# I<sup>2</sup>S/TDM Input, 10.25V BOOST Digital Smart K Audio Amplifier with Speaker Voltage and Current Sense

# **FEATURES**

awinic

- Smart BOOST with total efficiency up to 83%
- High RF noise suppression, eliminate the TDD noise completely
- Low noise: 11µV
- THD+N: 0.02%
- Speaker Voltage and Current monitor and feedback with I<sup>2</sup>S/TDM interface
- Supports 6Ω Speaker
- Extensive Pop-Click Suppression
- Volume control (from -96dB to 0dB)
- I<sup>2</sup>S/TDM interface:
  - I<sup>2</sup>S, Left-Justified and Right-Justified
  - Supports 1/2/4/6/8 slots TDM
  - Input Sample Rates from 8kHz to 96kHz
  - Data Width: 16, 20, 24, 32 Bits
- Ultrasonic support with sample frequency of 96kHz
- I<sup>2</sup>C-bus control interface(400kHz)
- Power Supplies:
  - VBAT: 3.0V-5.5V
  - DVDD: 1.65V~1.95V
- Short-Circuit Protection, Over-Temperature Protection, Under-Voltage Protection and Over-Voltage Protection
- FCQFN 2.5mm X 2.5mm-26L package

# APPLICATIONS

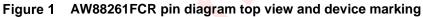
- Mobile phones
- Tablets
- Portable Audio Devices

# DESCRIPTION

The AW88261 is an I<sup>2</sup>S/TDM input, high efficiency digital Smart K audio amplifier with an integrated 10.25V smart boost converter. Due to its  $11\mu$ V noise floor and ultra-low distortion, clean listening is guaranteed. It can deliver 5.2W output power into an 8 $\Omega$  speaker at 1% THD+N.

The AW88261 integrates a high-efficiency smart boost converter as the Class-D amplifier supply rail. The output voltage of boost converter can be adjusted smartly according to the input amplitude, which extremely improves the efficiency without clipping distortion.


The AW88261 features high RF suppression and eliminates TDD noise completely benefited from the digital audio input interface. General settings are communicated via an I<sup>2</sup>C-bus interface, and the device address is configurable.


The AW88261 offers Short Circuit Protection, Over-Temperature Protection, Under-Voltage Protection and Over-Voltage Protection to protect the device.

AW88261 is available in a FCQFN 2.5mm X 2.5mm-26L package.

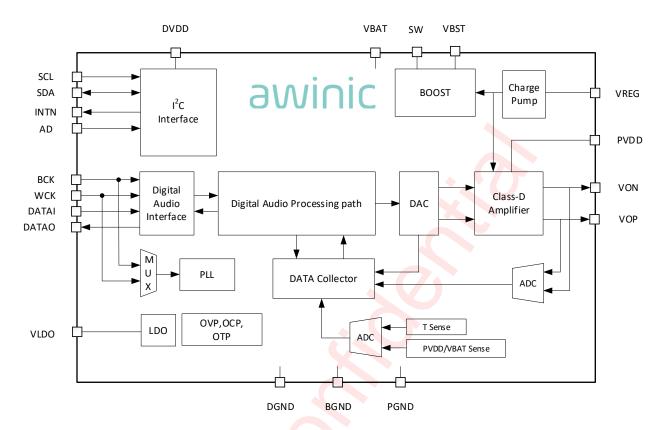
# PIN CONFIGURATION AND TOP MARK

awinic





|        |          | -                                                          |
|--------|----------|------------------------------------------------------------|
| Pin No | Pin Name | Description                                                |
| A1     | VLDO     | Digital core voltage regulator output                      |
| A2     | ВСК      | I <sup>2</sup> S/TDM bit clock input                       |
| A3     | WCK      | I <sup>2</sup> S word select input / TDM frame sync signal |
| A4     | SCL      | I <sup>2</sup> C clock input                               |
| A5     | SDA      | I <sup>2</sup> C data IO                                   |
| B1     | DATAO    | I <sup>2</sup> S/TDM data out                              |
| B2     | DATAI    | I <sup>2</sup> S/TDM data input                            |
| B4     | AD       | I <sup>2</sup> C address select input                      |
| B5     | INTN     | Interrupt output                                           |
| B6     | DVDD     | Digital power supply                                       |
| C2     | VBAT     | Battery power supply                                       |
| D3     | BGND     | Boost GND                                                  |
| D4,E4  | DGND     | Digital GND                                                |
| D5,D6  | PGND     | Power GND                                                  |


2

## **PIN DESCRIPTION**

#### **OWINIC** 上海艾为电子技术股份有限公司 shanghai awinic technology co., Itd.

| Pin No   | Pin Name | Description                  |
|----------|----------|------------------------------|
| E1,E2,E3 | SW       | Boost switch pin             |
| E5       | VOP      | Non-inverting Class-D output |
| E6       | VON      | Inverting Class-D output     |
| F1,F2,F3 | VBST     | Boost output                 |
| F4       | PVDD     | Power supply voltage         |
| F6       | VREG     | Voltage output of regulator  |

# FUNCTIONAL BLOCK DIAGRAM





# **APPLICATION DIAGRAM**

awinic

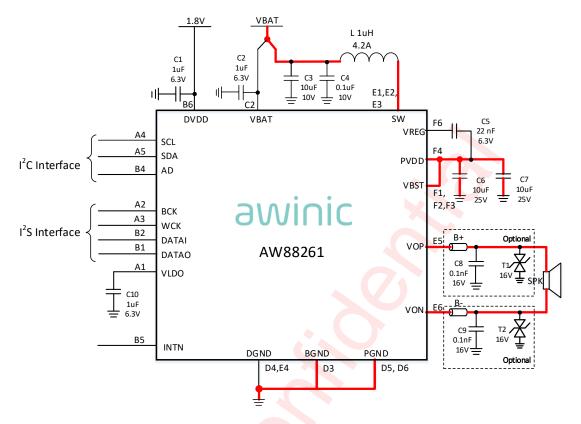



Figure 3 AW88261 Application Circuit

5

Note: Traces carry high current are marked in red in the above figure

All trademarks are the property of their respective owners.

# **ORDERING INFORMATION**

| Product Type | Temperature | Package              | Device<br>Marking | Moisture<br>Sensitivity<br>Level | Environmental<br>Information | Delivery Form                |
|--------------|-------------|----------------------|-------------------|----------------------------------|------------------------------|------------------------------|
| AW88261FCR   | -40℃ ~ 85℃  | FCQFN<br>2.5X2.5-26L | X1G1              | MSL1                             | RoHS+HF                      | 4500 units/<br>Tape and Reel |

# ABSOLUTE MAXIMUM RATING(NOTE1)

| Parameter                                            | Range                              |
|------------------------------------------------------|------------------------------------|
| Battery Supply Voltage VVBAT                         | -0.3V to 6V                        |
| Digital Supply Voltage VDVDD                         | -0.3V to 2V                        |
| Boost output voltage VPVDD                           | -0.3 to 13V                        |
| Boost SW pin voltage                                 | -0.3 to V <sub>PVDD</sub> (Note 2) |
| VOP/VON pin voltage                                  | -0.3 to VPVDD (Note 2)             |
| Minimum load resistance R⊾                           | -5Ω                                |
| Package Thermal Resistance θ <sub>JA</sub>           | 60°C/W                             |
| Ambient Temperature Range                            | -40°C to 85°C                      |
| Maximum Junction Temperature T <sub>JMAX</sub>       | 165°C                              |
| Storage Temperature Range T <sub>STG</sub>           | -65°C to 150°C                     |
| Lead Temperature (Soldering 10 Seconds)              | 260°C                              |
| ESD Rating (Note 3,4)                                |                                    |
| HBM (Human Body Model)                               | ±2000V                             |
| CDM (Charge Device Model)                            | ±1000V                             |
| Latch-up                                             |                                    |
| Test Condition: JEDEC STANDARD NO.78E SEPTEMBER 2016 | +IT: 450mA                         |
| Test Condition: JEDEC STANDARD NO.78E SEPTEMBER 2016 | -IT: -450mA                        |

**Note 1:** Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 2: SW/VOP/VON pin can handle 16V transients for less than 5ns

**Note 3***;* The human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. Test method: MIL-STD-883J Method 3015.9

Note 4: Test method: JEDEC EIA/JESD22-C101F

# **ELECTRICAL CHARACTERISTICS**

## CHARACTERISTICS

Test condition:  $T_A=25^{\circ}C$ , VBAT=3.6V, DVDD=1.8V, PVDD=10.25V,  $R_L=8\Omega+33\mu$ H, f=1kHz(unless otherwise noted)

| Symbol            | Description                      | Test Conditions                                                                 | Min  | Тур.                     | Мах  | Units |
|-------------------|----------------------------------|---------------------------------------------------------------------------------|------|--------------------------|------|-------|
| V <sub>VBAT</sub> | Battery supply voltage           | On pin VBAT                                                                     | 3.0  |                          | 5.5  | V     |
| V <sub>DVDD</sub> | Digital supply voltage           | On pin DVDD                                                                     | 1.65 | 1.8                      | 1.95 | V     |
|                   |                                  | Operating mode                                                                  |      | 7.5                      |      | mA    |
| IVBAT             | Battery supply current           | Standby mode                                                                    | X    | 5                        |      | μA    |
|                   |                                  | Power down mode, DVDD=0V                                                        |      | 0.6                      | 2    | μA    |
|                   |                                  | Operating mode                                                                  |      | 3.5                      |      | mA    |
|                   | Digital supply current           | Power down mode 🔪 🌔                                                             |      | 4                        |      | μA    |
| Boost             |                                  |                                                                                 |      |                          |      |       |
| VPVDD             | Boost output voltage             |                                                                                 |      | 10.25 <sup>(Note1)</sup> |      | V     |
| N/                | Over-voltage threshold           |                                                                                 |      | V <sub>PVDD</sub> +0.5   |      | V     |
| Vovp              | OVP hysteresis voltage           |                                                                                 |      | 500                      |      | mV    |
| L_PEAK            | Inductor peak current limit      |                                                                                 |      | 4 <sup>(Note1)</sup>     |      | А     |
| F <sub>BST</sub>  | Operating Frequency              | fs = 48 <mark>K</mark> Hz                                                       |      | 2                        |      | MHz   |
| DMAX              | The maximum duty cycle           |                                                                                 |      | 90                       |      | %     |
| ηвят              | Boost converter efficiency       | VBAT= <mark>4.</mark> 2V, PVDD =10.25V,<br>I <sub>load</sub> = 0.5A, SmartBoost |      | 88                       |      | %     |
| Class-D           | C                                |                                                                                 |      |                          |      |       |
| $R_{dson}$        | Drain-Source on-state resistance | High side MOS + Low side<br>MOS                                                 |      | 300                      |      | mΩ    |
|                   |                                  | THD+N=1%, R∟=8Ω+33µH,<br>VBAT=4.2V, PVDD=10.25V                                 |      | 5.2                      |      | W     |
| De                | Creaker Outsut Davier            | THD+N=10%, R∟=8Ω+33μH,<br>VBAT=4.2V, PVDD=10.25V                                |      | 6.5                      |      | W     |
| Po                | Speaker Output Power             | THD+N=1%, R∟=6Ω+33µH,<br>VBAT=4.2V, PVDD=10.25V                                 |      | 5.4                      |      | W     |
|                   | •0                               | THD+N=10%, R∟=6Ω+33µH,<br>VBAT=4.2V, PVDD=10.25V                                |      | 6.7                      |      | W     |
| Vos               | Output offset voltage            | l²S signal input 0                                                              | -10  | 0                        | 10   | mV    |
| FPWM              | PWM Switching frequency          | Typical Sample Rate: 48kHz                                                      |      | 384                      |      | kHz   |
| η                 | Total efficiency<br>(Class-D)    | VBAT=4.2V, Po=0.48W,<br>R∟=8Ω+33µH                                              |      | 87                       |      | %     |

| and the second | Description                                                                                                                                                      | Test Conditio                                                | ns                    | Min                        | Тур. | Max                                             | Units            |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|----------------------------|------|-------------------------------------------------|------------------|
|                                                                                                                  | Total efficiency<br>(SmartBoost+Class-D)                                                                                                                         | VBAT=4.2V, Po=1W,<br>R∟=8Ω+33μH                              |                       |                            | 83   |                                                 | %                |
|                                                                                                                  |                                                                                                                                                                  | VBAT=4.2V, Po=1W,                                            |                       |                            |      |                                                 |                  |
| THD+N                                                                                                            | Total harmonic distortion<br>plus noise                                                                                                                          | R∟=8Ω+33µH, f=1kHz<br>PVDD=10.25V                            | ,<br>,                |                            | 0.02 |                                                 | %                |
| F                                                                                                                | Speaker Mode Output<br>noise                                                                                                                                     | A-weighting                                                  |                       |                            | 16   |                                                 | μV               |
| Εn                                                                                                               | Receiver Mode Output<br>noise                                                                                                                                    | A-weighting                                                  |                       | . (                        | 11   |                                                 | μV               |
|                                                                                                                  |                                                                                                                                                                  | SPK(20Hz-20kHz),P                                            | o=1W                  |                            | 0.3  |                                                 | dB               |
| FRamp                                                                                                            | Frequency response                                                                                                                                               | SPK(20Hz-40kHz),P                                            | o=1W                  |                            | 1.0  |                                                 | dB               |
|                                                                                                                  | flatness <sup>(Note2)</sup>                                                                                                                                      | RCV(20Hz-20kHz),F                                            | o=0.5W                |                            | 0.15 |                                                 | dB               |
|                                                                                                                  |                                                                                                                                                                  | RCV(20Hz-40kHz),F                                            | Po= <mark>0.5W</mark> |                            | 0.4  |                                                 | dB               |
| SNR                                                                                                              | Signal-to-noise ratio                                                                                                                                            | VBAT=4.2V, PVDD=1<br>Po=5.2W, R∟=8Ω+33µ<br>A-weighting       |                       |                            | 112  |                                                 | dB               |
|                                                                                                                  |                                                                                                                                                                  | Receiver Mode,                                               | 217Hz                 |                            | 85   |                                                 | dB               |
| PSRR                                                                                                             | Power supply rejection ratio                                                                                                                                     | VBA1=4.2V,<br>V <sub>p-p_sin</sub> =200mV                    | 1kHz                  |                            | 80   |                                                 | dB               |
| urrent Se                                                                                                        | ense                                                                                                                                                             |                                                              |                       |                            |      |                                                 |                  |
| Isns_fs                                                                                                          | Current sense full scale                                                                                                                                         |                                                              |                       |                            | 3.3  |                                                 | Α                |
| SVID                                                                                                             |                                                                                                                                                                  | lpeak=1A, R∟=8Ω+33                                           | μH,                   |                            | 65   |                                                 | dB               |
| SNR                                                                                                              | Signal-to-noise ratio                                                                                                                                            | A-weigh <mark>ti</mark> ng                                   |                       |                            |      |                                                 |                  |
| THD+N                                                                                                            | Total harmonic distortion<br>plus noise                                                                                                                          | A-weigh <mark>ti</mark> ng<br>Po=1W, R⊾=8Ω+33µH              | ł                     |                            | 0.4  |                                                 | %                |
|                                                                                                                  | Total harmonic distortion                                                                                                                                        |                                                              |                       |                            | 0.4  |                                                 | %                |
| THD+N<br>ΔI <sub>SNS</sub>                                                                                       | Total harmonic distortion plus noise                                                                                                                             | Po=1W, R⊾=8Ω+33µ⊦                                            |                       |                            |      |                                                 |                  |
| THD+N<br>ΔI <sub>SNS</sub>                                                                                       | Total harmonic distortion<br>plus noise<br>Current sense accuracy                                                                                                | Po=1W, R∟=8Ω+33µH<br>Po=1W, R∟=8Ω+33µH                       | 1                     |                            |      | 0.3 x<br>VDVDD                                  |                  |
| THD+N<br>ΔI <sub>SNS</sub><br>igital Loç                                                                         | Total harmonic distortion<br>plus noise<br>Current sense accuracy<br>gical Interface                                                                             | Po=1W, R⊾=8Ω+33µ⊦                                            | 1                     | 0.7 x<br>Vdvdd             |      |                                                 | %                |
| THD+N<br>ΔI <sub>SNS</sub><br>igital Log<br>V <sub>IL</sub>                                                      | Total harmonic distortion<br>plus noise<br>Current sense accuracy<br>gical Interface                                                                             | Po=1W, R∟=8Ω+33μH<br>Po=1W, R∟=8Ω+33μH<br>BCK, WCK, DATAI Pi | 1                     |                            |      | Vdvdd                                           | %<br>V           |
| THD+N<br>ΔI <sub>SNS</sub><br>igital Log<br>V <sub>IL</sub><br>V <sub>IH</sub>                                   | Total harmonic distortion<br>plus noise<br>Current sense accuracy<br>gical Interface<br>Logic input low level<br>Logic input high level                          | Po=1W, R∟=8Ω+33µH<br>Po=1W, R∟=8Ω+33µH                       | 1                     |                            |      | V <sub>DVDD</sub><br>V <sub>DVDD</sub><br>0.3 x | %<br>V<br>V      |
| THD+N<br>ΔI <sub>SNS</sub><br>igital Log<br>VIL<br>VIH<br>VIH                                                    | Total harmonic distortion<br>plus noise<br>Current sense accuracy<br>gical Interface<br>Logic input low level<br>Logic input high level<br>Logic input low level | Po=1W, R∟=8Ω+33μH<br>Po=1W, R∟=8Ω+33μH<br>BCK, WCK, DATAI Pi | 1                     | V <sub>DVDD</sub><br>0.7 x |      | VDVDD<br>VDVDD<br>0.3 x<br>VDVDD                | %<br>V<br>V<br>V |

# awinic 上海3 shang

Oct.2022 V1.5

| Symbol           | Description                                       | Test Conditions | Min | Тур. | Мах | Units |
|------------------|---------------------------------------------------|-----------------|-----|------|-----|-------|
| T <sub>SD</sub>  | Over temperature protection threshold             |                 |     | 150  |     | °C    |
| T <sub>SDR</sub> | Over temperature protection<br>recovery threshold |                 |     | 130  |     | °C    |
|                  | Under-voltage protection voltage                  |                 |     | 2.4  |     | V     |
| UVP              | Under-voltage protection<br>hysteresis voltage    |                 |     | 200  |     | mV    |

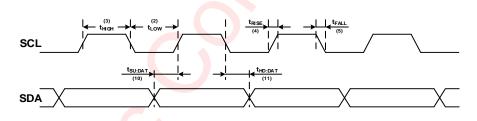
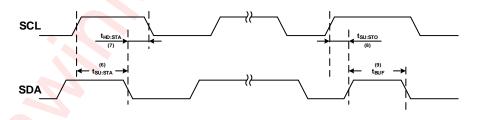
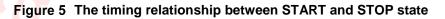
Note 1: Registers are adjustable; Refer to the list of registers.

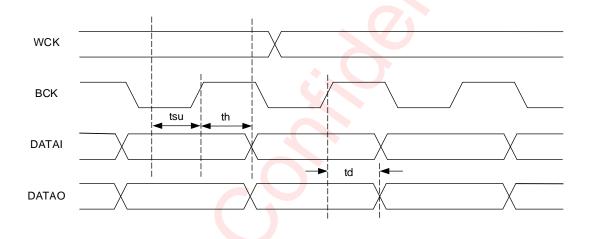
Note 2: FS=96KHz when the amplitude response variation is 20Hz-40kHz.

www.awinic.com

## I<sup>2</sup>C INTERFACE TIMING

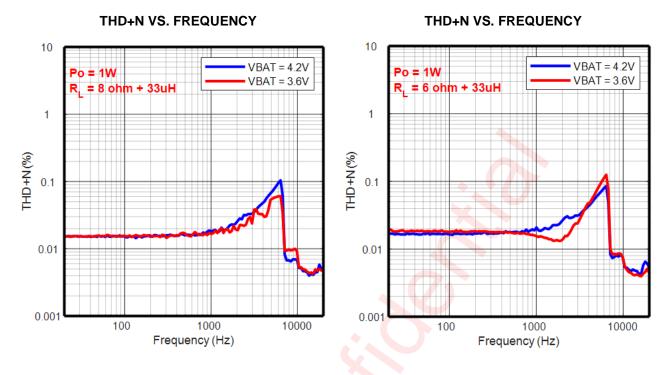
|     | Parameter           |                                             |     | ТҮР | МАХ | UNIT |
|-----|---------------------|---------------------------------------------|-----|-----|-----|------|
| No. | Sym                 | Name                                        | MIN | ••• |     | UNIT |
| 1   | fscl                | SCL Clock frequency                         |     |     | 400 | kHz  |
| 2   | $t_{\text{LOW}}$    | SCL Low level Duration                      | 1.3 |     |     | μs   |
| 3   | tніgн               | SCL High level Duration                     | 0.6 |     |     | μs   |
| 4   | t <sub>RISE</sub>   | SCL, SDA rise time                          |     |     | 0.3 | μs   |
| 5   | t <sub>FALL</sub>   | SCL, SDA fall time                          |     | 5   | 0.3 | μs   |
| 6   | tsu:sta             | Setup time SCL to START state               | 0.6 |     |     | μs   |
| 7   | thd:sta             | (Repeat-start) Start condition hold time    | 0.6 |     |     | μs   |
| 8   | tsu:sto             | Stop condition setup time                   | 0.6 |     |     | μs   |
| 9   | t <sub>BUF</sub>    | the Bus idle time START state to STOP state | 1.3 |     |     | μs   |
| 10  | tsu:dat             | SDA setup time                              | 0.1 |     |     | μs   |
| 11  | t <sub>HD:DAT</sub> | SDA hold time                               | 10  |     |     | ns   |
|     |                     |                                             |     |     |     |      |

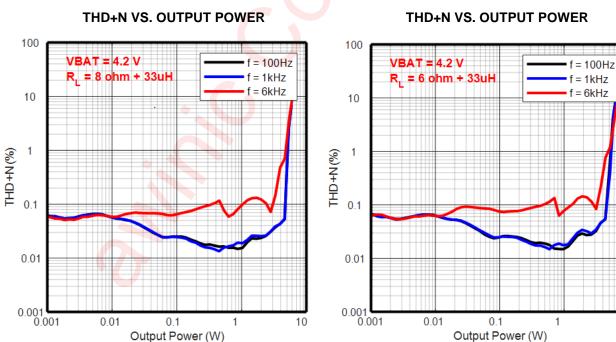






Figure 4 SCL and SDA timing relationships in the data transmission process






## DIGITAL AUDIO INTERFACE TIMING

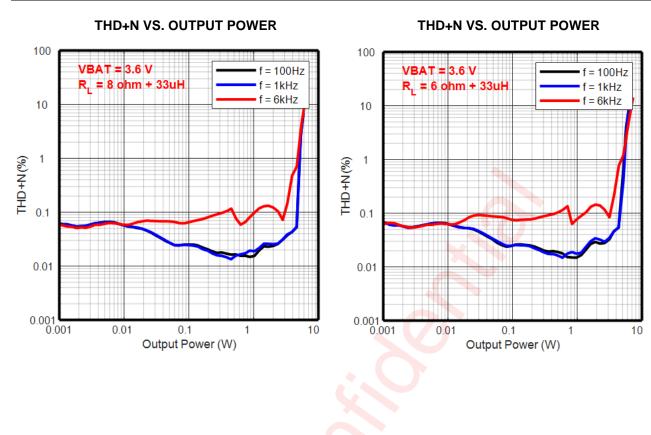

|                  | Parameter Name                  | Min   | Тур. | Max    | Units |
|------------------|---------------------------------|-------|------|--------|-------|
| fs               | sampling frequency, on pin WCK  | 8     |      | 96     | kHz   |
| f <sub>bck</sub> | Bit clock frequency, on pin BCK | 32*fs |      | 128*fs | Hz    |
| t <sub>su</sub>  | WCK, DATAI Setup time to BCK    | 10    |      |        | ns    |
| t <sub>h</sub>   | WCK, DATAI hold time to BCK     | 10    |      |        | ns    |
| t <sub>d</sub>   | DATAO output delay time to BCK  |       |      | 50     | ns    |
|                  |                                 |       |      |        |       |



# Figure 6 Digital Audio Interface Timing

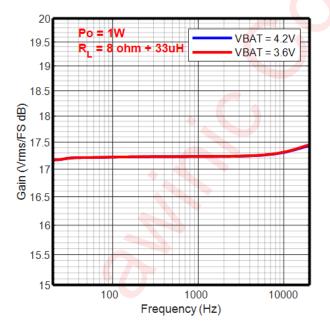
## **TYPICAL CHARACTERISTIC CURVES**



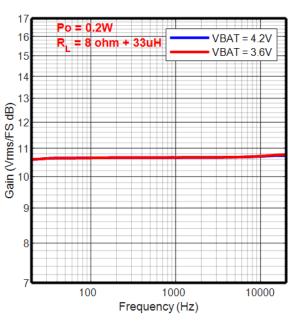



**THD+N VS. OUTPUT POWER** 

10


awinic

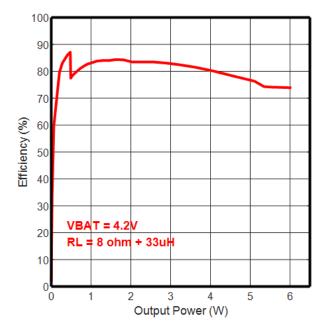
# **AW88261** Oct.2022 V1.5




14

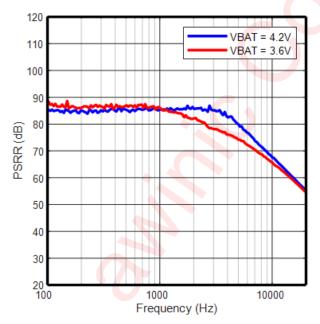
#### SPEAKER GAIN VS. FREQUENCY




#### **RECEIVER GAIN VS. FREQUENCY**



#### **EFFICIENCY VS. OUTPUT POWER**


awinic

#### **EFFICIENCY VS. OUTPUT POWER**



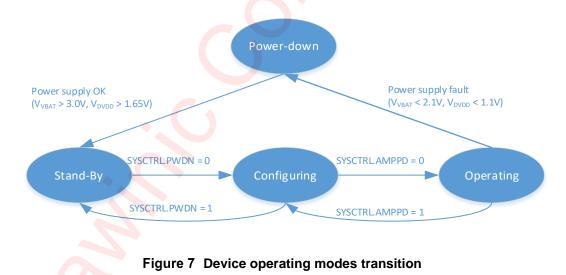


**RECEIVER PSRR VS. FREQUENCY** 



# **DETAIL FUNCTIONAL DESCRIPTION**

## **POWER ON RESET**


The device provides a power-on reset feature that is controlled by VBAT and DVDD supply voltage. When the VBAT supply voltage raises from 0V to 2.1V, or DVDD supply voltage raises from 0V to 1.1V. The internal reset signal will be generated to perform a power-on reset operation, which will reset all circuits and configuration registers.

#### **OPERATION MODE**

The device supports 4 operation modes.

| Table 1     | Operating  | Mode |
|-------------|------------|------|
| 1 4 6 1 6 1 | e per a mg |      |

| Mode        | Condition                                            | Description                                                                                                                |
|-------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Power-Down  | V <sub>VBAT</sub> < 2.1V<br>V <sub>DVDD</sub> < 1.1V | Power supply is not ready, chipset is power down.                                                                          |
| Stand-By    | V <sub>VBAT</sub> > 3V<br>V <sub>DVDD</sub> > 1.65V  | Power supply is ready, most parts of the device are power down for low power consumption except I <sup>2</sup> C interface |
| Configuring | PWDN = 0                                             | Device is biased while boost and Class-D output is floating.<br>System configuration carried out in this mode              |
| Operating   | AMPPD = 0                                            | Amplifier is fully operating                                                                                               |



#### POWER-DOWN MODE

The device switches to power-down mode when any of the following events occurred:

- V<sub>DVDD</sub> < 1.1 V
- V<sub>VBAT</sub> < 2.1 V

In this mode, all circuits inside this device will be shut down except the power-on-reset circuit. I<sup>2</sup>C interface isn't accessible in this mode, and all of the internal configurable registers are cleared.

The device will jump out of the power-down mode automatically when all of the supply voltages are OK:

 $V_{\text{DVDD}}$  > 1.65 V and  $V_{\text{VBAT}}$  > 3 V

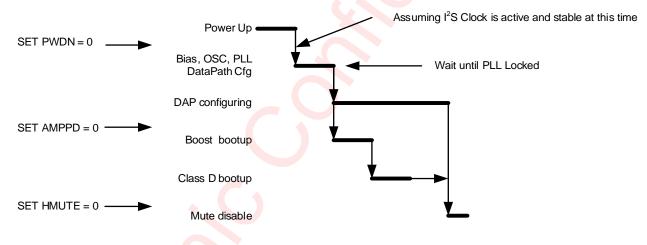
#### STAND-BY MODE

awinic

The device switches stand-by mode when the power supply voltages are OK. In this mode I<sup>2</sup>C interface is accessible, other modules are still powered down. Customer can set device to mode when the device is no needed to work.

#### CONFIG MODE

The device switches to OFF mode when:


- SYSCTRL.PWDN = 0;
- SYSCTRL.AMPPD = 1;

In this mode the internal bias, OSC, PLL will start to work

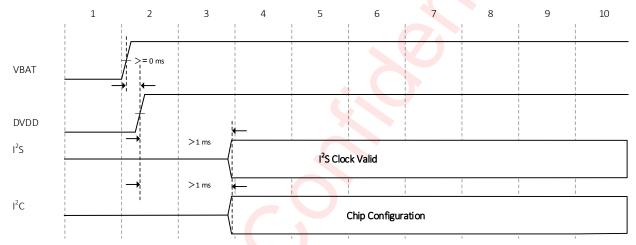
#### **OPERATING MODE**

The device is fully operational in this mode. Boost, amplifier loop and power stage circuits will start to work. Customer can set SYSCTRLAMPPD = 0 to make device in this mode.

This device power up sequence is illustrated in the following figure:



#### Figure 8 Power up sequence


Detail description for each step is listed in the following table.

| Index | description                                                                  | Mode        |
|-------|------------------------------------------------------------------------------|-------------|
| 1     | Wait for VBAT、 DVDD supply power up                                          | Power-Down  |
| 2     | I <sup>2</sup> S + Data Path Configuration                                   | Stand-By    |
| 3.1   | Enable system (SYSCTRL.PWDN = 0)                                             |             |
| 3.2   | Active Bias, OSC and PLL                                                     | Configuring |
| 3.3   | Wait for PLL to be locked                                                    |             |
| 4.1   | Enable Boost and amplifier (SYSCTRL.AMPPD =0)<br>Boost and Amplifier boot up |             |
| 4.2   | Wait for SYSST.SWS =1                                                        | Operating   |
| 5     | Release Hard-Mute 🔶 🔶 📃                                                      | 5           |

#### Table 2 Detail Description of Power up sequence

#### Power up sequence considering $I^2S$ , $I^2C$ timing shows as below:

awinic



#### Power down sequence considering I<sup>2</sup>S, I<sup>2</sup>C timing shows as below:

|                  | 1       | 2                      | 3        | 4         | 5          | 6                                                                                           | 7                     | 8                | 9                | 10 |
|------------------|---------|------------------------|----------|-----------|------------|---------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|----|
|                  |         |                        | <u> </u> |           |            |                                                                                             |                       | 1<br> <br> <br>  |                  |    |
| I <sup>2</sup> C | Chip Co | onfiguration           |          | );        |            |                                                                                             | ,<br>,<br>,<br>,      | -<br>-<br>       |                  |    |
|                  |         |                        |          | ¦ >0 ms   |            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ,<br>0<br>0<br>0      | <br> <br> <br>   |                  |    |
| l <sup>2</sup> S |         | I <sup>2</sup> S Clock | : Valid  |           | ) <u> </u> | <br> <br>                                                                                   |                       | <br> <br> <br>   |                  |    |
|                  |         |                        |          |           | >0 ms      | <b> </b>                                                                                    |                       |                  |                  |    |
| DVDD             |         |                        |          |           |            |                                                                                             | ,<br>0<br>0<br>0<br>0 |                  |                  |    |
| VBAT             |         |                        |          |           |            | >0 ms                                                                                       | 0<br>0<br>1<br>0      | 1<br>1<br>1<br>1 | 0<br>0<br>0<br>0 |    |
|                  |         |                        |          |           |            | <u> </u>                                                                                    | )<br>)<br>)<br>)      |                  |                  |    |
|                  |         |                        |          | <br> <br> |            |                                                                                             | 0<br>0<br>0           | <br> <br>        | 0<br>0<br>0      |    |

## SOFTWARE RESET

Writing 0x55AA to register ID (0x00) via I<sup>2</sup>C interface will reset the device internal circuits and all configuration registers.

## **DIGITAL AUDIO INTERFACE**

The state of each digital input and output are shown in below table. After power on, the input signal pin BCK, WCK, DATAI are set to high impedance by default. If I2STXEN bit is enabled, DATAO is actively driven when outputting data otherwise it is high impedance by default.

| Digital I/O | Туре   | Description (Default State) |
|-------------|--------|-----------------------------|
| SCL         | Input  | Hi-Z                        |
| SDA         | Input  | Hi-Z                        |
| INTN        | Output | Hi-Z                        |
| AD          | Input  | Weak pull down              |
| ВСК         | Input  | Hi-Z                        |
| WCK         | Input  | Hi-Z                        |
| DATAI       | Input  | Hi-Z                        |
| DATAO       | Output | Hi-Z                        |

## DIGITAL AUDIO INTERFACE

Audio data is transferred between the host processor and the device via the Digital Audio Interface. The digital audio interface is in full-duplex via 4 dedicated pins:

- BCK
- WCK
- DATAI
- DATAO

Two-slot I<sup>2</sup>S and 1/2/4/6/8-slot TDM are supported in this device. The digital audio Interface on this device is slave only and flexible with data width options, including 16, 20, 24, or 32 bits by configurable registers.

Three modes of I<sup>2</sup>S are supported, including standard I<sup>2</sup>S mode, left-justified mode and right-justified data mode, which can be configured via I2SCTRL1.I2SMD. These modes are all MSB-first, with data width programmable via I2SCTRL1.I2SFS.

The word clock WCK is used to define the beginning of a frame. The frequency of this clock corresponds to the sampling frequency. The device supports the following sample rates (fs): 8 kHz, 11.025 kHz, 12 kHz, 16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz and 96 kHz. It is selected via configurable register I2SCTRL1.I2SSR.

The bit clock BCK is used to sample the digital audio data across the digital audio interface. The number of bitclock pulses in a frame is defined as slot length. Three kind of slot length are supported (16/24/32) via configurable register I2SCTRL1.I2SBCK. The frequency of BCK can be calculated according to the following equation:

#### BCK frequency = SampleRate \* SlotLength \* SlotNumber

19

SampleRate: Sample rate for this digital audio interface;

**SlotLength**: The length of one audio slot in unit of BCK clock;

**SlotNumber**: How many slots supported in this audio interface. For example: 2-slot supported in I<sup>2</sup>S mode, 4-slot supported in TDM mode.

The word select and bit clock signals of the I<sup>2</sup>S input are the reference signals for the digital audio interface and Phased Locked Loop (PLL).


The audio source can be from left channel, right channel or the average of the left and right channel, which is controlled by I2SCTRL1.CHSEL.

| Interface format(MSB first) | Data width      | BCK frequency    |
|-----------------------------|-----------------|------------------|
| Standard I <sup>2</sup> S   | 16b/20b/24b/32b | 32fs/48fs /64fs  |
| left-justified              | 16b/20b/24b/32b | 32fs/48fs /64fs  |
| right-justified             | 16b/20b/24b/32b | 32fs /48fs /64fs |

#### Table 3 Supported I<sup>2</sup>S interface parameters

The output port DATAO, can be enabled or disabled via bit I2SCTRL3.I2STXEN. The unused slots can be set to Hi-z or zero, which is controlled by I2SCTRL3.DOHZ.

#### STANDARD PS MODE



#### Figure 9 I<sup>2</sup>S Timing for Standard I<sup>2</sup>S Mode

- When WCK=0 indicating the left channel data, and WCK=1 indicating the right channel data.
- The MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge of the word clock. Similarly, the MSB of the right channel is valid on the second rising edge of the bit clock after the rising edge of the word clock.

#### LEFT-JUSTIFIED MODE

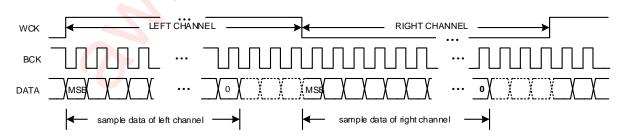



Figure 10 I<sup>2</sup>S Timing for Left-Justified Mode

20

• When WCK=1 indicating the left channel data, and WCK=0 indicating the right channel data.

• The MSB of the left channel is valid on the first rising edge of the bit clock after the rising edge of the word clock. Similarly, the MSB of the right channel is valid on the first rising edge of the bit clock after the falling edge of the word clock.

#### RIGHT-JUSTIFIED MODE

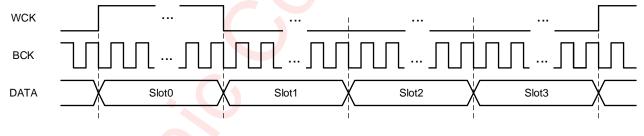



Figure 11 I<sup>2</sup>S Timing for Right-Justified Mode

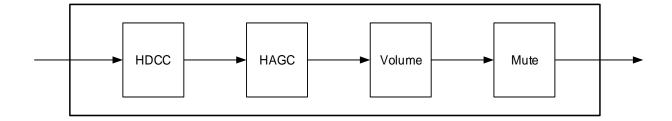
- When WCK is high indicating the left channel data, and WCK=0 indicating the right channel data.
- The LSB (bit 0) of the left channel is valid on the rising edge of the bit clock preceding the falling edge of the word clock. Similarly, the LSB (bit 0) of the right channel is valid on the rising edge of the bit clock preceding the rising edge of the word clock.

#### TDM MODE

All of the three kind of bit synchronization modes (standard, left-justified, right-justified) are also supported in TDM mode. The difference between TDM and I<sup>2</sup>S is the slot number supported. 4-slot is supported in TDM mode, while 2-slot is supported in I<sup>2</sup>S mode



#### Figure 12 TDM Timing


Note: The high level pulse width of WCK signal can be one slot time or one period of BCK.

## DIGITAL AUDIO PROCESSING

This device provides algorithm supporting for audio signal processing. The following functions are processed in this module.

- HDCC
- Hardware AGC
- Volume control
- Mute

The signal processing flow in the DAP (Digital Audio Processor) is illustrated in the following figure.





#### HDCC

ລູທາບ

This module performs hardware DC canceling for the input audio stream. It blocks DC components into analog class D loop.

#### HAGC

System output power tends to be more than rated power of speaker, such as in the 10.25V power supply, as for  $8\Omega$  speaker, the maximum undistorted power is about 5.2W, but many speakers' rated power is about 1W, if there is no output power control, the overload signal can cause damage to the speaker. The audio power amplifier with hardware AGC can protect the speaker effectively, When the output power is not exceeding the setting threshold, the hardware AGC module will not attenuate the internal gain. Once the output power exceeds the setting threshold, the hardware AGC module will reduce the internal gain of amplifier and restricts the output power under the setting threshold.

#### **VOLUME CONTROL**

The volume control function attenuates the audio signal at the end of digital audio processing. The range of volume setting is from 0db to -95.875db with 0.125db/step

#### MUTE

This module performs mute control for the audio stream

# DC-DC CONVERTER

This device using smart boost converter generates the amplifier supply rail, working in 1.6MHz. The DC-DC converter can work in different mode via BSTCTRL1.BST\_MODE:

- **Pass-through mode**: the voltage of VBAT is transparently passed to output of converter PVDD
- Force boost mode: the output voltage is boosted to the programmed output voltage
- Smart boost 1 mode: the output voltage can be switch between VBAT and programmed output voltage according to the input audio level.
- Smart boost 2 mode: the output voltage can be dynamically adjusted according to the amplifier output's signal swing requirements in order to maximize efficiency.

22

#### Pass-through mode

www.awinic.com

The internal boost circuit is not working; the voltage of VBAT is passed to PVDD directly.

#### Force boost mode

The boost circuit is always working and converts the voltage of VBAT to the programmed output voltage. The output voltage is configured via BSTCTRL2.VOUT\_VREFSET

#### Smart boost 1 mode

Smart boost 1 mode can dynamically turn on or off the boost according to the amplifier output's signal swing requirements in order to maximize efficiency.

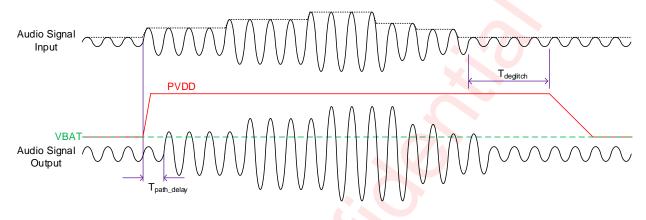



Figure 14 Boost Circuit Behavior in Smart Boost 1 Mode

#### Smart boost 2 mode

The boost circuit works dynamically according to the output audio level. When the level of output audio signal is below the setting threshold, the boost circuit will not be activated. Till the level of output audio signal is above the threshold, the boost circuit starts to work before the audio stream arriving at amplifier power stage. The output voltage PVDD is dynamically adjusted to meet the requirement of output audio signal.

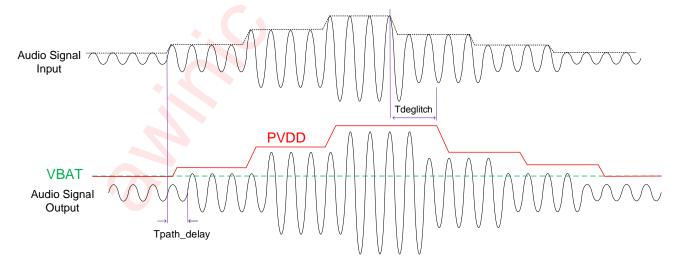



Figure 15 Boost Circuit Behavior in Smart Boost 2 Mode

## **PROTECTION MECHANISMS**

#### Over Voltage Protection (OVP)

The boost circuit has integrated the over voltage protection control loop. When the output voltage PVDD is above the threshold, the boost circuits will stop working, until the voltage of PVDD going down and under the normal fixed working voltage.

#### Over Temperature Protection (OTP)

The device has automatic temperature protection mechanism which prevents heat damage to the chip. It is triggered when the junction temperature is larger than the preset temperature high threshold (default = 150°C). When it happens, the output stages will be disabled. When the junction temperature drops below the preset temperature low threshold (less than 130°C), the output stages will start to operate normally again

#### **Over Current (short) Protection (OCP)**

The short circuit protection function is triggered when VOP/VON is short to PVDD/GND or VOP is short to VON, the output stages will be shut down to prevent damage to itself. When the fault condition is disappeared, the output stages of device will restart.

#### **Under Voltage Detection (UVL)**

The interrupt bit SYSINT.UVLI will be set to 1 when under voltage occurs, which will be cleared by a read operation of SYSINT register. Usually the SYSINT.UVLI bit can be used to check whether an unexpected undervoltage event has taken place.

## **BATTERY VOLTAGE MONITORING**

The device monitors the voltage on the VBAT pin, which is most commonly the battery for the system. The battery voltage level is available via bits VBAT\_DET in the Battery Supply Voltage register VBAT. Status bits VBAT\_DET can be used to calculate the battery voltage. The battery voltage level V<sub>VBAT</sub> is:

$$V_{VBAT} = \frac{VBAT\_DET}{2^{10} - 1} \times 6.025V$$

For example, if VBAT\_DET = 1001100011, the battery voltage level V<sub>VBAT</sub> is equal to 3.6V.

# PVDD VOLTAGE MONITORING

The device monitors the voltage on the PVDD pin, which is most commonly the PVDD voltage level for the system. The PVDD pin voltage level is available via bits PVDD\_DET in the Power Supply Voltage monitor register PVDD. Status bits PVDD\_DET can be used to calculate the PVDD voltage. The PVDD voltage level VPVDD is:

$$V_{PVDD} = \frac{PVDD\_DET}{2^{10} - 1} \times 12.05V$$

For example, if PVDD\_DET = 1001100011, the PVDD voltage level V<sub>PVDD</sub> is equal to 7.2V.

## DIE TEMPERATURE MONITORING

The device monitors the die temperature and the result is available via bits TEMP\_DET in the Temperature register TEMP. The TEMP\_DET is a two's complement value. For example, if TEMP\_DET = 00011001, the die temperature is  $25^{\circ}$ C.

## **CURRENT SENSING**

The device provides speaker current sense for real time monitoring of loudspeaker behavior. The current sensing transfer function I<sub>SNS</sub> is:

$$I_{SNS} = \frac{D_{OUT}}{2^{15} - 1} \times 3.3A$$

Dout: the current sense I2S output stream

## AMPLIFIER TRANSFER FUNCTION

The transfer function from the input to the amplifier PWM output (when no gain and attenuation is applied in digital signal domain) is:

$$V_o = AMP_NORM_V \times D_{in}$$

 $D_{in}$ : the level of input signal with a range from -1 to +1

AMP\_NORM\_V: the equivalent amplifier output voltage when D<sub>in</sub> is 1. In receiver mode the AMP\_NORM\_V is 4.5V, in speaker mode it's 12V.

## **RECEIVER MODE**

The device built-in Receiver mode is easy to realize the Speaker and Receiver combo applications, it saves the system cost and board space. If the receiver magnification is one times, the noise floor will be  $11\mu$ V. Speaker and Receiver combo applications can be realized without changing any hardware.

When the device is set to receiver mode, the power supply of Class D driver stage is from VBAT directly without boost.

www.awinic.com

## I<sup>2</sup>C INTERFACE

This device supports the I<sup>2</sup>C serial bus and data transmission protocol in fast mode at 400 kHz. This device operates as a slave on the I<sup>2</sup>C bus. Connections to the bus are made via the open-drain I/O pins SCL and SDA. The pull-up resistor can be selected in the range of  $1k\sim10k\Omega$  and the typical value is  $4.7k\Omega$ . This device can support different high level ( $1.8V\sim3.3V$ ) of this I<sup>2</sup>C interface.

#### **DEVICE ADDRESS**

The I<sup>2</sup>C device address (7-bit) can be set using the AD pin according to the following table: The AD pin configures the two LSB bits of the following 7-bit binary address A6-A0 of 01101xx. The permitted I<sup>2</sup>C addresses are 0x34(7-bit) through 0x37(7-bit).

| AD              | Address(7-bit) |
|-----------------|----------------|
| Connect to GND  | 0x34           |
| Connect to DVDD | 0x35           |
| Connect to SCL  | 0x36           |
| Connect to SDA  | 0x37           |

| Table 4 | Address | Selection |
|---------|---------|-----------|
|         | Addicaa | OCICCUOII |

#### DATA VALIDATION

When SCL is high level, SDA level must be constant. SDA can be changed only when SCL is low level.

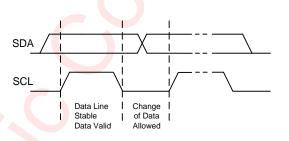



Figure 16 Data Validation Diagram

#### PC START/STOP

I<sup>2</sup>C start: SDA changes form high level to low level when SCL is high level.

I<sup>2</sup>C stop: SDA changes form low level to high level when SCL is high level.

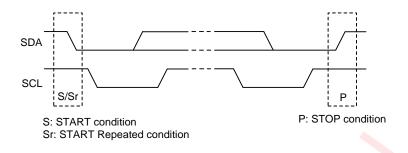



Figure 17 I<sup>2</sup>C Start/Stop Condition Timing

#### ACK (ACKNOWLEDGEMENT)

ACK means the successful transfer of I<sup>2</sup>C bus data. After master sends 8bits data, SDA must be released; SDA is pulled to GND by slave device when slave acknowledges.

When master reads, slave device sends 8bit data, releases the SDA and waits for ACK from master. If ACK is send and I<sup>2</sup>C stop is not send by master, slave device sends the next data. If ACK is not send by master, slave device stops to send data and waits for I<sup>2</sup>C stop.

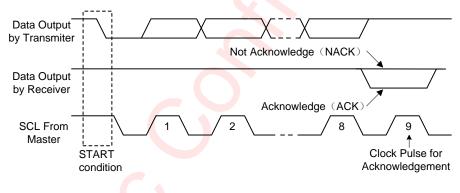



Figure 18 I<sup>2</sup>C ACK Timing

#### WRITE CYCLE

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol allows a single data line to transfer both command/control information and data using the synchronous serial clock.

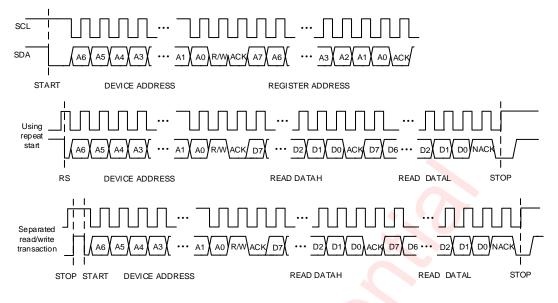
Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow.

In a write process, the following steps should be followed:

- a) Master device generates START condition. The "START" signal is generated by lowering the SDA signal while the SCL signal is high.
- b) Master device sends slave address (7-bit) and the data direction bit (r/w = 0).

- c) Slave device sends acknowledge signal if the slave address is correct.
- d) Master sends control register address (8-bit)
- e) Slave sends acknowledge signal
- f) Master sends high data byte of 16-bit data to be written to the addressed register
- g) Slave sends acknowledge signal
- h) Master sends low data byte of 16-bit data to be written to the addressed register
- i) Slave sends acknowledge signal
- j) If master will send further 16-bit data bytes, the control register address will be incremented by one after acknowledge signal of step g (repeat step f to g)
- k) Master generates STOP condition to indicate write cycle end





Figure 19 I<sup>2</sup>C Write Byte Cycle

#### READ CYCLE

In a read cycle, the following steps should be followed:

- a) Master device generates START condition
- b) Master device sends slave address (7-bit) and the data direction bit (r/w = 0).
- c) Slave device sends acknowledge signal if the slave address is correct.
- d) Master sends control register address (8-bit)
- e) Slave sends acknowledge signal
- f) Master generates STOP condition followed with START condition or REPEAT START condition
- g) Master device sends slave address (7-bit) and the data direction bit (r/w = 1).
- h) Slave device sends acknowledge signal if the slave address is correct.
- i) Slave sends read high data byte of 16-bit data from addressed register.
- j) Master sends acknowledge signal.
- k) Slave sends read low data byte of 16-bit data from addressed register.
- I) If the master device sends acknowledge signal, the slave device will increase the control register address by one, then send the next 16-bit data from the new addressed register.
- m) If the master device generates STOP condition, the read cycle is ended.

awinid









# **REGISTER MAP**

#### **REGISTER DESCRIPTION**

#### **REGISTER LIST**

| ADDR | NAME     | R/W | Bit15 | Bit14          | Bit13   | Bit12    | Bit11   | Bit10   | Bit9    | Bit8               | Bit7       | Bit6      | Bit5                           | Bit4    | Bit3                       | Bit2 | Bit1  | BitO   |  |
|------|----------|-----|-------|----------------|---------|----------|---------|---------|---------|--------------------|------------|-----------|--------------------------------|---------|----------------------------|------|-------|--------|--|
| 0x00 | ID       | RO  |       |                |         |          |         |         |         | IDCC               | DDE        |           |                                |         |                            |      |       |        |  |
| 0x01 | SYSST    | RO  | OVP2S | /P2S UVLS ADPS |         |          | BSTOCS  | OVPS    | BSTS    | sws                | CLIPS      |           | NOCLKS                         | CLKS    | OCDS                       | BOPS | OTHS  | PLLS   |  |
| 0x02 | SYSINT   | RC  | OVP2I | UVLI           | ADPI    |          | BSTOCI  | OVPI    | BSTI    | SWI                | CLIPI      |           | NOCLKI                         | CLKI    | OCDI                       | BOPI | OTHI  | PLLI   |  |
| 0x03 | SYSINTM  | RW  | OVP2M | UVLM           | ADPM    |          | BSTOCM  | OVPM    | BSTM    | SWM                | CLIPM      |           | NOCLKM                         | CLKM    | OCDM                       | BOPM | OTHM  | PLLM   |  |
| 0x04 | SYSCTRL  | RW  |       | ULS_HMUTE      |         |          | RMSE    | HAGCE   | HDCCE   | HMUTE              | EN_TRAN    | I2SEN     | WSINV                          | BCKINV  | IPLL                       |      | AMPPD | PWDN   |  |
| 0x05 | SYSCTRL2 | RW  |       |                |         | ULS_MODE | INTMODE | INTN    |         |                    | •          |           | VOL                            |         |                            |      |       |        |  |
| 0x06 | I2SCTRL1 | RW  |       |                | CFSEL   |          | СНЅ     | EL      | 125     | I2SMD I2SFS I2SBCK |            |           |                                | I2SSR   |                            |      |       |        |  |
| 0x07 | I2SCTRL2 | RW  |       | S              | LOT_NUM |          |         | I2S_TX_ | SLOTVLD |                    |            | I2S_RXR_S | 2S_RXR_SLOTVLD I2S_RXL_SLOTVLD |         |                            |      |       |        |  |
| 0x08 | I2SCTRL3 | RW  |       |                |         |          |         |         |         |                    | FSYNC_TYPE | 12STXEN   | DRVSTREN                       | I2SRXEN | IV2CH I2SDOSEL DOHZ I2SCHS |      |       | I2SCHS |  |
| 0x09 | DACCFG1  | RW  |       |                |         | RVT      | Н       |         |         |                    |            |           |                                | AVTH    |                            |      |       |        |  |
| 0x0a | DACCFG2  | RW  |       |                |         |          |         |         |         | ATT                | ΓH         | 4         |                                |         |                            |      |       |        |  |
| 0x0b | DACCFG3  | RW  |       |                |         |          |         |         |         | RTT                | ΤH         |           |                                |         |                            |      |       |        |  |
| 0х0с | DACCFG4  | RW  |       |                |         |          |         |         |         |                    |            |           |                                | HOLDTH  | ł                          |      |       |        |  |
| 0x20 | DACST    | RO  |       |                |         |          |         |         |         |                    |            |           |                                | BST     | rvout_st                   |      |       |        |  |
| 0x21 | VBAT     | RO  |       |                |         |          |         |         |         |                    |            |           | VBAT_DE                        | Г       |                            |      |       |        |  |

www.awinic.com

Copyright © 2023 SHANGHAI AWINIC TECHNOLOGY CO., LTD



#### AW88261 Oct.2022 V1.5

| ADDR | NAME     | R/W | Bit15 | Bit14 | Bit13 | Bit12   | Bit11 | Bit10    | Bit9 | Bit8     | Bit7  | Bit6 | Bit5         | Bit4    | Bit3 | Bit2 | Bit1 | BitO |
|------|----------|-----|-------|-------|-------|---------|-------|----------|------|----------|-------|------|--------------|---------|------|------|------|------|
| 0x22 | TEMP     | RO  |       |       |       |         |       | TEMP_DET |      |          |       |      |              |         |      |      |      |      |
| 0x23 | PVDD     | RO  |       |       |       |         |       |          |      | PVDD_DET |       |      |              |         |      |      |      |      |
| 0x60 | BSTCTRL1 | RW  |       |       |       | BST_RTH |       |          |      |          | BST_M | ODE  |              | BST_ATH |      |      |      |      |
| 0x61 | BSTCTRL2 | RW  |       | BST_I | PEAK  | AK      |       |          |      |          |       |      | VOUT_VREFSET |         |      |      |      |      |

#### DETAILED REGISTER DESCRIPTION

| ID: (Address 00h) |        |     |                                                                                                                               |         |  |  |  |  |  |  |
|-------------------|--------|-----|-------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
| Bit               | Symbol | R/W | Description                                                                                                                   | Default |  |  |  |  |  |  |
| 15:0              | IDCODE | RO  | Chip ID will be returned after read.<br>All configuration registers will be reset to default Value after<br>0x55aa is written | 0x2113  |  |  |  |  |  |  |

| SYSST: | (Address 01h) |     |                                                                                                                |         |
|--------|---------------|-----|----------------------------------------------------------------------------------------------------------------|---------|
| Bit    | Symbol        | R/W | Description                                                                                                    | Default |
| 15     | OVP2S         | RO  | Boost OVP2 status indicator<br>0: Normal<br>1: OVP                                                             | 0       |
| 14     | UVLS          | RO  | VBAT under UVLO threshold Voltage indicator<br>0: Normal<br>1: UVLO                                            | 0       |
| 13     | ADPS          | RO  | Boost Adaptive status.<br>0: Transparent<br>1: Boost                                                           | 0       |
| 12     | Reserved      | -   | Reserved                                                                                                       | 0       |
| 11     | BSTOCS        | RO  | Boost over current indicator<br>0: Normal<br>1: Over Current                                                   | 0       |
| 10     | OVPS          | RO  | Boost OVP status indicator<br>0: Normal<br>1: OVP                                                              | 0       |
| 9      | BSTS          | RO  | Boost start up finished.<br>0: Not finished<br>1: Finished                                                     | 0       |
| 8      | SWS           | RO  | Amplifier switching status.<br>0: Not switching<br>1: Switching                                                | 0       |
| 7      | CLIPS         | RO  | Amplifier clipping status.<br>0: Not clipping<br>1: Clipping                                                   | 0       |
| 6      | Reserved      | _   | Reserved                                                                                                       | 0       |
| 5      | NOCLKS        | RO  | The reference clock of PLL is not available<br>0: Clock Ok<br>1: No Clock                                      | 0       |
| 4      | CLKS          | RO  | Internal clocks status flag, status 0 means At least one clock are<br>not stable<br>0: Not stable<br>1: Stable | 0       |
| 3      | OCDS          | RO  | Over current status in amplifier<br>0: Normal<br>1: OC                                                         | 0       |

whether bop status is triggered or not 2 BOPS RO 0: not triggered 0 1: triggered Die Temperature is higher than 150°Cs 1 OTHS RO 0 0: Normal 1: OT PLL locked status. 0 PLLS RO 0: Unlocked 0 1: Locked

| SYSINT: | (Address 02h) |     |                                           |         |
|---------|---------------|-----|-------------------------------------------|---------|
| Bit     | Symbol        | R/W | Description                               | Default |
| 15      | OVP2I         | RC  | Interrupt indicator for OVP2S.            | 0       |
| 14      | UVLI          | RC  | Interrupt indicator for Power On and UVLS | 0       |
| 13      | ADPI          | RC  | Interrupt indicator for ADPS              | 0       |
| 12      | Reserved      | -   | Reserved                                  | 0       |
| 11      | BSTOCI        | RC  | Interrupt indicator for BSTOCS.           | 0       |
| 10      | OVPI          | RC  | Interrupt indicator for OVPS.             | 0       |
| 9       | BSTI          | RC  | Interrupt indicator for BSTS.             | 0       |
| 8       | SWI           | RC  | Interrupt indicator for SWS.              | 0       |
| 7       | CLIPI         | RC  | Interrupt indicator for CLIPS.            | 0       |
| 6       | Reserved      | -   | Reserved                                  | 0       |
| 5       | NOCLKI        | RC  | Interrupt indicator for NOCLKS.           | 0       |
| 4       | CLKI          | RC  | Interrupt indicator for CLKS.             | 0       |
| 3       | OCDI          | RC  | Interrupt indicator for OCDS              | 0       |
| 2       | BOPI          | RC  | Interrupt indicator for BOPS              | 0       |
| 1       | OTHI          | RC  | Interrupt indicator for OTHS.             | 0       |
| 0       | PLLI          | RC  | Interrupt indicator for PLLS.             | 0       |
|         |               |     |                                           |         |

| SYSINTN | Л: (Address 03h) |     |                                |         |
|---------|------------------|-----|--------------------------------|---------|
| Bit     | Symbol           | R/W | Description                    | Default |
| 15      | OVP2M            | RW  | Interrupt mask for OVP2I       | 1       |
| 14      | UVLM             | RW  | Interrupt mask for UVLI.       | 1       |
| 13      | ADPM             | RW  | Interrupt mask for ADPI        | 1       |
| 12      | Reserved         | RW  | Reserved                       | 1       |
| 11      | BSTOCM 💧 人       | RW  | Interrupt mask for BSTOCI.     | 1       |
| 10      | OVPM             | RW  | Interrupt mask for OVPI        | 1       |
| 9       | BSTM             | RW  | Interrupt mask for BSTI.       | 1       |
| 8       | SWM              | RW  | Interrupt indicator for SWI.   | 1       |
| 7       | CLIPM            | RW  | Interrupt indicator for CLIPI. | 1       |
| 6       | Reserved         | RW  | Reserved                       | 1       |
| 5       |                  | RW  | Interrupt mask for NOCLKI.     | 1       |
| 4       | CLKM             | RW  | Interrupt mask for CLKI.       | 1       |
| 3       | OCDM             | RW  | Interrupt mask for OCDI.       | 1       |
| 2       | BOPM             | RW  | Interrupt mask for BOPS.       | 1       |
| 1       | OTHM             | RW  | Interrupt mask for OTHI.       | 1       |
| 0       | PLLM             | RW  | Interrupt mask for PLLI.       | 1       |



| SYSCTRI | .: (Address 04h) |     |                                                                                                                    |         |
|---------|------------------|-----|--------------------------------------------------------------------------------------------------------------------|---------|
| Bit     | Symbol           | R/W | Description                                                                                                        | Default |
| 15      | Reserved         | RW  | Not used                                                                                                           | 0       |
| 14      | ULS_HMUTE        | RW  | Only when HMUTE&ULS_HMUTE=1, ultrasound can be muted<br>0:disable<br>1:enable                                      | 0       |
| 13:12   | Reserved         | RW  | Not used                                                                                                           | 3       |
| 11      | RMSE             | RW  | Hardware HAGC mode selection<br>0: Peak AGC<br>1: RMS AGC                                                          | 0       |
| 10      | HAGCE            | RW  | Disable/Enable Hardware AGC<br>0: disable<br>1: enable                                                             | 0       |
| 9       | HDCCE            | RW  | Disable/Enable Hardware DC Canceling module<br>0: disable<br>1: enable                                             | 1       |
| 8       | HMUTE            | RW  | Disable/Enable Hardware mute module<br>0: disable<br>1: enable                                                     | 1       |
| 7       | EN_TRAN          | RW  | Transparent mode for CLassD, OC threshold will decrease when<br>it is active at Receiver mode<br>0: SPK<br>1: RCV  | 0       |
| 6       | I2SEN            | RW  | Disable/Enable whole I <sup>2</sup> S interface module<br>0: disable<br>1: enable                                  | 1       |
| 5       | WSINV            | RW  | I <sup>2</sup> S Left/Right channel switch control<br>0: Not switch<br>1: Switch                                   | 0       |
| 4       | BCKINV           | RW  | I <sup>2</sup> S bit clock invert control<br>0: Not invert<br>1: Inverted                                          | 0       |
| 3       | IPLL             | RW  | PLL reference clock selection<br>0: BCK<br>1: WCK                                                                  | 0       |
| 2       | Reserved         | RW  | Not used                                                                                                           | 0       |
| 1       | AMPPD            | RW  | Amplifier power down control bit, Power Down until system<br>configuration finished<br>0: Working<br>1: Power Down | 1       |
| 0       | PWDN             | RW  | System power down control bit<br>0: Working<br>1: Power Down                                                       | 1       |

| SYSCTRL | SYSCTRL2: (Address 05h) |     |                                                |         |  |
|---------|-------------------------|-----|------------------------------------------------|---------|--|
| Bit     | Symbol                  | R/W | Description                                    | Default |  |
| 15:13   | Reserved                | RW  | Not used                                       | 0       |  |
| 12      | ULS_MODE                | RW  | Ultrasonic mode control<br>0: Legacy<br>1: TDM | 0       |  |

| 11  | INTMODE | RW | Interrupt pad INTN output mode selection<br>0: Open-drain<br>1: Push Pull                     | 0 |
|-----|---------|----|-----------------------------------------------------------------------------------------------|---|
| 10  | INTN    | RW | Interrupt pad INTN pin-source selection<br>0: SYSINT<br>1: SYSST                              | 0 |
| 9:0 | VOL     | RW | Volume control, from 0 to -95.875dB<br>[5:0] : in unit of -0.125dB<br>[9:6] : in unit of -6dB | 0 |

| I2SCTRL1: (Address 06h) |          |     |                                                                                                                                                                                                                                         |         |
|-------------------------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Bit                     | Symbol   | R/W | Description                                                                                                                                                                                                                             | Default |
| 15                      | Reserved | RW  | Not used                                                                                                                                                                                                                                | 0       |
| 14:12                   | CFSEL    | RW  | I <sup>2</sup> S legacy path output data selection<br>000: HAGC<br>001: Reserved<br>010: IVBT<br>011: IV Sense<br>Others: Reserved                                                                                                      | 0       |
| 11:10                   | CHSEL    | RW  | Left/right channel selection for I <sup>2</sup> S input<br>00: Reserved<br>01: Left<br>10: Right<br>11: Mono                                                                                                                            | 1       |
| 9:8                     | I2SMD    | RW  | I <sup>2</sup> S interface mode selection<br>00: Philip Standard<br>01: MSB justified<br>10: LSB justified<br>11: Reserved                                                                                                              | 0       |
| 7:6                     | I2SFS    | RW  | I <sup>2</sup> S data resolution selection<br>00: 16 bits<br>01: 20 bits<br>10: 24 bits<br>11: 32 bits                                                                                                                                  | 3       |
| 5:4                     | I2SBCK   | RW  | I <sup>2</sup> S BCK mode<br>00: 32*fs<br>01: 48*fs<br>10: 64*fs<br>11: Reserved                                                                                                                                                        | 2       |
| 3:0                     | I2SSR    | RW  | I <sup>2</sup> S interface sample rate configuration<br>0000: 8 KHz<br>0001: 11 KHz<br>0010: 12 KHz<br>0011: 16 KHz<br>0100: 22 KHz<br>0101: 24 KHz<br>0110: 32 KHz<br>0111: 44 KHz<br>1000: 48 KHz<br>1001: 96 KHz<br>Others: Reserved | 8       |

上海艾內电子技术股份有眼公司 shanghai awinic technology co., ltd.

| AW88261       |
|---------------|
| Oct.2022 V1.5 |

| 12SCTRL | I2SCTRL2: (Address 07h) |     |                                                                                                                                                                                                                       |         |
|---------|-------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Bit     | Symbol                  | R/W | Description                                                                                                                                                                                                           | Default |
| 15      | Reserved                | RW  | Not used                                                                                                                                                                                                              | 0       |
| 14:12   | slot_num                | RW  | I <sup>2</sup> S TDM mode control (support max to 8 slots ).<br>000: I <sup>2</sup> S mode<br>001: TDM1s<br>010: TDM2s<br>011: TDM4s<br>100: TDM6s<br>101: TDM8s<br>110: Reserved                                     | 0       |
| 11:8    | I2S_TX_SLOTVLD          | RW  | TX slot selection, data will be sent to one of the flowing slots.<br>0000: Slot 0<br>0001: Slot 1<br>0010: Slot 2<br>0011: Slot 3<br>0100: Slot 4<br>0101: Slot 5<br>0110: Slot 6<br>0111: Slot 7<br>Others: Reserved | 0       |
| 7:4     | I2S_RXR_SLOTVLD         | RW  | RX right channel slot selection<br>0000: Slot 0<br>0001: Slot 1<br>0010: Slot 2<br>0011: Slot 3<br>0100: Slot 4<br>0101: Slot 5<br>0110: Slot 5<br>0110: Slot 6<br>0111: Slot 7<br>Others: Reserved                   | 1       |
| 3:0     | I2S_RXL_SLOTVLD         | RW  | RX left channel slot selection<br>0000: Slot 0<br>0001: Slot 1<br>0010: Slot 2<br>0011: Slot 3<br>0100: Slot 4<br>0101: Slot 5<br>0110: Slot 5<br>0110: Slot 6<br>0111: Slot 7<br>Others: Reserved                    | 0       |

| I2SCTRL | 3: (Add <mark>r</mark> es <mark>s</mark> 08h) |     |                                                                                                    |         |  |
|---------|-----------------------------------------------|-----|----------------------------------------------------------------------------------------------------|---------|--|
| Bit     | Symbol                                        | R/W | Description                                                                                        | Default |  |
| 15:8    | Reserved                                      | RW  | Not used                                                                                           | 0       |  |
| 7       | FSYNC_TYPE                                    | RW  | Audio Frame synchronization signal (WCK) pulse width<br>configuration<br>0: One-slot<br>1: One-bck | 0       |  |
| 6       | I2STXEN                                       | RW  | Disable/Enable I2S transmitter module10: disable11: enable1                                        |         |  |

| 5 | DRVSTREN | RW | I2S_DATAO PAD driving strength setting<br>0: 4mA<br>1: 12mA                                                                                                                                                                                                                   | 1 |
|---|----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 4 | I2SRXEN  | RW | Disable/Enable I <sup>2</sup> S receiver module<br>0: disable<br>1: enable                                                                                                                                                                                                    | 1 |
| 3 | IV2CH    | RW | <ul> <li>I<sup>2</sup>S TX channel data packing mode control.</li> <li>When I2SBCK is set to 32*fs mode, Current &amp; Voltage data could be transmitted to I<sup>2</sup>S Left &amp; Right channels by using Special Mode.</li> <li>O: Legacy</li> <li>1: Special</li> </ul> | 0 |
| 2 | I2SDOSEL | RW | I <sup>2</sup> S unused channels output data selection<br>O: Zeros<br>1: TX Data                                                                                                                                                                                              | 1 |
| 1 | DOHZ     | RW | Unused channel Data control, When it is set to 0, all Channels<br>are available with same data. Otherwise Unused channel is set<br>to be Hi-Z.<br>0: All<br>1: Hi-Z                                                                                                           | 1 |
| 0 | I2SCHS   | RW | I <sup>2</sup> S TX Channel selection<br>O: Left<br>1: Right                                                                                                                                                                                                                  | 0 |

| DACCFG1: | DACCFG1: (Address 09h) |     |                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|----------|------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Bit      | Symbol                 | R/W | Description                                                                                                                                                                                                                                                                                                                                                                                                 | Default |
| 15:8 R\  | VTH                    | RW  | Release Amplitude threshold, in percent of signal full scale                                                                                                                                                                                                                                                                                                                                                | 0x39    |
| 7:0 A\   | VTH                    | RW  | Attack Amplitude threshold, in percent of signal full scale<br>RMSE = 0 (Peak AGC) : P0= ((i/256*Gain)**2)/R <sub>Load</sub> /2<br>RMSE = 1 (RMS AGC) : P0=(i/256)*(Gain**2)/R <sub>Load</sub><br>i is the register Value, default 0x40<br>Gain is the Amplifier Gain configured by SYSCTRL.SPK_GAIN,<br>default 12<br>R <sub>Load</sub> is $8\Omega/6\Omega$ for different application, default 8 $\Omega$ | 0x40    |

| DACCFG | 2: (Address Oah) |     |                                         |         |
|--------|------------------|-----|-----------------------------------------|---------|
| Bit    | Symbol 👝 🔌       | R/W | Description                             | Default |
|        |                  |     | Attack time threshold in unit of 20.8µs |         |
| 15:0   | ATTH             | RW  | 0: Reserved                             | 0x0030  |
|        |                  |     | n: n*20.8us                             |         |

| DACCFG | DACCFG3: (Address Obh) |     |                                                                        |         |  |  |
|--------|------------------------|-----|------------------------------------------------------------------------|---------|--|--|
| Bit    | Symbol                 | R/W | Description                                                            | Default |  |  |
| 15:0   | RTTH                   | RW  | Release time threshold in unit of 20.8µs<br>0: Reserved<br>n: n*20.8µs | 0x01E0  |  |  |

| DACCFG | DACCFG4: (Address 0ch) |     |             |         |  |  |
|--------|------------------------|-----|-------------|---------|--|--|
| Bit    | Symbol                 | R/W | Description | Default |  |  |
| 15:8   | Reserved               | RW  | Not used    | 0       |  |  |

# **awinic** 上海艾为电子技术股份 shanghai awinic technolo

| 有限公司          |  |
|---------------|--|
| ogy co., ltd. |  |

Oct.2022 V1.5

| 7:0 | HOLDTH | RW | Hold time before release control, in unit of about 1.33ms<br>0: Reserved<br>n: n*1.33ms | 0x64 |
|-----|--------|----|-----------------------------------------------------------------------------------------|------|
|-----|--------|----|-----------------------------------------------------------------------------------------|------|

| DACST: | DACST: (Address 20h) |     |                                                                                                                                            |         |  |  |  |
|--------|----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Bit    | Symbol               | R/W | Description                                                                                                                                | Default |  |  |  |
| 15:7   | Reserved             | RO  | Not used                                                                                                                                   | 0       |  |  |  |
| 6:0    | BSTVOUT_ST           | RO  | BOOST max output Voltage control bits (62.5mV/Step)<br>0000000~0010111: reserved<br>0011000: 5V<br><br>1101100: 10.25V<br>others: reserved | 0       |  |  |  |

| VBAT: | VBAT: (Address 21h) |     |                                                                                       |         |  |  |  |
|-------|---------------------|-----|---------------------------------------------------------------------------------------|---------|--|--|--|
| Bit   | Symbol              | R/W | Description                                                                           | Default |  |  |  |
| 15:10 | Reserved            | RO  | Not used                                                                              | 0       |  |  |  |
| 9:0   | VBAT_DET            | RO  | Detected Voltage of battery, and the full range is 6.025V<br>V_BATS=(VBAT)/1023×6.025 | 0x263   |  |  |  |
|       |                     |     |                                                                                       |         |  |  |  |

| TEMP: | (Address 22h) |     |                                                                                                                                                                                                        |         |
|-------|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Bit   | Symbol        | R/W | Description                                                                                                                                                                                            | Default |
| 15:10 | Reserved      | RO  | Not used 🚽 🔪                                                                                                                                                                                           | 0       |
| 9:0   | TEMP_DET      | RO  | Detected Die Temperature (Two's Complement), typical Values<br>are as follows.<br>0x3D8 : -40 °C<br>0x00 : 0 °C<br>0x01 : 1 °C<br>0x19 : 25 °C<br>0x37 : 55 °C<br>Please convert it to decimal number. | 0x019   |

| PVDD: | (Address 23h) 💧 💧 |     |                                                                                      |         |
|-------|-------------------|-----|--------------------------------------------------------------------------------------|---------|
| Bit   | Symbol            | R/W | Description                                                                          | Default |
| 15:10 | Reserved          | RO  | Not used                                                                             | 0       |
| 9:0   | PVDD_DET          | RO  | Detected Voltage of PVDD, and the full range is 12.05V<br>PVDD=(PVDD_DET)/1023×12.05 | 0x263   |
|       |                   |     |                                                                                      |         |

| BSTCTRL1: (Address 60h) |            |    |                                                                                                                                                                                                                  |         |  |  |
|-------------------------|------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| Bit                     | Symbol R/W |    | Description                                                                                                                                                                                                      | Default |  |  |
| 15:14                   | Reserved   | RW | Not used                                                                                                                                                                                                         | 0       |  |  |
| 13:8                    | BST_RTH    | RW | Smart boost release threshold setting, When signal is below the<br>threshold, the Voltage of VBST will not be raised up higher than<br>VBAT in smart boost mode<br>Release threshold = BST_RTH * 1/64 Full-scale | 4       |  |  |

| 5:0 | BST_ATH  | RW | Others: Reserved       Others: Reserved         RW       Smart boost attack threshold setting. When signal is above over the threshold, the Voltage of VBST will be raised up higher than VBAT in smart boost mode         Attack threshold = BST_ATH * 1/64 Full-scale |     |
|-----|----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 7:6 | BST_MODE | RW | BOOST mode selection, Initialize to 6.<br>000: Transparent<br>001: Force Boost<br>010: Smart Boost1<br>011: Smart Boost2<br>Othere: Becarved                                                                                                                            | 0x3 |

| BSTCTRI | L2: (Address 61h)                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                         |         |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Bit     | Symbol                                                                                                                                                                                                                    | R/W                                                                                                                                                                                                                                            | Description                                                                                                                                                                                                                             | Default |  |
| 15:12   | BST_IPEAK                                                                                                                                                                                                                 | RW                                                                                                                                                                                                                                             | Boost peak current limiter threshold<br>0000:1.75A<br>0001:2.0A<br>0010:2.25A<br>0011:2.5A<br>0100:2.75A<br>0100:2.75A<br>0101:3.0A<br>0110:3.25A<br>0111:3.5A<br>1000:3.75A<br>1000:3.75A<br>1001:4A<br>1010:4.25A<br>Others: Reserved | 9       |  |
| 11:8    | BST_TDEG                                                                                                                                                                                                                  | Smart Boost small signal level detection deglitch time           0000: 0.50 ms         0001: 1.00 ms           0010: 2.00 ms         0011: 4.00 ms           0100: 8.00 ms         0101: 10.7 ms           0110: 13.3 ms         0110: 13.3 ms |                                                                                                                                                                                                                                         | 11      |  |
| 7       | Reserved                                                                                                                                                                                                                  | RW                                                                                                                                                                                                                                             | Not used                                                                                                                                                                                                                                | 0       |  |
| 6:0     | Network       Network         VOUT_VREFSET       RW         BOOST max output Voltage control bits (62.5mV/Step)         0000000~0010111: reserved         0011000: 5V            1101100: 10.25V         others: reserved |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                         |         |  |

# **APPLICATION INFORMATION**

# **EXTERNAL COMPONENTS**

## BOOST INDUCTOR SELECTION

Inductance value is limited by the boost converter's internal loop compensation, a large  $L_{SW}$  will reduce the phase margin of the DC-to-DC converter. Also, the inductor should have low core loss at 1MHz (Min.) and low DCR for better efficiency under all operating conditions, the recommended value of inductor is 1µH.

Inductor saturation current and temperature rise current value are important basis for selecting the inductor. As the inductor current increases, inductance value will decline since the magnetic core begins to saturate; on the other hand, the inductor's parasitic resistance inductance and magnetic core loss can lead to temperature rise. The inductor saturation current rating could to be considered with the following equation:

$$I_{L\_PEAK} = \frac{2 * P_{OUT}}{\eta * VBAT} + \frac{VBAT * (PVDD - VBAT)}{2 * L_{SW} * F_{BST} * PVDD}$$

| V <sub>VBAT</sub> | PVDD  | R∟  | Efficiency | Pout | I <sub>L_PEAK</sub> | I <sub>SAT_min</sub> |
|-------------------|-------|-----|------------|------|---------------------|----------------------|
| (V)               | (V)   | (Ω) | (%)        | (W)  | (A)                 | (A)                  |
| 4.2               | 10.25 | 8   | 75         | 5.2  | 4.08                | 4.2                  |
| 4.2               | 10.25 | 6   | 73         | 5.4  | 4.23                | 4.5                  |

Following is the inductor selection reference for typical speaker impedances.

#### BOOST CAPACITOR SELECTION

Boost output capacitor is usually within the range 0.1µF~47µF. The ceramic capacitors with low ESR are recommended for low ripple voltage which is determined as following equation:

$$\Delta PVDD = \frac{(PVDD - VBAT) * I_{OUT}}{\eta * PVDD * F_{BST} * C_{OUT}} + \left(\frac{I_{OUT} * PVDD}{VBAT} + \frac{VBAT * (PVDD - VBAT)}{2 * L_{SW} * F_{BST} * PVDD}\right) * R_{C\_ESR}$$

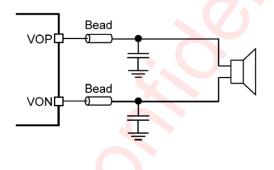
Capacitor is selected based on the requirements of temperature stability and voltage stability, considering the material, size, capacitor voltage, and capacitance values. It is suggested to use Class II type (EIA) multilayer ceramic capacitors (MLCC). Its internal dielectric is ferroelectric material (typically BaTiO<sub>3</sub>), a high the dielectric constant in order to achieve smaller size, but at the same Class II type (EIA) multilayer ceramic capacitors has poor temperature stability and voltage stability as compared to the Class I type (EIA) capacitance.

Please notice the DC bias characteristics when selecting capacitors. For typical applications, it is necessary to ensure that the residual capacitance is higher than  $3.3\mu F$ . Take the following capacitances as the output capacitor of boost for example:

| Value | Material | Size (mm³)            | Rated<br>Voltage | Quantity | Value@10.25V |
|-------|----------|-----------------------|------------------|----------|--------------|
| 10µF  | X5R      | 1.00×0.50×0.50 (0603) | 25V              | 2        | 3.6µF        |
| 22µF  | X5R      | 2.00×0.80×0.85 (0805) | 25V              | 1        | 3.7µF        |

40

www.awinic.com


#### SUPPLY DECOUPLING CAPACITOR

awini

The device is a high-performance audio amplifier that requires adequate power supply decoupling. A  $1\mu$ F low equivalent-series-resistance (ESR) ceramic capacitor is recommended. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. Additionally, placing this decoupling capacitor close to the device is important, as any parasitic resistance or inductance between the device and the capacitor causes efficiency loss. In addition to the  $1\mu$ F ceramic capacitor, place a  $10\mu$ F capacitor on the VBAT supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any drop in the supply voltage.

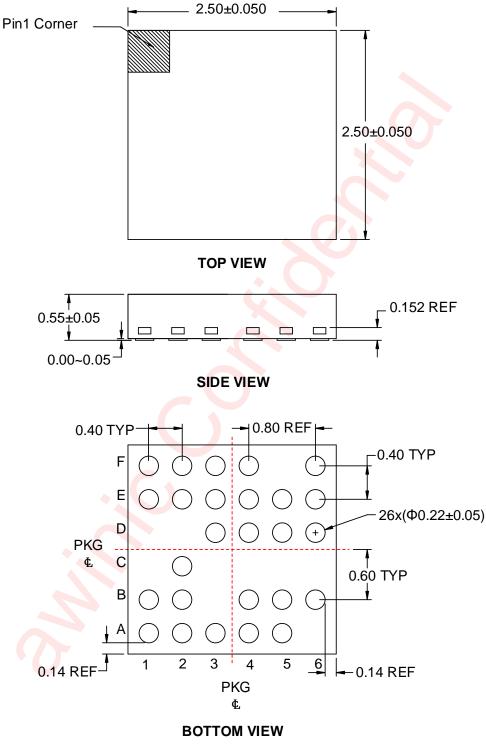
#### FILTER FREE OPERATION AND FERRITE BEAD FILTERS

If the PA is close to the EMI sensitive circuits and/or there are long leads from amplifier to speaker, a ferrite bead filter could be used, and placed as close as possible to the output pins of the PA. When choosing a ferrite bead, select a ferrite bead with adequate current rating to prevent distortion of the output signal. In addition, a 0.1nF ceramic capacitor is typically recommended, and its rated voltage should be above 25V.



## LAYOUT CONSIDERATION

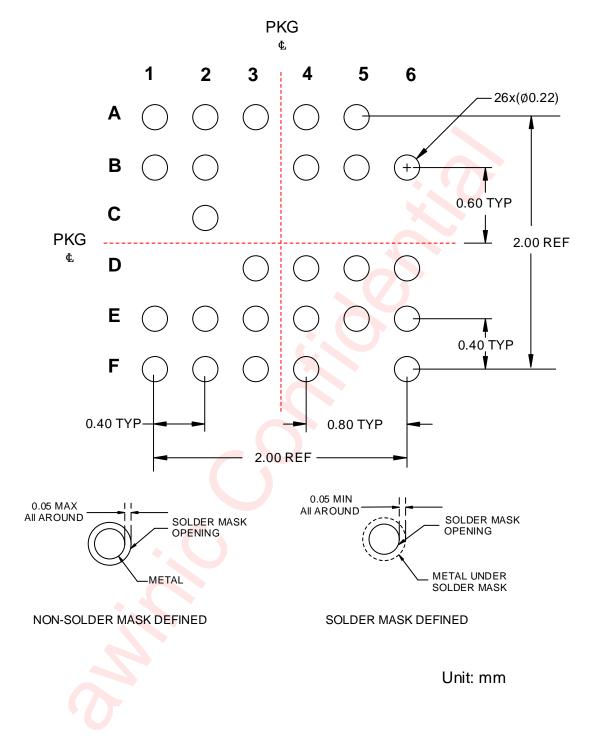
In order to obtain excellent performance of the PA, the below PCB layout guidelines should be followed: All the filter capacitors should be placed close to the corresponding pins of the PA, including VBST, VBAT, DVDD.


The traces of SW pin should support currents up to the device over-current limit (peak current 4A), and the input line from the battery to the SW pin should be traced above 4A current drive.

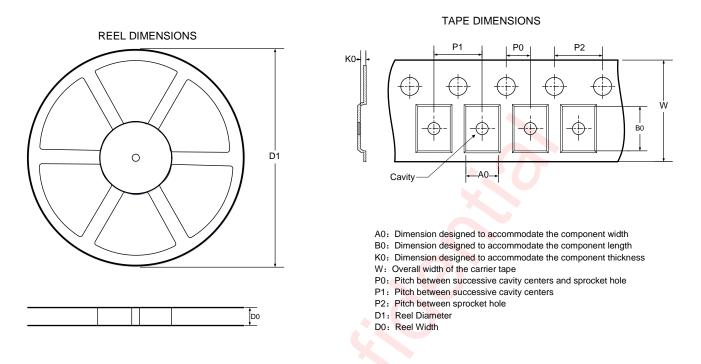
For the case of speaker impedance equal to  $8\Omega$ , try to provide a separate, short and thick power line to the PA, the copper width is recommended to be larger than 4mm.

The beads and capacitor should be placed close to the VON and VOP pin. The output line from PA to speaker should be as short and thick as possible. The width is recommended to be larger than 1.2mm.

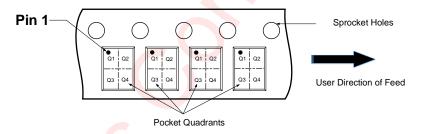
The via numbers determine the current capability. Typically, the boost converter trace need four via to handle the current requirement around 4A.


# **PACKAGE DESCRIPTION**




Unit: mm

# LAND PATTERN DATA


awinic



# TAPE AND REEL INFORMATION



#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



#### DIMENSIONS AND PIN1 ORIENTATION

| D1                   | D0   | A0   | B0   | K0   | P0   | P1   | P2   | W    | Pin1 Quadrant |
|----------------------|------|------|------|------|------|------|------|------|---------------|
| (mm)                 | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) |               |
| 178.0 <mark>0</mark> | 8.40 | 2.70 | 2.70 | 0.75 | 2    | 4    | 4    | 8    | Q1            |

All dimensions are nominal

# **REVISION HISTORY**

| Version | Date       | Change Record                                                                                                                                                                                                                                 |
|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V1.0    | July. 2021 | Officially Released                                                                                                                                                                                                                           |
| V1.1    | Aug. 2021  | Fix typo & add Ultrasonic Support Description                                                                                                                                                                                                 |
| V1.2    | Dec. 2021  | Update Figure 6                                                                                                                                                                                                                               |
| V1.3    | Jan. 2022  | Fix Туро                                                                                                                                                                                                                                      |
| V1.4    | Apr. 2022  | Update POD & Land Pattern                                                                                                                                                                                                                     |
| V1.5    | Oct. 2022  | Smart BOOST with total efficiency up to 83%<br>VOLUME CONTROL : The volume control function attenuates the audio<br>signal at the end of digital audio processing . The range of volume setting is<br>from 0db to -95.875db with 0.125db/step |

# DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.