Description The MDV3604URH uses advanced trench technology and design to provide excellent R_{DS(ON)} with low gate charge .Thisdevice is well suited for high current load applications. ### **General Features** $V_{DS} = -30V, I_{D} = -32A$ $R_{DS(ON)}$ <12m Ω @ V_{GS} =-10V $R_{DS(ON)}$ <18m Ω @ V_{GS} =-4.5V ### **Application** High side switch for full bridge converter DC/DC converter for LCD display DFN3X3-8L P-Channel MOSFET ## **Package Marking and Ordering Information** | Product ID | Pack | Brand | Qty(PCS) | |------------|-----------|------------|----------| | MDV3604URH | DFN3X3-8L | HXY MOSFET | 5000 | # Absolute Maximum Ratings@Tj=25°C(unless otherwise specified) | Symbol | Parameter | Rating | Units | |--------------------------------------|---|-------------|-------| | VDS | Drain-Source Voltage | -30 | V | | VGS | Gate-Source Voltage | <u>+</u> 25 | V | | I _D @T _A =25°C | Drain Current ³ , V _{GS} @ 10V | -32 | А | | I _D @T _A =70°C | Drain Current ³ , V _{GS} @ 10V | -9.8 | А | | IDM | Pulsed Drain Current ¹ | -65 | А | | P _D @T _A =25°C | Total Power Dissipation | 3.57 | W | | TSTG | Storage Temperature Range | -55 to 150 | °C | | TJ | Operating Junction Temperature Range | -55 to 150 | °C | | Rthj-c | Maximum Thermal Resistance, Junction-case | 6 | °C/W | | Rthj-a | Maximum Thermal Resistance, Junction-
ambient ³ | 35 | °C/W | # Electrical Characteristics@ T_j =25°C(unless otherwise specified) | Parameter | Test Conditions | Min. | Тур. | Max. | Units | |--------------------------------|---|--|---|--|--| | Drain-Source Breakdown Voltage | V _{GS} =0V, I _D =-250uA | -30 | - | - | V | | Static Drain-Source On- | V _{GS} =-10V, I _D =-15A | - | 10 | 12 | mΩ | | Resistance ² | V _{GS} =-4.5V, I _D =-10A | - | 14 | 18 | mΩ | | Gate Threshold Voltage | V _{DS} =V _{GS} , I _D =-250uA | -1 | 1.95 | -2.5 | V | | Forward Transconductance | V _{DS} =-10V, I _D =-6A | - | 19 | - | S | | Drain-Source Leakage Current | V _{DS} =-24V, V _{GS} =0V | - | - | -30 | uA | | Gate-Source Leakage | V _{GS} = <u>+</u> 20V, V _{DS} =0V | - | - | <u>+</u> 100 | nA | | Total Gate Charge | I _D =-15A | - | 12.5 | 24 | nC | | Gate-Source Charge | V _{DS} =-15V | - | 5.4 | - | nC | | Gate-Drain ("Miller") Charge | V _{GS} =-4.5V | - | 5 | - | nC | | Turn-on Delay Time | V _{DS} =-15V | - | 4.4 | - | ns | | Rise Time | I _D =-15A | - | 11.2 | - | ns | | Turn-off Delay Time | | - | 34 | - | ns | | Fall Time | T V _{GS} =-10V | - | 18 | - | ns | | Input Capacitance | V _{GS} =0V | - | 1345 | 2000 | pF | | Output Capacitance | V _{DS} =-15V | - | 194 | - | pF | | Reverse Transfer Capacitance | -1-1.0IVII IZ. | - | 158 | - | pF | | Reverse Recovery Time | I _S =-15A, V _{GS} =0V,
dl/dt=100A/µs | - | 12.4 | | ns | | Reverse Recovery Charge | | - | 5 | - | nC | | | Drain-Source Breakdown Voltage Static Drain-Source On- Resistance ² Gate Threshold Voltage Forward Transconductance Drain-Source Leakage Current Gate-Source Leakage Total Gate Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Recovery Time | Drain-Source Breakdown Voltage V _{GS} =0V, I _D =-250uA Static Drain-Source On-Resistance ² V _{GS} =-10V, I _D =-15A V _{GS} =-4.5V, I _D =-10A Gate Threshold Voltage V _{DS} =V _{GS} , I _D =-250uA Forward Transconductance V _{DS} =-10V, I _D =-6A Drain-Source Leakage Current V _{DS} =-24V, V _{GS} =0V Gate-Source Leakage V _{GS} =±20V, V _{DS} =0V Total Gate Charge I _D =-15A Gate-Drain ("Miller") Charge V _{DS} =-15V Gate-Drain ("Miller") Charge V _{DS} =-15V Rise Time I _D =-15A Turn-off Delay Time V _{GS} =-10V Fall Time V _{GS} =-10V Input Capacitance V _{GS} =0V Output Capacitance V _{DS} =-15V F=1.0MHz Reverse Transfer Capacitance I _S =-15A, V _{GS} =0V, dI/dt=100A/µs | Drain-Source Breakdown Voltage V _{GS} =0V, I _D =-250uA -30 Static Drain-Source On-Resistance ² V _{GS} =-10V, I _D =-15A - | Drain-Source Breakdown Voltage V _{GS} =0V, I _D =-250uA -30 - | Drain-Source Breakdown Voltage V _{GS} =0V, I _D =-250uA -30 - - Static Drain-Source On-Resistance² V _{GS} =-10V, I _D =-15A - 10 12 V _{GS} =-4.5V, I _D =-10A - 14 18 Gate Threshold Voltage V _{DS} =V _{GS} , I _D =-250uA - 1 1.95 -2.5 Forward Transconductance V _{DS} =-10V, I _D =-6A - 19 - Drain-Source Leakage Current V _{DS} =-24V, V _{GS} =0V - - -30 Gate-Source Leakage V _{GS} =±20V, V _{DS} =0V - - -30 Gate-Source Leakage I _D =-15A - 12.5 24 Gate-Source Charge I _D =-15A - 12.5 24 Gate-Source Charge V _{DS} =-15V - 5.4 - Gate-Drain ("Miller") Charge V _{DS} =-15V - 4.4 - Rese Time I _D =-15A - 11.2 - Re-3.3Ω - - 4.4 - Input Capacitance V _{DS} =-15V - < | #### Notes: ^{1.} Pulse width limited by Max. junction temperature. ^{2.}Pulse test # **Typical Electrical** Fig 1. Typical Output Characteristics Fig 3. On-Resistance v.s. Gate Voltage Fig 5. Forward Characteristic of Reverse Diode Fig 2. Typical Output Characteristics Fig 4. Normalized On-Resistance v.s. Junction Temperature Fig 6. Gate Threshold Voltage v.s. Junction Temperature Fig 7. Gate Charge Characteristics Fig 9. Maximum Safe Operating Area Fig 11. Switching Time Waveform Fig 8. Typical Capacitance Characteristics Fig 10. Effective Transient Thermal Impedance Fig 12. Gate Charge Waveform # **DFN3X3-8L Package Information** | Complete I | Dimensions In Millimeters | | | |------------|---------------------------|------|-----------------| | Symbol | Min. | Nom. | Max. | | A | 0.70 | 0.75 | 0.80 | | b | 0.25 | 0.30 | 0.35 | | С | 0.10 | 0.15 | 0.25 | | D | 3.25 | 3.35 | 3.45 | | D1 | 3.00 | 3.10 | 3.20 | | D2 | 1.48 | 1.58 | 1.68 | | D3 | - | 0.13 | - | | Е | 3.20 | 3.30 | 3.40 | | E1 | 3.00 | 3.15 | 3.20 | | E2 | 2.39 | 2.49 | 2.59 | | е | 0.65BSC | | | | Н | 0.30 | 0.39 | 0.50 | | L | 0.30 | 0.40 | 0.50 | | L1 | - | 0.13 | - | | M | * | * | 0.15 | | θ | | 10° | 12 [°] | ### **Attention** - Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications. - HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein. - Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. - HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. - In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law. - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.