ATM7414NDH

N-Channel Enhancement Mode Field Effect Transistor

Drain-Source Voltage: 30V

Drain Current: 18A

Description

The ATM7414NDH uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a load switch or in PWM applications. Standard Product ATM7414NDH is Pb-free.

Features

- V_{DS}(V)=30V ٠
- $I_{D}=18A(V_{GS}=10V)$ ٠
- $R_{DS(ON)} < 16m\Omega (V_{GS} = 10V)$
- $R_{DS(ON)} < 24m\Omega (V_{GS} = 4.5V)$

Absolute maximum ratings (Ta=25°C unless otherwise noted)

Parameter		Symbo	bl	Maximum	Unit					
Drain-Source Voltage		V _{DS}		30	V					
Gate-Source Voltage		V	GS	±20	V					
	Ta=25℃			18	Δ					
Continuous Drain Current Note2	Ta=70 ℃		D	13.5	A					
Pulsed Drain Current NOTE 3			M	52	A					
Quality Durin Quarter (NOTE 1	Ta=25℃			12.5	A					
Continuous Drain Current Nore	Ta=70℃	ID:	SM	10	A					
Avalanche energy L=0.3mH	E	AS	17.8	mJ						
Derver Dissignation NOTE 2	Ta=25 ℃			10.7	W					
Power Dissipation Note2	Ta=70 ℃	F	Ď	4.3	W					
Devuer Diaging tion NOTE 1	Ta=25 ℃			3.7	W					
Power Dissipation for L	Ta=70 ℃		DSM	2.4	W					
Junction and Storage Temperature Range	T _{J,} 7	STG	-55 to 150	°C						
Thermal Characteristics										
Parameter		Symbol	Тур	Max	Unit					
Maximum Junction-to-Ambient NOET 1	t≤ 10s		27	34	℃/W					
Maximum Junction-to-Ambient NOET 1	Steady-State	Keja	52	65	°C/W					
Maximum Junction-to-Case NOET 1	Steady-State	R _{θJC}	9.8	11.7	°C/W					

AGERTECH MICROELECTRONICS

Dated:04/2020 Rev: 1.0

<u>ATM7414NDH</u>

Electrical characteristics (T_A=25 °C, unless otherwise noted)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit			
Static Characteristics									
Drain-source breakdown voltage V(BR)D		V _{GS} = 0V, I _D =250µA	30			V			
Zero gate voltage drain current	I _{DSS}	V _{DS} =24V,V _{GS} = 0V			1	μA			
Gate-body leakage current	lgss	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA			
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250µA	1.0	1.6	2.0	V			
Static Drain source on resistance ¹⁾	RDS(on)	V _{GS} =10V, I _D = 8.0A		12.8	16.0	0			
	1 (D3(01))	V _{GS} = 4.5V, I _D = 7.0A		18.0	24.0	mΩ			
Forward Transconductance	g FS	V _{DS} =5.0V, I _D =8.0A	1	9.5		S			
Diode Forward Voltage	V _{SD}	I _S =1.0A,V _{GS} =0V		0.75	1.2	V			
Dynamic characteristics ²⁾									
Input Capacitance	C _{iss}			645					
Output Capacitance	C _{oss}	V _{DS} =15V,V _{GS} =0V,f =1MHz	1	87		pF			
Reverse Transfer Capacitance	Crss			68					
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.5		Ω			
Total Gate Charge	Q _{gtot} (10V)			15.5		nC			
Total Gate Charge	Q _{gtot} (4.5V)	V _{GS} =10V,V _{DS} =15V,		7.5		nC			
Gate Source Charge	Qgs	I _D =8.0A		2.6		nC			
Gate Drain Charge	Qgd			2.7		nC			
Turn-on delay time	t _{d(on)}			6.0					
Turn-on rise time	tr	V _{DS} =15V,R _L =2Ω,		18.0		ns			
Turn-off delay time	t _{d(off)}	V_{GS} =10V,R _{GEN} =3 Ω		27.5					
Turn-off fall time	t _f			9.8					

Notes:

1. The value of R0JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

2. The Power dissipation PD is based on TJ(MAX)=150°C, using junction to case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

3.Repetitive rating, pulse width limited by junction temperature.

4. The RθJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.

5. The static characteristics in Figures 1 to 6 are obtained using 80 µs pulses, duty cycle 0.5% max.

6. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25 °C. The SOA curve provides a single pulse rating.

7. The maximum current rating is package limit.

AGERTECH MICROELECTRONICS

Dated:04/2020 Rev: 1.0

ATM7414NDH

Typical Characteristics Curves

AGERTECH MICROELECTRONICS

Dated:04/2020 **Rev: 1.0**

<u>ATM7414NDH</u>

Figure 11: Normalized Maximum Transient Thermal Impedance (Note 2)

AGERTECH MICROELECTRONICS

Dated:04/2020 Rev: 1.0

Package Outline

UNIT	Α	A1	b	С	D	D1	D2	D3	D4	E	E1	E2	E3
mm	0.9	0.05	0.35	0.25	3.1	2.45	0.5	2.7	3.2	3.1	3.3	1.85	0.68
	0.7	0	0.24	0.1	2.9	2.25	0.3	2.5	3	2.9	3.1	1.65	0.48

UNIT	E4	E5	E6	е	K	L	L1	L2	L3	0 1
mm	0.43	0.4	0.175	0.7	0.72	0.5	0.1	0.53	0.475	12°
	0.23	0.2	0.075	0.6	0.52	0.3	0	0.33	0.275	0°

Recommended Soldering Footprint

AGERTECH MICROELECTRONICS

Dated:04/2020 Rev: 1.0