline{x}$
 Intensity BIN CODE

