

High current PN half-bridge with integrated driver

Features

- AEC-Q100/Q006 qualified (Grade 1)
- Supply voltage range 8 V 18 V (max up to 40 V)
- Path resistance of typ. 5.3 m Ω @ 25°C (max. 9.6 m Ω @ 150°C)
- Low quiescent current of max. 3.3 μA @ 85°C
- Protection features: overcurrent, undervoltage, overtemperature
- Overcurrent detection level of 75 A min
- Eight selectable switching slew rates for optimized EME
- Status flag diagnosis with feedback of current sense, temperature and slew rate

Package	Marking
PG-HSOF-7-1 (sTOLL)	BTN9990

Potential applications

- Automotive 12 V brushed DC Motor
- Fuel pump
- Power liftgate
- HVAC blower

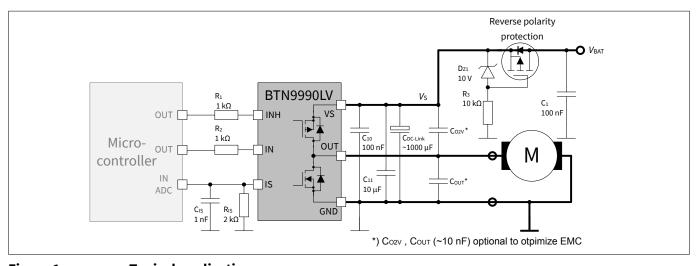


Figure 1 Typical application

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

The BTN9990LV is an integrated high current half-bridge for motor drive applications. It is part of the integrated half-bridge NovalithIC[™]+ family containing one p-channel high-side MOSFET and one n-channel low-side MOSFET with an integrated driver IC in one package. Due to the p-channel high-side switch the need for a charge pump is eliminated thus minimizing EME. Interfacing to a microcontroller is made easy by the integrated

High current PN half-bridge with integrated driver

Description

driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation and protection against overtemperature, undervoltage, overcurrent and short circuit. The BTN9990LV provides a cost optimized solution for protected high current PWM motor drives with very low board space consumption.

High current PN half-bridge with integrated driver

Table of contents

Table of contents

	Features	
	Potential applications	
	Product validation	1
	Description	1
	Table of contents	3
1	Block diagram	4
2	Pin configuration	6
3	General product characteristics	7
3.1	Absolute maximum ratings	
3.2	Functional range	
3.3	Thermal resistance	
4	Block description and characteristics	10
4.1	Supply characteristics	
4.2	Power stages	
4.2.1	Switching times	
4.3	Protection functions	
4.3.1	Undervoltage shutdown with restart	18
4.3.2	Overtemperature protection	
4.3.3	Overcurrent protection	19
4.3.3.1	Current limitation	20
4.3.3.2	Switch-OFF with latch	20
4.3.4	Short circuit protection	21
4.4	Control and diagnostics	21
4.4.1	Dead time generation	23
4.4.2	Adjustable slew rate	23
4.4.3	Status flag diagnosis with current and temperature sense capability	24
4.4.3.1	Current sense	24
4.4.3.2	Temperature sense and slew rate feedback	25
4.4.3.3	Fault feedback	26
4.4.4	Truth table	26
5	Application information	29
6	Package	31
7	Revision history	32
	Disclaimer	33

1 Block diagram

1 Block diagram

The BTN9990LV is part of the integrated half-bridge NovalithIC[™]+ family containing three separate chips in one package: one p-channel high-side MOSFET and one n-channel low-side MOSFET together with a driver IC, forming an integrated high current half-bridge. All three chips are mounted on a common lead frame, using the chip-on-chip and chip-by-chip technology. The power switches utilize vertical MOS technologies to ensure optimum ON-state resistance. Due to the p-channel high-side switch the need for a charge pump is eliminated thus minimizing EME. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation and protection against overtemperature, overcurrent, undervoltage and short circuit. The BTN9990LV can be combined with other BTN9990LVs to form an H-bridge or a 3-phase drive configuration.

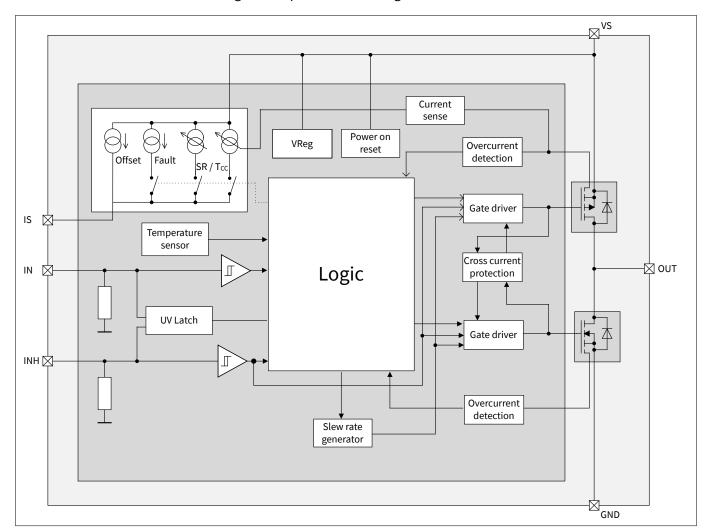


Figure 2 Block diagram

Following figure shows the terms used in this datasheet.

High current PN half-bridge with integrated driver

1 Block diagram

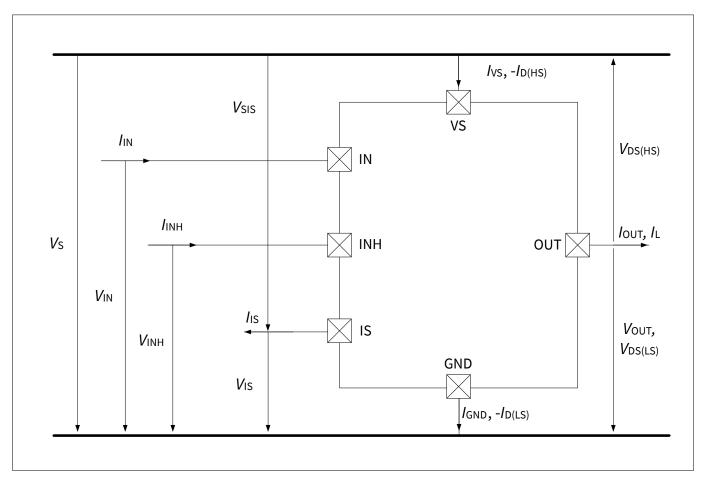


Figure 3 Terms

2 Pin configuration

2 Pin configuration

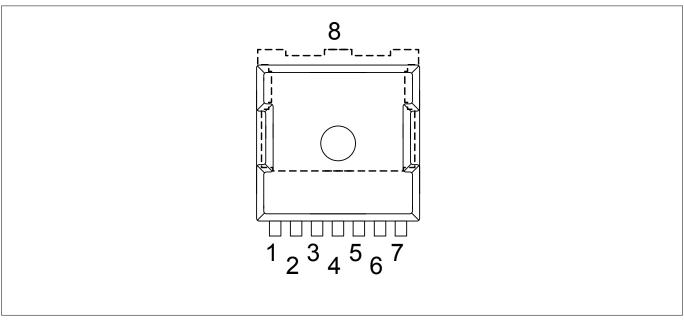


Figure 4 Pin assignment BTN9990LV (top view)

Table 1 Pin definitions and functions

Pin	Symbol	I/O	Function
1,2	GND	-	Ground (1)
3	IN	I	Input Defines whether high- or low-side switch is activated. An internal pull down resistor is connected to this pin.
4	INH	I	Inhibit When set to low device goes in tristate. An internal pull down resistor is connected to this pin.
5	IS	0	Current sense, temperature sense, slew rate level and diagnostics
6,7	VS	_	Supply (1)
8 (EP)	OUT	0	Power output of the bridge

¹⁾ All terminal pins must be connected together on the PCB. All terminal pins are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow

Bold type: pin needs power wiring

High current PN half-bridge with integrated driver

(infineon

3 General product characteristics

3 General product characteristics

The device is intended to be used in an automotive environment. The circumstances, how the device environment must look like, are described in this chapter.

3.1 Absolute maximum ratings

Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2 Absolute Maximum Ratings

 T_j = -40°C to 150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) ¹⁾

Parameter	Symbol		Values			Note or condition
		Min.	Тур.	Max.		
Voltages		I .	1		1	
Supply voltage	V _S	-0.3	_	40	٧	_
Drain-source voltage high-side	V _{DS(HS)}	-40	_	_	V	<i>T</i> _j ≥ 25°C
Drain-source voltage high-side	V _{DS(HS)}	-38	_	_	V	<i>T</i> _j < 25°C
Drain-source voltage low-side	V _{DS(LS)}	-	_	40	V	<i>T</i> _j ≥ 25°C
Drain-source voltage low-side	V _{DS(LS)}	-	_	38	V	<i>T</i> _j < 25°C
Logic input voltage	V _{IN} V _{INH}	-0.3	-	5.5	V	-
Voltage between VS and IS pin	V _{SIS}	-0.3	_	40	٧	-
Voltage at IS pin	V _{IS}	-0.3	_	40	٧	_
Currents		1		•	1	
HS drain current	/ _{D(HS)}	-	_	I _{OCH0}	А	Switch active ²⁾
LS drain current	I _{D(LS)}	-	_	I _{OCL0}	А	Switch active ²⁾
Temperatures		<u>'</u>			•	
Junction temperature	$T_{\rm j}$	-40	_	150	°C	_
Storage temperature	T_{stg}	-55	_	150	°C	_
ESD susceptibility						
ESD robustness all pins (HBM)	$ V_{ESD(HBM,local)} $	_	_	2	kV	HBM ³⁾
ESD robustness OUT vs GND vs VS (HBM)	$ V_{ESD(HBM,global)} $	_	-	6	kV	HBM ³⁾
ESD robustness all pins (CDM)	V _{ESD(CDM)}	_	_	500	TC	CDM ⁴⁾

¹ Not subject to production test, specified by design.

Maximum applicable single pulse current depends on t_{pulse} . See figure maximum single pulse current.

Human body model "HBM" robustness: class 2 according to AEC-Q100-002.

Charged device model "CDM" robustness: class C2a according to AEC-Q100-011 Rev D. "TC" corresponds to "test condition" according to AEC-Q100-011.

High current PN half-bridge with integrated driver

3 General product characteristics

Table 2 (continued) Absolute Maximum Ratings

 T_j = -40°C to 150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) ¹⁾

Parameter	Symbol	Values		Values		Values l		Unit	Note or condition
		Min.	Тур.	Мах.					
ESD robustness corner pins (CDM) (pins VS, GND, OUT)	V _{ESD(CDM,corner)}	-	-	750	TC	CDM ⁴⁾			

Latchup Robustness: class II according to AEC-Q100-04

Note:

Integrated protection functions are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

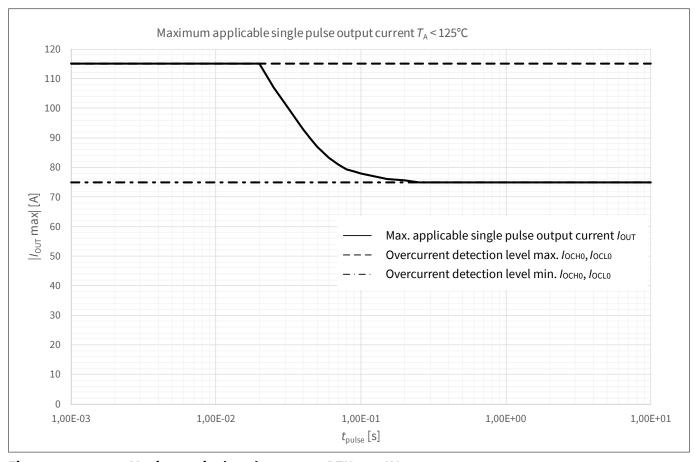


Figure 5 Maximum single pulse current BTN9990LV

The diagram shows the maximum single pulse current that can be applied for a given pulse time $t_{\rm pulse}$. The maximum achievable current may be smaller and depends on the overcurrent detection level. Pulse time may be limited due to thermal protection of the device.

Not subject to production test, specified by design.

Charged device model "CDM" robustness: class C2a according to AEC-Q100-011 Rev D. "TC" corresponds to "test condition" according to AEC-Q100-011.

High current PN half-bridge with integrated driver

3 General product characteristics

3.2 **Functional range**

The parameters of the functional range are listed in the following table:

Table 3 **Functional range**

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Supply voltage range for normal operation	V _{S(nor)}	8	_	18	V	5)
Extended supply voltage range for operation	V _{S(ext)}	4.5	-	40	V	Falling V _{S(ext)} Parameter deviation possible ⁵⁾
Junction temperature	T _j	-40	_	150	°C	5)

Thermal resistance 3.3

This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to https://www.jedec.org/

Table 4 Thermal resistance

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Мах.		
Thermal resistance junction- case, high-side switch Rthjc (HS) = ΔTj(HS)/Pv(HS)	R _{thJC(HS)}	_	0.5	0.7	K/W	6)
Thermal resistance junction- case, low-side switch Rthjc(LS) = ΔTj(LS)/Pv(LS)	R _{thJC(LS)}	_	0.8	1.1	K/W	6)
Thermal resistance junctionambient	R_{thJA}	_	19	_	K/W	6) 7)

Note:

Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table.

⁵ Not subject to production test, specified by design.

⁶ Not subject to production test, specified by design.

According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The device (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 μm Cu, 2 x 35 μm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

High current PN half-bridge with integrated driver

4 Block description and characteristics

4 Block description and characteristics

4.1 Supply characteristics

Table 5Supply characteristics

 V_S = 8 V to 18 V, T_j = -40°C to 150°C, I_L = 0 A, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or condition
		Min.	Тур.	Max.		
General		·			•	
Supply current	I _{VS(on)}	-	2.3	4.5	mA	V _{INH} = 5 V V _{IN} = 0 V or 5 V normal operation DC-mode (no fault condition) according to Table 12
Supply current in SR selection mode	I _{VS(on_SR)}	-	2.0	3.2	mA	$V_{INH} = 0 \text{ V}$ $V_{IN} = 5 \text{ V}$ SR selection mode $I_{VS(on_SR)} = I_{VS} - I_{IS}$ (no fault condition)
Quiescent current Tj = 150°C	I _{VS(off)_150C}	-	-	75	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \text{ V}$ $T_{\text{j}} = 150^{\circ}\text{C}$
Quiescent current at Tj ≤ 85°C	I _{VS(off)_85C}	-	-	5	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \ V$ $T_{\text{j}} \le 85^{\circ} \text{C}^{8}$
Quiescent current Tj ≤ 85°C and VS = 13.5 V	/vS(off)_85C_13.5V	-	_	3.3	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \ V$ $VS = 13.5 \ V$ $T_{\text{j}} \le 85^{\circ}\text{C}^{-8}$

10

 $^{^{\}it 8}$ $\,$ Not subject to production test, specified by design.

High current PN half-bridge with integrated driver

4 Block description and characteristics

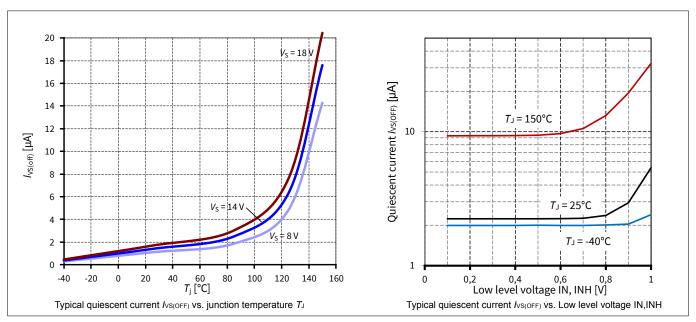


Figure 6 Typical quiescent current I_{VS(OFF)} characteristics

4.2 **Power stages**

The power stages of the BTN9990LV consist of a p-channel vertical DMOS transistor for the high-side switch and a n-channel vertical DMOS transistor for the low-side switch. All protection and diagnostic functions are located in a separate driver IC. Both switches allow active freewheeling and thus minimizing power dissipation during PWM control.

The ON-state resistance R_{ON} is dependent on the supply voltage V_S as well as on the junction temperature T_i . The typical ON-state resistance characteristics are shown in Figure 7.

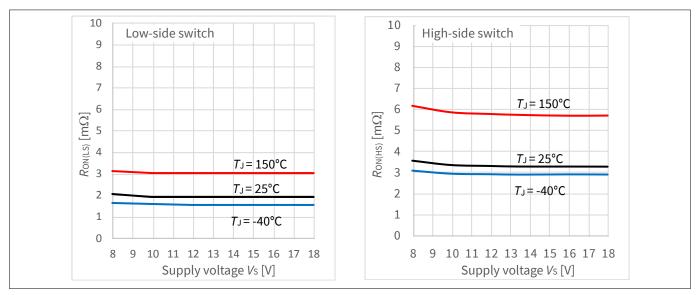


Figure 7 Typical ON-state resistance vs. supply voltage V_S

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 6 Power stages – static characteristics

 V_S = 8 V to 18 V, T_j = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	5	Unit	Note or condition
		Min.	Тур.	Max.		
High-side switch – static cha	acteristics			•		
ON-state high-side resistance	R _{ON(HS)}	-	3.5	_	mΩ	$I_{OUT} = 15 \text{ A}; V_S = 13.5 \text{ V}$ $T_j = 25^{\circ}\text{C}^{9)}$
ON-state high-side resistance	R _{ON(HS)}	-	5.0	6.0	mΩ	$I_{OUT} = 15 \text{ A}; V_S = 13.5 \text{ V}$ $T_j = 150^{\circ}\text{C}$
ON-state high-side resistance	R _{ON(HS)}	-	5.3	_	mΩ	$I_{OUT} = 15 \text{ A}; V_S = 6 \text{ V}$ $T_j = 25^{\circ}\text{C}^{9)}$
ON-state high-side resistance	R _{ON(HS)}	-	7.5	11.5	mΩ	$I_{OUT} = 15 \text{ A}; V_S = 6 \text{ V}$ $T_j = 150^{\circ}\text{C}$
Leakage current high-side	I _{L(LKHS)}	-	_	1	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \text{ V}; V_{\text{OUT}} = 0 \text{ V}$ $T_{j} \le 85^{\circ}\text{C}^{9)}$
Leakage current high-side	I _{L(LKHS)}	-	-	60	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \text{ V}; V_{\text{OUT}} = 0 \text{ V}$ $T_{\text{j}} = 150^{\circ}\text{C}$
Reverse diode forward-voltage high-side	V _{DS(HS)}	-	0.9	_	V	$I_{OUT} = -15 \text{ A}$ $T_j = -40^{\circ}\text{C}^{9)} \ 10)$
Reverse diode forward-voltage high-side	V _{DS(HS)}	-	0.85	_	V	$I_{OUT} = -15 \text{ A}$ $T_j = 25^{\circ}\text{C}^{9)} \ ^{10)}$
Reverse diode forward-voltage high-side	V _{DS(HS)}	-	0.7	0.9	V	$I_{OUT} = -15 \text{ A}$ $T_j = 150^{\circ} \text{C}^{10}$
Low-side switch – static char	acteristics				•	
ON-state low-side resistance	R _{ON(LS)}	-	1.8	_	mΩ	I_{OUT} = -15 A; V_{S} = 13.5 V T_{j} = 25°C ⁹⁾
ON-state low-side resistance	R _{ON(LS)}	-	3.0	3.6	mΩ	$I_{OUT} = -15 \text{ A}; V_S = 13.5 \text{ V}$ $T_j = 150^{\circ}\text{C}$
ON-state low-side resistance	R _{ON(LS)}	-	4.5	_	mΩ	$I_{OUT} = -15 \text{ A}; V_S = 6 \text{ V}$ $T_j = 25^{\circ}\text{C}^{9)}$
ON-state low-side resistance	R _{ON(LS)}	-	4.5	5.4	mΩ	$I_{OUT} = -15 \text{ A}; V_S = 6 \text{ V}$ $T_j = 150 ^{\circ}\text{C}$
Leakage current low-side	I _{L(LKLS)}	-	-	1	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \text{ V}; V_{\text{OUT}} = V_{\text{S}}$ $T_{\text{j}} \le 85^{\circ}\text{C}^{9}$

⁹ Not subject to production test, specified by design.

Due to active freewheeling, diode is conducting only for a few μs, depending on the selected slew rate SRx.

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 6 (continued) Power stages – static characteristics

 V_S = 8 V to 18 V, T_j = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Leakage current low-side	I _{L(LKLS)}	-	-	30	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \text{ V}; V_{\text{OUT}} = V_{\text{S}}$ $T_{\text{j}} = 150^{\circ}\text{C}$
Reverse diode forward-voltage low-side	-V _{DS(LS)}	-	0.9	-	V	$I_{OUT} = 15 \text{ A}$ $T_j = -40^{\circ}\text{C}^{-9j-10j}$
Reverse diode forward-voltage low-side	-V _{DS(LS)}	-	0.8	-	V	$I_{OUT} = 15 \text{ A}$ $T_j = 25^{\circ}\text{C}^{9)} \ ^{10)}$
Reverse diode forward-voltage low-side	-V _{DS(LS)}	-	0.6	0.8	V	$I_{OUT} = 15 \text{ A}$ $T_{j} = 150^{\circ}\text{C}^{10}$

Table 7 Power stages – dynamic characteristics

Paragraph condition: $V_S = 13.5 \text{ V}$, $T_j = -40 ^{\circ}\text{C}$ to $150 ^{\circ}\text{C}$, $R_{load} = 2 \Omega$, $30 \, \mu\text{H} < L_{load} < 40 \, \mu\text{H}$ (in series to R_{load}), single pulse, $I_{OUT} > 90 \, \text{mA}$ freewheeling, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values			Note or condition
		Min.	Тур.	Max.		
High-side switch – dynamic o	haracteristics	·				
Rise-time of HS for SR0	t _{r(HS),SR0}	0.05	0.25	0.55	μs	SR-level = SR0
Rise-time of HS for SR1	t _{r(HS),SR1}	-	0.36	_	μs	SR-level = SR1
Rise-time of HS for SR2	t _{r(HS),SR2}	-	0.5	_	μs	SR-level = SR2
Rise-time of HS for SR3	t _{r(HS),SR3}	_	0.83	_	μs	SR-level = SR3
Rise-time of HS for SR4	t _{r(HS),SR4}	_	1.0	_	μs	SR-level = SR4
Rise-time of HS for SR5	t _{r(HS),SR5}	0.22	1.25	5.00	μs	SR-level = SR5
Rise-time of HS for SR6	t _{r(HS),SR6}	-	2.5	_	μs	SR-level = SR6
Rise-time of HS for SR7	t _{r(HS),SR7}	_	5.0	_	μs	SR-level = SR7
Switch-ON delay time HS for SR0	t _{dr(HS),SR0}	2.3	3.6	4.3	μs	SR-level = SR0
Switch-ON delay time HS for SR1	t _{dr(HS),SR1}	-	4.1	_	μs	SR-level = SR1
Switch-ON delay time HS for SR2	t _{dr(HS),SR2}	-	4.6	_	μs	SR-level = SR2

⁹ Not subject to production test, specified by design.

Due to active freewheeling, diode is conducting only for a few μs, depending on the selected slew rate SRx.

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 7 (continued) Power stages – dynamic characteristics

Paragraph condition: $V_S = 13.5 \text{ V}$, $T_j = -40 ^{\circ}\text{C}$ to $150 ^{\circ}\text{C}$, $R_{load} = 2 \Omega$, $30 \, \mu\text{H} < L_{load} < 40 \, \mu\text{H}$ (in series to R_{load}), single pulse, $I_{OUT} > 90 \, \text{mA}$ freewheeling, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values			Note or condition
		Min.	Тур.	Max.		
Switch-ON delay time HS for SR3	t _{dr(HS),SR3}	-	5.9	_	μs	SR-level = SR3
Switch-ON delay time HS for SR4	t _{dr(HS),SR4}	-	6.8	_	μs	SR-level = SR4
Switch-ON delay time HS for SR5	t _{dr(HS),SR5}	5.1	8.0	10.5	μs	SR-level = SR5
Switch-ON delay time HS for SR6	t _{dr(HS),SR6}	-	13.2	_	μs	SR-level = SR6
Switch-ON delay time HS for SR7	t _{dr(HS),SR7}	-	23.3	_	μs	SR-level = SR7
Fall-time of HS for SR0	t _{f(HS),SR0}	0.05	0.25	0.55	μs	SR-level = SR0
Fall-time of HS for SR1	$t_{f(HS),SR1}$	-	0.36	-	μs	SR-level = SR1
Fall-time of HS for SR2	t _{f(HS),SR2}	-	0.5	-	μs	SR-level = SR2
Fall-time of HS for SR3	$t_{f(HS),SR3}$	_	0.83	_	μs	SR-level = SR3
Fall-time of HS for SR4	$t_{f(HS),SR4}$	_	1.0	_	μs	SR-level = SR4
Fall-time of HS for SR5	t _{f(HS),SR5}	0.22	1.25	5.00	μs	SR-level = SR5
Fall-time of HS for SR6	t _{f(HS),SR6}	_	2.5	_	μs	SR-level = SR6
Fall-time of HS for SR7	t _{f(HS),SR7}	_	5.0	_	μs	SR-level = SR7
Switch-OFF delay time HS for SR0	t _{df(HS)} ,sR0	1.5	2.5	3.7	μs	SR-level = SR0
Switch-OFF delay time HS for SR1	t _{df(HS),SR1}	-	2.8	-	μs	SR-level = SR1
Switch-OFF delay time HS for SR2	t _{df(HS),SR2}	-	3.1	-	μs	SR-level = SR2
Switch-OFF delay time HS for SR3	t _{df(HS),SR3}	-	3.9	-	μs	SR-level = SR3
Switch-OFF delay time HS for SR4	t _{df(HS),SR4}	-	4.4	-	μs	SR-level = SR4
Switch-OFF delay time HS for SR5	t _{df(HS),SR5}	3.2	5.0	7.9	μs	SR-level = SR5
Switch-OFF delay time HS for SR6	t _{df(HS),SR6}	-	8.1	-	μs	SR-level = SR6
Switch-OFF delay time HS for SR7	t _{df(HS),SR7}	-	14.0	-	μs	SR-level = SR7

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 7 (continued) Power stages - dynamic characteristics

Paragraph condition: $V_S = 13.5 \text{ V}$, $T_i = -40 ^{\circ}\text{C}$ to $150 ^{\circ}\text{C}$, $R_{load} = 2 \Omega$, $30 \mu\text{H} < L_{load} < 40 \mu\text{H}$ (in series to R_{load}), single pulse, I_{OUT} > 90 mA freewheeling, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	5	Unit	Note or condition	
		Min.	Тур.	Max.			
Low-side switch – dynamic c	haracteristics						
Rise-time of LS for SR0	t _{r(LS),SR0}	0.05	0.25	0.55	μs	SR-level = SR0	
Rise-time of LS for SR1	$t_{r(LS),SR1}$	_	0.36	_	μs	SR-level = SR1	
Rise-time of LS for SR2	t _{r(LS),SR2}	-	0.5	_	μs	SR-level = SR2	
Rise-time of LS for SR3	$t_{r(LS),SR3}$	_	0.83	_	μs	SR-level = SR3	
Rise-time of LS for SR4	$t_{r(LS),SR4}$	-	1.0	_	μs	SR-level = SR4	
Rise-time of LS for SR5	$t_{r(LS),SR5}$	0.22	1.25	5.00	μs	SR-level = SR5	
Rise-time of LS for SR6	$t_{\rm r(LS),SR6}$	-	2.5	-	μs	SR-level = SR6	
Rise-time of LS for SR7	t _{r(LS),SR7}	_	5.0	_	μs	SR-level = SR7	
Switch-ON delay time LS for SR0	t _{df(LS),SR0}	2.3	3.6	4.5	μs	SR-level = SR0	
Switch-ON delay time LS for SR1	t _{df(LS),SR1}	-	4.1	_	μs	SR-level = SR1	
Switch-ON delay time LS for SR2	t _{df(LS),SR2}	-	4.6	_	μs	SR-level = SR2	
Switch-ON delay time LS for SR3	t _{df(LS),SR3}	-	5.9	_	μs	SR-level = SR3	
Switch-ON delay time LS for SR4	t _{df(LS),SR4}	-	6.8	_	μs	SR-level = SR4	
Switch-ON delay time LS for SR5	t _{df(LS),SR5}	6.2	8.0	10.7	μs	SR-level = SR5	
Switch-ON delay time LS for SR6	t _{df(LS),SR6}	-	13.2	_	μs	SR-level = SR6	
Switch-ON delay time LS for SR7	t _{df(LS),SR7}	-	23.3	_	μs	SR-level = SR7	
Fall-time of LS for SR0	t _{f(LS),SR0}	0.05	0.25	0.55	μs	SR-level = SR0	
Fall-time of LS for SR1	$t_{f(LS),SR1}$	_	0.36	-	μs	SR-level = SR1	
Fall-time of LS for SR2	$t_{f(LS),SR2}$	_	0.5	_	μs	SR-level = SR2	
Fall-time of LS for SR3	$t_{f(LS),SR3}$	-	0.83	_	μs	SR-level = SR3	
Fall-time of LS for SR4	t _{f(LS),SR4}	_	1.0	-	μs	SR-level = SR4	
Fall-time of LS for SR5	$t_{f(LS),SR5}$	0.22	1.25	5.00	μs	SR-level = SR5	
Fall-time of LS for SR6	t _{f(LS),SR6}	_	2.5	-	μs	SR-level = SR6	
Fall-time of LS for SR7	$t_{f(LS),SR7}$	_	5.0	_	μs	SR-level = SR7	

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 7 (continued) Power stages – dynamic characteristics

Paragraph condition: V_S = 13.5 V, T_j = -40°C to 150°C, R_{load} = 2 Ω , 30 μ H < L_{load} < 40 μ H (in series to R_{load}), single pulse, I_{OUT} > 90 mA freewheeling, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or condition
		Min.	Тур.	Max.		
Switch-OFF delay time LS for SR0	t _{dr(LS),SR0}	1.5	2.5	3.4	μs	SR-level = SR0
Switch-OFF delay time LS for SR1	t _{dr(LS),SR1}	-	2.8	_	μs	SR-level = SR1
Switch-OFF delay time LS for SR2	t _{dr(LS),SR2}	-	3.1	_	μs	SR-level = SR2
Switch-OFF delay time LS for SR3	t _{dr(LS),SR3}	-	3.9	_	μs	SR-level = SR3
Switch-OFF delay time LS for SR4	t _{dr(LS),SR4}	-	4.4	_	μs	SR-level = SR4
Switch-OFF delay time LS for SR5	t _{dr(LS),SR5}	3.2	5.0	7.0	μs	SR-level = SR5
Switch-OFF delay time LS for SR6	t _{dr(LS),SR6}	-	8.1	_	μs	SR-level = SR6
Switch-OFF delay time LS for SR7	t _{dr(LS),SR7}	-	14.0	-	μs	SR-level = SR7

4.2.1 Switching times

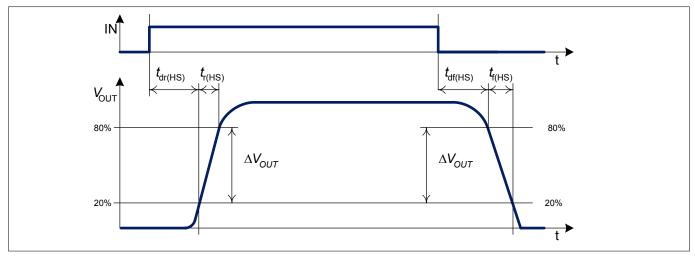


Figure 8 Definition of switching times high-side (R_{load} to GND)

High current PN half-bridge with integrated driver

4 Block description and characteristics

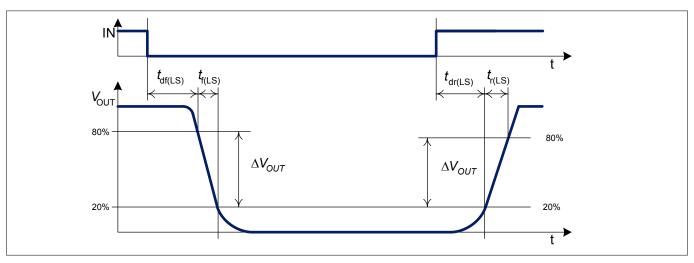


Figure 9 Definition of switching times low-side (R_{load} to V_{S})

Due to the timing differences for the rising and the falling edge there will be a slight difference between the length of the input pulse and the length of the output pulse. It can be calculated using the following formulas for $\Delta t_{xS} = t_{IN} - t_{OUT}$:

- $\Delta t_{HS} = (t_{dr(HS)} + 0.5 t_{r(HS)}) (t_{df(HS)} + 0.5 t_{f(HS)})$
- $\Delta t_{LS} = (t_{df(LS)} + 0.5 t_{f(LS)}) (t_{dr(LS)} + 0.5 t_{r(LS)})$

One of 8 different slew rates (SR) can be selected as described in Chapter 4.4.2.

After waking up from stand-by mode, the slew rate level SR0 is selected.

4.3 Protection functions

The device provides integrated protection functions. These are designed to prevent IC destruction under fault conditions described in the datasheet. Fault conditions are considered as "outside" normal operating range.

Protection functions are not designed to be used for continuous or repetitive operation, with the exception of the overcurrent protection (Chapter 4.3.3) and undervoltage shutdown (Chapter 4.3.1).

Undervoltage, overtemperature and overcurrent events are indicated by a fault current $I_{IS(fault)}$ at the IS pin as described in Chapter 4.4.3.

The protection functions of the BTN9990LV are prioritized in the following way:

Table 8 Protection functions priorities

Priority	Function	Reference
0 (highest)	Undervoltage shutdown	Chapter 4.3.1
1	Overtemperature protection	Chapter 4.3.2
2	Overcurrent protection	Chapter 4.3.3
3	Stand-by mode	The device only goes into stand-by mode if no fault is present

Table 9 Electrical characteristics – protection functions

 V_S = 8 V to 18 V, T_j = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or condition	
		Min.	Тур.	Max.		

Undervoltage shutdown

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 9 (continued) Electrical characteristics – protection functions

 V_S = 8 V to 18 V, T_j = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or condition
		Min.	Тур.	Мах.		
Switch-ON voltage	V _{UV(ON)}	_	_	5.5	V	V _S increasing
Switch-OFF voltage	V _{UV(OFF)}	3.8	_	4.5	V	V _S decreasing
ON/OFF hysteresis	V _{UV(HY)}	_	0.8	-	V	11)
Overcurrent shutdown						
Overcurrent detection level high-side	I _{OCH0}	75	95	115	А	V _S = 13.5 V
Overcurrent detection level low-side	I _{OCL0}	75	95	115	А	V _S = 13.5 V
Thermal shutdown		<u>'</u>				
Thermal shutdown junction temperature	$T_{\rm jSD}$	155	175	200	°C	11)
Thermal switch-ON junction temperature	$T_{\rm jSO}$	150	_	190	°C	11)
Thermal hysteresis	ΔT	_	7	_	K	11)
Protection and reset timing						
Shut-OFF time for HS and LS	t_{CLS}	_	115	210	μs	
Undervoltage recovery delay time	t_{UVD}	-	115	210	μs	
Reset pulse at INH and IN pin (INH & IN low)	t _{reset}	9	_	_	μs	-

4.3.1 Undervoltage shutdown with restart

To avoid uncontrolled motion of the driven motor at low voltages the device switches off (output is tri-state), if the supply voltage drops below the switch-OFF voltage $V_{\text{UV(OFF)}}$.

If a slew rate level SR0 to SR4 is selected, the NovalithIC[™]+ will switch off with the selected slew rate in case of an undervoltage detection. For slew rate level SR5 to SR7, the device will switch off with slew rate level SR4 instead.

As soon as the supply voltage VS rises above the switch-ON voltage $V_{UV(ON)}$, with a hysteresis of $V_{UV(HY)}$, the output channel of the device follows the IN pin again.

The restart is delayed with a time t_{UVD} which protects the device in case the undervoltage condition is caused by a short circuit event (according to AEC-Q100-012).

After power-up, the device is starting without waiting for the delay time t_{UVD} .

The slew rate level and the undervoltage event are stored in analog latches, which are supplied by the INH or/and IN pin. Thus at least one of the two pins always shall be set high during this undervoltage event,

Not subject to production test, specified by design.

High current PN half-bridge with integrated driver

4 Block description and characteristics

until the presence of the $I_{\text{IS(fault)}}$ current, to keep the previously set slew rate level after the undervoltage shutdown.

In the case of both INH and IN being 0 during an undervoltage event, a power on reset is performed.

In case of an undervoltage event, the fault current $I_{IS(fault)}$ is provided at the IS pin, once the supply voltage rises above $V_{IJV(ON)}$ again.

The fault signal at the IS pin is reset after t_{UVD} after the supply voltage rises above $V_{\text{UV(ON)}}$. This behavior is shown in Figure 10.

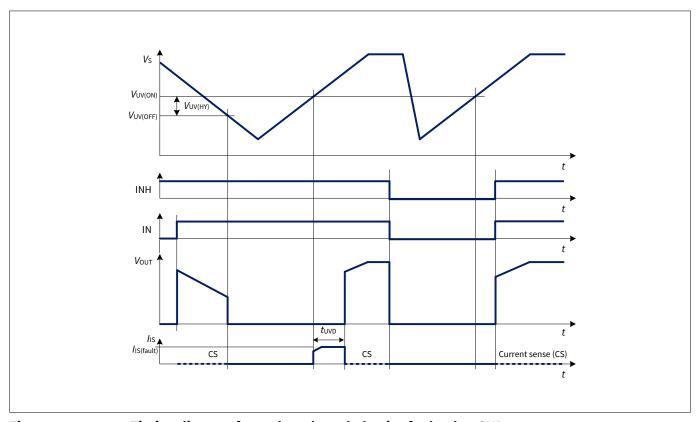


Figure 10 Timing diagram for undervoltage behavior for load to GND

4.3.2 Overtemperature protection

The NovalithIC[™]+ is protected against overtemperature by an integrated temperature sensor. Overtemperature leads to a shutdown of the output stage (both the high-side and low-side switch).

This state is latched until the device is reset by a low signal with a minimum length of t_{reset} at the INH and IN pin, provided that its temperature has decreased at least the thermal hysteresis ΔT in the meantime.

If a slew rate level SR0 to SR4 is selected, the NovalithIC[™]+ will switch off with the selected slew rate in case of overtemperature. For slew rate level SR5 to SR7, the device will switch off with slew rate level SR4 instead.

4.3.3 Overcurrent protection

The current in the bridge is measured in both switches.

As soon as the current in forward direction in one switch (high-side or low-side) is reaching the limit I_{OCx} , the device goes either into current limitation mode or switches off with latch, depending on the selected SR-level. The corresponding dependencies are described in Table 10.

Table 10 Slew rate dependent overcurrent strategies

SR-level	Mode	Note
SR0	Current limitation (retry)	For details see Chapter 4.3.3.1

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 10 (continued) Slew rate dependent overcurrent strategies

SR-level	Mode	Note
SR1		
SR2		
SR3		
SR4		
SR5	Switch-OFF with latch	Requiring reset of the fault latch
SR6		For details see Chapter 4.3.3.2
SR7		

4.3.3.1 Current limitation

If this mode is selected according to Table 10 and the current in forward direction in one switch (high-side or low-side) has reached the limit I_{OCx} , the affected switch is deactivated and the other switch is activated for t_{CLS} . During that time all changes at the IN pin are ignored.

However, during current limitation, the INH pin can still be used to switch both MOSFETs off.

After t_{CLS} the switches follow the IN pin again.

The fault signal at the IS pin is reset after 1.5 * t_{CLS} . This behavior is shown in Figure 11.

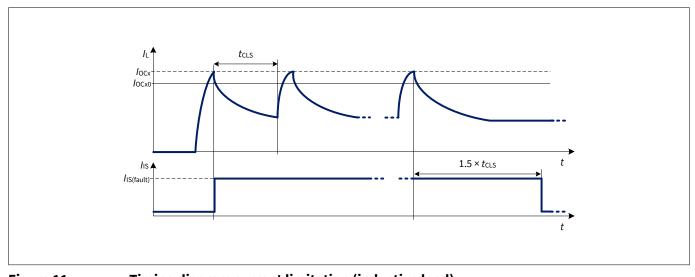


Figure 11 Timing diagram current limitation (inductive load)

For this mode, the MOSFETs are switched off each with the same slew rates (SR-level) as in normal operation.

In combination with a typical inductive load, such as a motor, this results in a switched mode current limitation. This method of limiting the current has the advantage of greatly reduced power dissipation in the BTN9990LV compared to driving the MOSFET in linear mode.

Therefore it is possible to use the current limitation for a short time without exceeding the maximum allowed junction temperature (e.g. for limiting the inrush current during motor start up). However, the regular use of the current limitation is allowed as long as the specified maximum junction temperature is not exceeded. Exceeding this temperature can reduce the lifetime of the device.

4.3.3.2 Switch-OFF with latch

If this mode is selected according to Table 10 and as soon as the current in forward direction in one switch (high-side or low-side) has reached the limit I_{OCx} , both output stages are shut down. This state is latched until

High current PN half-bridge with integrated driver

4 Block description and characteristics

the device is reset by a low signal with a minimum length of t_{reset} at the INH and IN pin. This behavior is illustrated in Figure 12.

In order to minimize power dissipation, the MOSFETs are switched off each with the same slew rate level SR4.

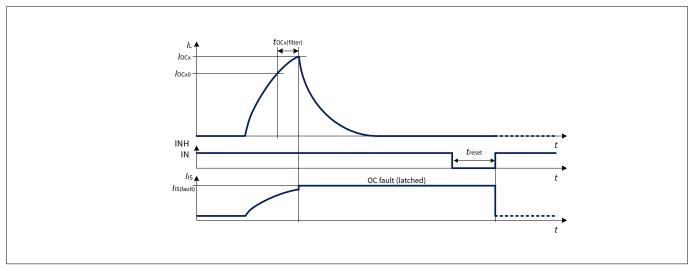


Figure 12 Timing diagram switch-OFF with latch (inductive load)

Short circuit protection 4.3.4

The device provides embedded protection functions against

- Output short circuit to ground
- Output short circuit to supply voltage
- Short circuit of load

The short circuit protection is realized by the previously described undervoltage and overcurrent protection in combination with the overtemperature shutdown of the device.

4.4 **Control and diagnostics**

The control inputs IN and INH consist of TTL/CMOS compatible Schmitt triggers with hysteresis which control the integrated gate drivers for the MOSFETs. Setting the INH or/and IN pin to high enables the device. When the INH pin is high, one of the two power switches is switched on depending on the status of the IN pin. To deactivate both switches, the INH pin has to be set to low. No external driver is needed. The BTN9990LV can be interfaced directly to a microcontroller, as long as the maximum ratings in Chapter 3.1 are not exceeded.

Table 11 **Electrical characteristics - control and diagnostics**

 $V_S = 8 \text{ V to } 18 \text{ V}$, $T_i = -40 ^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or condition
		Min.	Min. Typ. N			
Control inputs (IN and INH)	'		•			
High level voltage INH, IN	V _{INH(H)} V _{IN(H)}	-	1.6	2.1	V	_
Low level voltage INH, IN	V _{INH(L)} V _{IN(L)}	1.0	1.3	-	V	_

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 11 (continued) Electrical characteristics – control and diagnostics

 V_S = 8 V to 18 V, T_j = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or condition	
		Min.	Тур.	Max.			
Low level voltage INH, IN for VS < 8 V	V _{INH(L)_UV(OFF)} V _{IN(L)_UV(OFF)}	0.4	-	-	V	$V_{\rm S}$ = 4.5 V, falling $V_{\rm S}$	
Input voltage hysteresis	V _{INH(HYS)} V _{IN(HYS)}	-	300	-	mV	12)	
Input current high level	I _{INH(H)} I _{IN(H)}	25	50	80	μΑ	$V_{\rm IN} = V_{\rm INH} = 5.5 \rm V$	
Input current low level	I _{INH(L)} I _{IN(L)}	3	6	10	μΑ	$V_{\rm IN} = V_{\rm INH} = 1.0 \text{ V}$	
Slew rate selection		,					
Slew rate level selection pulse time	t _{SR}	0.5	_	80	μs	See Figure 13	
Slew rate selection mode settling time	t _{SRM}	1	_	_	μs	See Figure 13	
Wake-up time	t _{wakeup}	_	_	5	μs	After stand-by ¹²⁾	
Lag time between IN/INH state change	t _{lag}	0.5	_	-	μs	12)	
Time to enter stand-by mode	t _{stdby}	100	_	300	μs	After both INH and IN transitioned from high to low	
Sense current for SR-level SR0	I _{IS(SR0)}	1.8	2.15	2.5	mA	SR-level = SR0	
Current sense step between two SR-levels	I _{IS(SR_step)}	200	240	290	μΑ	-	
Current sense					•		
Differential current sense ratio in static on-condition dkILIS = dIL/dIIS BTN9990	dk _{iLIS}	40	50	60	10 ³	$1 A \le I_{L} < I_{OCH0}$ $V_{S} = 13.5 V$ $R_{IS} = 2 k\Omega$	
Sense current in fault condition	I _{IS(fault)}	2.51	2.75	3.25	mA	V _S = 13.5 V	
Maximum analog sense current in normal operational condition	I _{IS(CS)}	-	_	2.5	mA	$V_{\rm S}$ = 13.5 V; in CS mode ¹²⁾	
Isense leakage current	I _{ISL}	-	-	1	μΑ	$V_{\text{INH}} = V_{\text{IN}} = 0 \text{ V}$ $R_{\text{IS}} = 2 \text{ k}\Omega$	

Not subject to production test, specified by design.

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 11 (continued) Electrical characteristics – control and diagnostics

 V_S = 8 V to 18 V, T_j = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Values	;	Unit	Note or condition
		Min.	Тур.	Max.		
Isense offset current	I _{IS(offset)}	30	160	385	μА	$V_{\text{INH}} = 5 \text{ V}$ $V_{\text{IN}} = 0 \text{ V or } I_{\text{SD(HS)}} = 0 \text{ A}$ $R_{\text{IS}} = 2 \text{ k}\Omega$
Temperature sense at 25°C	I _{IS(T)_25°C}	_	1.2	_	mA	$I_{\rm IS(T)}$ $T_{\rm j} = 25^{\circ}\text{C}$ $R_{\rm IS} = 2 \text{ k}\Omega$
Temperature coefficient for temperature sense	k _{TIS}	3.16	3.72	4.28	μA/K	12)

4.4.1 Dead time generation

In bridge applications it has to be assured that the high-side and low-side MOSFET are not conducting at the same time, connecting directly the battery voltage to GND. This is assured by a circuit in the driver IC, generating a so called dead time between switching off one MOSFET and switching on the other.

The dead time generated in the driver IC is dependent on the selected slew rate.

4.4.2 Adjustable slew rate

In order to optimize electromagnetic emission, one of 8 different switching speeds for the MOSFETs can be selected. This selectability allows the user to optimize the balance between emission and power dissipation within his own application. The slew rate adjustment function is only accessible, if no fault is present.

In case the device was in stand-by mode previously, the function is available after the device wake-up time t_{wakeup} . Therefore the first pulse at pin IN needs to exceed the wake-up time t_{wakeup} .

When INH = low and IN = high without a fault being present, the device is in SR selection mode with both high-side and low-side MOSFETs being switched off.

When the SR selection mode initially is entered, a temperature information is provided as described in Chapter 4.4.3.2 at the IS pin independently from the selected SR-level.

Only when IN goes low (falling edge) for a duration of t_{SR} , the next mode is selected when IN rises again. During this transition pulse, the INH pin has to be low permanently.

In the next mode, the slew rate won't be changed, but a current sense signal $I_{\rm IS(SRx)}$ depending on the currently selected SR-level SRx (as further described in Chapter 4.4.3.2) is provided at the IS pin. This allows to validate if the desired SR-level has been selected.

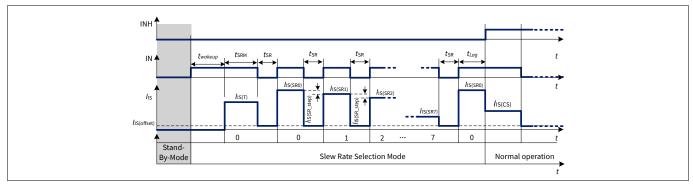
For any further transition pulse, the next SR-level will be selected. The newly selected SR-level then will be indicated at the IS pin with the corresponding $I_{IS(SRx)}$.

After reaching SR-level SR7, the next selectable SR-level is SR0 again. This procedure is illustrated in Figure 13. The SR selection mode is left if a fault occurs or by setting INH to high. The procedure is shown in the state diagram in Figure 16.

The states at pin IN and INH may not transition synchronous in the same direction, therefore a time delay of t_{lag} need to be applied.

After stand-by and power-up, the default value for the slew rate is level SR0.

Not subject to production test, specified by design.


High current PN half-bridge with integrated driver

4 Block description and characteristics

After an undervoltage event the selected slew rate level is persistent, under the conditions described in Chapter 4.3.1 with more details.

In case an undervoltage event occurs during the slew rate selection mode, the slew rate configuration can not be guaranteed. Therefore slew rate programming need to be repeated once the undervoltage event has disappeared.

Slew rate level selection Figure 13

t_{wakeup} is only needed if the device was in stand-by-mode before. Note:

4.4.3 Status flag diagnosis with current and temperature sense capability

The sense pin IS is used as a combined current sense, temperature sense, slew rate level feedback and fault flag output. Further details, in which state which signal is provided by the IS pin is described in Table 12. The IS pin has three different modes of operation:

4.4.3.1 **Current sense**

In normal operation (current sense mode), with the IN and INH pin being high (for further details see Table 12), a current source is connected to the IS pin, which delivers a current proportional to the forward load current flowing through the active high-side switch.

The sense current can be calculated out of the load current by the following equation.

$$I_{IS} = I_{I} / dk_{ILIS} + I_{IS(offset)}$$

The other way around, the load current can be calculated out of the sense current by following equation.

$$I_{L} = dk_{ILIS} \cdot (I_{IS} - I_{IS(offset)})$$

The differential current sense ratio dk_{ilis} is defined by.

$$dk_{\mathsf{ILIS}} = (I_{\mathsf{L2}} - I_{\mathsf{L1}}) \: / \: (I_{\mathsf{IS}}(I_{\mathsf{L2}}) - I_{\mathsf{IS}}(I_{\mathsf{L1}}))$$

If the high-side drain current is zero ($I_{SD(HS)} = 0$ A) the offset current $I_{IS} = I_{IS(offset)}$ still will be driven. The external resistor R_{IS} determines the voltage per IS output current. The voltage can be calculated by $V_{IS} = R_{IS} \cdot I_{IS}$.

High current PN half-bridge with integrated driver

infineon

4 Block description and characteristics

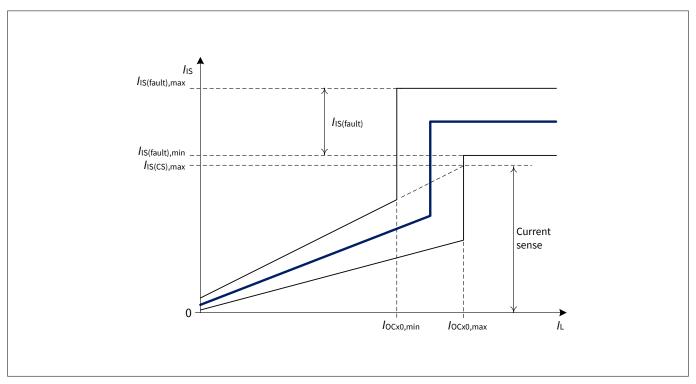


Figure 14 Sense current vs. load current

4.4.3.2 Temperature sense and slew rate feedback

In slew rate selection mode, with the IN pin being high and the INH being low after the first transition (further details see Chapter 4.4.2) the IS pin provides a constant current $I_{IS(SRx)}$, allowing to distinguish between the different SR-levels.

The sense current I_{IS} can be calculated as follows for the slew rate level SRx:

$$I_{IS(SRx)} = I_{IS(SR0)} - x \cdot I_{IS(SR_step)}$$

To correctly determine all eight slew rate levels, $I_{IS(SR0)}$ and each individual device's $I_{IS(SR_step)}$ have to be calibrated.

When initially entering the SR selection mode, a current source is connected to the IS pin, which delivers a current proportional to the junction temperature of the control chip T_{CC} , which is illustrated in Figure 15. The sense current $I_{IS(T)}$ can be calculated out of the junction temperature in Kelvin T[K] by the following equation:

$$I_{\rm IS(T)} = k_{\rm TIS} \cdot T_{\rm CC}$$

Based on the temperature coefficient k_{TIS} , the temperature T_{CC} then calculates as follows:

$$T_{\rm CC} = I_{\rm IS(T)} / k_{\rm TIS}$$

High current PN half-bridge with integrated driver

4 Block description and characteristics

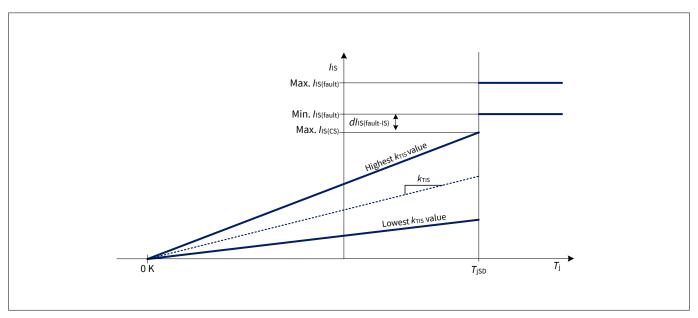


Figure 15 Sense current vs. junction temperature in the initial state of the SR selection mode

4.4.3.3 Fault feedback

In case of a fault condition, according to the truth table (Table 12), the status output is connected to a current source which is independent of the load current and provides $I_{\text{IS}(\text{fault})}$. The maximum voltage at the IS pin is determined by the choice of the external resistor and the supply voltage.

4.4.4 Truth table

Table 12 Truth table

Device state		Inputs		Out	outs	Mode
		IN	HSS	LSS	IS	
Normal operation	0	0	OFF	OFF	I _{IS(offset)}	See note ²⁾
						Device enters stand-by mode after t > t_{stdby}
					tri state –	Device in stand-by mode
	1	0	OFF	ON	I _{IS(offset)}	LSS active
	1	1	ON	OFF	CS 3)	HSS active
Slew rate selection	0	1	OFF	OFF	I _{IS(SRx,T)}	Slew rate selection mode
					I _{IS(offset)}	During INH = IN = low pulse
Overtemperature (OT) at HSS or LSS	1	Х	OFF	OFF	I _{IS(fault)}	Shutdown with latch, fault
	X	1	OFF	OFF	I _{IS(fault)}	detected ⁴⁾
Current limitation (CL) mode at HSS or	1	1	OFF	ON	I _{IS(fault)}	Switched mode, fault detected ⁵⁾
LSS	1	0	ON	OFF	I _{IS(fault)}	
Overcurrent (OC) switch-OFF with latch	1	Х	OFF	OFF	I _{IS(fault)}	OC shutdown with latch, fault
at HSS or LSS	Χ	1	OFF	OFF	I _{IS(fault)}	detected ⁴⁾
Undervoltage (UV), V _S < V _{UV(OFF)}	1	Х	OFF	OFF	* 1)	
/4-1-14! \					-	•

High current PN half-bridge with integrated driver

4 Block description and characteristics

Table 12 (continued) Truth table

Х	1	OFF	OFF	Undervoltage shutdown, fault
				detected ⁶⁾

- 1) Sense current present $\leq I_{IS(offset)}$.
- 2) The device only goes into stand-by mode if no fault is present.
- 3) Current sense high-side (CS): $I_{IS} = I_L / dk_{ILIS} + I_{IS(offset)}$, for details see Chapter 4.4.3.1.
- 4) Requires the reset of the fault latch with INH = IN = low for t_{reset} to get back to normal operation.
- 5) Will return to normal operation after t_{CLS} ; Fault signal $l_{\text{IS}(\text{fault})}$ is reset after 1.5* t_{CLS} (see Chapter 4.3.3.1).
- 6) When $V_S > V_{UV(ON)}$ (rising), the device will return to normal operation after t_{UVD} ; Fault signal $I_{IS(fault)}$ is reset after t_{UVD} (see Chapter 4.3.1).

Table 13 Switches – states table

Inputs	Switches
0 = logic LOW	OFF = switched off
1 = logic HIGH	ON = switched on
X = 0 or 1	

High current PN half-bridge with integrated driver

4 Block description and characteristics

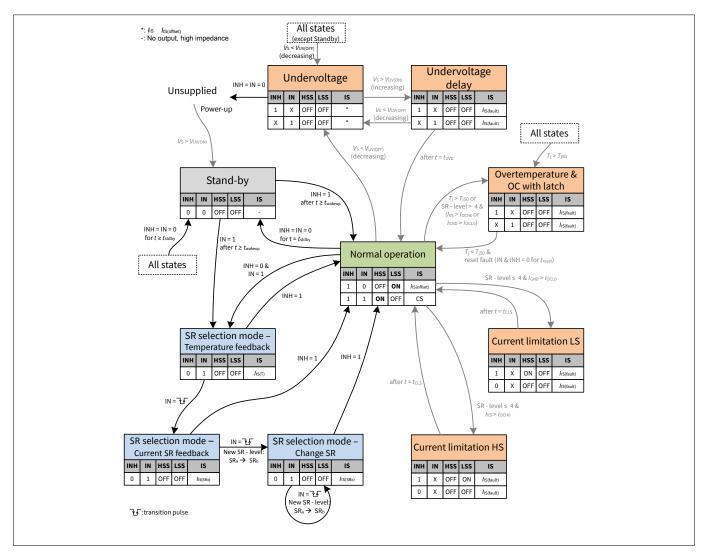


Figure 16 Simplified state diagram

5 Application information

5 Application information

Note:

The following information is given as a hint for the implementation of the device only and cannot be regarded as a description or warranty of a certain functionality, condition or quality of the device.

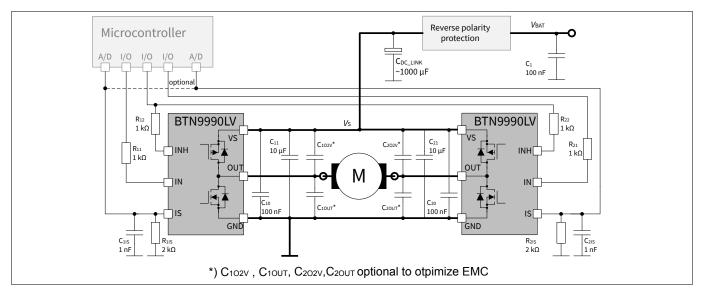


Figure 17 Application circuit: H-bridge with two BTN9990LV

Note: This is a simplified example of an application circuit. The function must be verified in the real application.

To stabilize the supply voltage V_S in PWM operation or in over current limitation a sufficient dimensioned low ESR electrolytic capacitor CDC-Link is needed. It prevents destructive voltage peaks and drops. The voltage ripple at the NovalithICTM VS pin to GND must be kept below 1 V peak-to-peak and the capacitors need to be sized accordingly. Therefore the ceramic capacitors C10/C11 respectively C20/C21 must be placed close to the device pins VS and GND. The traces should be kept as short as possible to minimize stray inductance. The value of the capacitors must be verified in the real application to ensure low ripple and transients at the VS pin. The digital inputs IN and INH need to be protected against over-currents (e.g. caused by induced voltage spikes) by a series resistor of typical 1 k Ω .

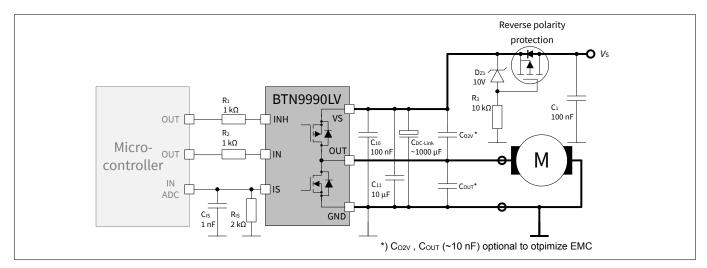
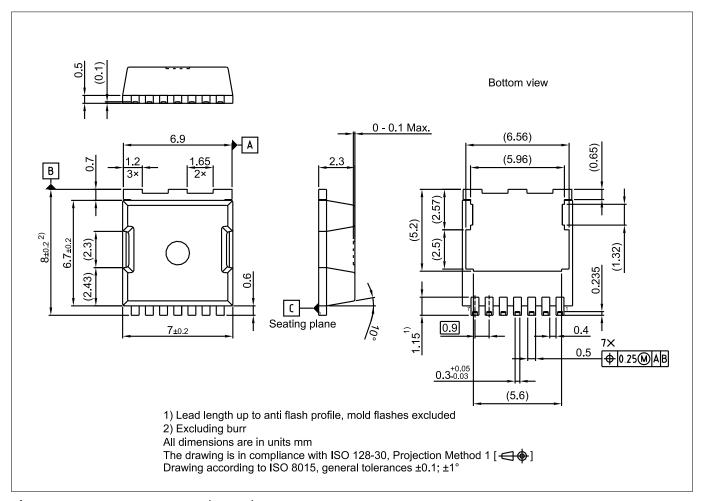


Figure 18 Application circuit: single half-bridge with load (motor) connected to GND

Note: This is a simplified example of an application circuit. The function must be verified in the real application.

High current PN half-bridge with integrated driver

5 Application information


The applicable PWM frequency for which the output signal at OUT pin tracks the control signal at IN pin depends on:

- Desired duty cycle range of the output OUT (e.g. 20% to 80%)
- Selected slew rate for the output OUT
- Switch-ON and switch-OFF delay times of HS / LS switches $(t_{dr(HS)}, t_{df(LS)}, t_{df(HS)}, t_{dr(LS)})$, depending on slew rate
- Rise-time and fall-time of HS / LS switch $(t_{r(HS)}, t_{f(LS)}, t_{f(HS)}, t_{r(LS)})$, depending on slew rate

6 Package

Package 6

PG-HSOF-7 (sTOLL) Figure 19

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

For further package information, please visit our website:

https://www.infineon.com/packages

High current PN half-bridge with integrated driver

7 Revision history

7 Revision history

Document version	Date of release	Description of changes
1.0	2021-10-12	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-10-12 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-kdq1633081523313

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.