Micropower with high merit factor cmos operational amplifiers

Features

- Low supply voltage: $1.5 \mathrm{~V}-5.5 \mathrm{~V}$
- Rail-to-rail input and output
- Low input offset voltage: $800 \mu \mathrm{~V}$ max (A version)
- Low power consumption: $29 \mu \mathrm{~A}$ typical
- Gain bandwidth product: 1.3 MHz typical
- Stable when used in gain configuration
- Micropackages: SOT23-5, SC70-5
- Low input bias current: 1 pA typical
- Extended temperature range: - 40 to $125^{\circ} \mathrm{C}$
- $\quad 4 \mathrm{kV}$ human body model

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The the TSV6291 are single operational amplifiers with a high bandwidth which consume only $29 \mu \mathrm{~A}$. They must be used in a gain configuration $(G<-3, G>4)$.
With a very low input bias current and low offset voltage ($800 \mu \mathrm{~V}$ maximum for the A version), the TSV629family of devices is ideal for applications requiring precision. The devices can operate at a power supply ranging from 1.5 to 5.5 V , and therefore suit battery-powered devices, extending battery life.

Package pin connections

Absolute maximum ratings and operating conditions

Absolute maximum ratings (AMR)

Symbol	Parameter		Value	Unit
Vcc	Supply voltage ${ }^{(1)}$		6	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$		$\pm \mathrm{V}_{\mathrm{cc}}$	
$V_{\text {in }}$	Input voltage ${ }^{(3)}$		(Vccc_{-}) - 0.2 to ($\mathrm{V}_{\mathrm{cc}+}$) +0.2	
lin	Input current ${ }^{(4)}$		10	mA
$\overline{\text { SHDN }}$	Shutdown voltage ${ }^{(3)}$		(Vcc-) - 0.2 to ($\mathrm{V}_{\mathrm{cc}}^{+}$) +0.2	V
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature		150	
Rthia	Thermal resistance junction-toambient ${ }^{(5)(6)}$	SOT23-5	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SC70-5	205	

${ }^{(1)}$ All voltage values, except differential voltage, are with respect to network ground terminal.
${ }^{(2)}$ Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
${ }^{(3)} \mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {in }}$ must not exceed 6 V , Vin must not exceed 6 V .
${ }^{(4)}$ Input current must be limited by a resistor in series with the inputs.
${ }^{(5)}$ Rth are typical values.
${ }^{(6)}$ Short-circuits can cause excessive heating and destructive dissipation.
${ }^{(7)}$ Human body model: 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
${ }^{(8)}$ Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor $<5 \Omega$), done for all couples of pin combinations with other pins floating.
${ }^{(9)}$ Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Operating conditions

Symbol	Parameter	Value	Unit
V_{cc}	Supply voltage	1.5 to 5.5	V
$\mathrm{~V}_{\mathrm{icm}}$	Common mode input voltage range	$\left(\mathrm{V}_{\mathrm{cc}-}\right)-0.1$ to $\left(\mathrm{V}_{\mathrm{cc}+}\right)+0.1$	
$\mathrm{~T}_{\mathrm{oper}}$	Operating free air temperature range	-40 to 125	${ }^{\circ} \mathrm{C}$

Micropower with high merit factor cmos operational amplifiers

Electrical characteristics

Electrical characteristics at (VCC+) $=1.8 \mathrm{~V}$ with (VCC-) $=0 \mathrm{~V}$, Vicm $=\mathrm{VCC} / 2, \mathrm{Tamb}=$
$25^{\circ} \mathrm{C}$, and RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Offset voltage	TSV6291			4	mV
		TSV6291A			0.8	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6291			6	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6291A			2	
DVio	Input offset voltage drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l o	Input offset current,$V_{\text {out }}=\mathrm{V}_{\mathrm{CC}} /{ }^{(1)}$	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	10	pA
				1	100	
lib	Input bias current,$V_{\text {out }}=\mathrm{V}_{\mathrm{cc}} / 2^{(1)}$	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	10	
				1	100	
CMR	Common mode rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	0 V to 1.8 V , $\mathrm{V}_{\text {out }}=0.9 \mathrm{~V}$	53	74		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	51			
Avd	Large signal voltage gain	$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 1.3 V	78	95		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	73			
Vон	High-level output voltage,$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {out }}$	$\mathrm{R} \mathrm{L}=10 \mathrm{k} \Omega$		5	35	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Vol	Low-level output voltage	$\mathrm{RL}=10 \mathrm{k} \Omega$		4	35	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
lout	Isink	$V_{\text {out }}=1.8 \mathrm{~V}$	6	12		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	4			
	Isource	$V_{\text {out }}=0 \mathrm{~V}$	6	10		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	4			
Icc	Supply current (per operator)	No load, $\mathrm{V}_{\text {out }}=\mathrm{Vcc} / 2$		25	31	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			33	
GBP	Gain bandwidth product	$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$		1.1		MHz
Gain	Minimum gain for stability	$\begin{aligned} & \text { Phase margin }=60^{\circ}, R_{f}=10 \mathrm{k} \Omega \text {, } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=20 \mathrm{pF} \end{aligned}$		4		V/V
				-3		
SR	Slew rate	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \text { Vout }=0.5 \mathrm{~V} \text { to } 1.3 \mathrm{~V} \end{aligned}$		0.33		$\mathrm{V} / \mu \mathrm{s}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Offset voltage	TSV6291			4	mV
		TSV6291A			0.8	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max, }}$, TSV6291			6	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6291A			2	
DVio	Input offset voltage drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
lio	Input offset current ${ }^{(1)}$	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	10	pA
				1	100	
lib	Input bias current ${ }^{(1)}$	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	10	
				1	100	
CMR	Common mode rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	0 V to 3.3 V , $\mathrm{V}_{\text {out }}=1.65 \mathrm{~V}$	57	79		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	53			
Avd	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 2.8 V	81	98		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	76			
Vor	High-level output voltage,$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\text {out }}$	$\mathrm{RL}=10 \mathrm{k} \Omega$		5	35	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Vol	Low-level output voltage	$\mathrm{R} \mathrm{L}=10 \mathrm{k} \Omega$		4	35	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
lout	Isink	$V_{\text {out }}=5 \mathrm{~V}$	23	45		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	20			
	Isource	$V_{\text {out }}=0 \mathrm{~V}$	23	38		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	20			
Icc	Supply current (per operator)	No load, $\mathrm{V}_{\text {out }}=2.5 \mathrm{~V}$		26	33	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			35	
GBP	Gain bandwidth product	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		1.2		MHz
Gain	Minimum gain for stability	$\begin{aligned} & \text { Phase margin }=60^{\circ}, R_{f}=10 \mathrm{k} \Omega \text {, } \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF} \end{aligned}$		4		V/V
				-3		
SR	Slew rate	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { to } 2.8 \mathrm{~V} \end{aligned}$		0.4		V/us

(VCC+) $=5 \mathrm{~V},(\mathrm{VCC}-)=0 \mathrm{~V}, \mathrm{Vicm}=\mathrm{VCC} / 2, \mathrm{Tamb}=25^{\circ} \mathrm{C}$, RL connected to VCC/2 (unless otherwise specified)

Symbol	Parameter		Min.	Typ.	Max.	Unit
$V_{\text {io }}$	Offset voltage	TSV6291			4	mV
		TSV6291A			0.8	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6291			6	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$, TSV6291A			2	
DV ${ }_{\text {io }}$	Input offset voltage drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l io	Input offset current ${ }^{(1)}$	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	10	pA
				1	100	
l ib	Input bias current ${ }^{(1)}$	$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$		1	10	
				1	100	
CMR	Common mode rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{ic}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	0 V to $5 \mathrm{~V}, \mathrm{~V}_{\text {out }}=2.5 \mathrm{~V}$	60	80		dB
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	55			
SVR	Supply voltage rejection ratio, $20 \log \left(\Delta \mathrm{~V}_{\mathrm{cc}} / \Delta \mathrm{V}_{\mathrm{io}}\right)$	$\mathrm{V}_{\mathrm{cc}}=1.8$ to 5 V	75	102		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	73			
Avd	Large signal voltage gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 4.5 V	85	98		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	80			
VOH	High-level output voltage,$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {out }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		7	35	mV
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
Vol	Low-level output voltage	$\mathrm{RL}=10 \mathrm{k} \Omega$		6	35	
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			50	
lout	Isink	$V_{\text {out }}=5 \mathrm{~V}$	40	69		mA
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	35			
	$I_{\text {source }}$	$V_{\text {out }}=0 \mathrm{~V}$	40	74		
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$	35			
Icc	Supply current (per operator)	No load, $\mathrm{V}_{\text {out }}=2.5 \mathrm{~V}$		30	36	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {min }}<\mathrm{T}_{\text {op }}<\mathrm{T}_{\text {max }}$			38	
GBP	Gain bandwidth product	$\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		1.3		MHz
Gain	Minimum gain for stability	$\begin{aligned} & \text { Phase margin }=60^{\circ}, R_{f}=10 \mathrm{k} \Omega \text {, } \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF} \end{aligned}$		4		V/V
				-3		
SR	Slew rate	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$		0.5		V/ $\mu \mathrm{s}$
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		70		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
THD	Total harmonic distortion	$\begin{aligned} & \mathrm{Av}=-10, \mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {icm }}=\mathrm{Vcc} / 2, \mathrm{~V}_{\text {in }}=40 \mathrm{mVpp} \end{aligned}$		0.15		\%

Micropower with high merit factor cmos operational amplifiers

Electrical characteristic curves

Figure 2: Supply current vs. supply voltage at Vicm $=\mathrm{VCC} / 2$

Figure 4: Output current vs. output voltage at VCC $=5 \mathrm{~V}$

Figure 6: Peaking at closed loop gain $=-3, \mathrm{VCC}=1.5 \mathrm{~V}$

Figure 3: Output current vs. output voltage at $V C C=1.5 \mathrm{~V}$

Figure 5: Peaking at closed loop gain $=-10$ at $V C C=1.5 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$

Figure 7: Peaking at closed loop gain $=-3, \mathrm{VCC}=5 \mathrm{~V}$

Figure 8: Positive slew rate vs. supply voltage in closed loop

Figure 10: Slew rate vs. supply voltage in open loop

Figure 12: Slew rate timing in closed loop

Figure 9: Negative slew rate vs. supply voltage in closed loop

Figure 11: Slew rate timing in open loop

Figure 13: Noise at $\mathrm{VCC}=5 \mathrm{~V}$

Figure 14: Distortion + noise vs. output voltage at $\mathrm{VCC}=1.8 \mathrm{~V}$

Figure 16: Distortion + noise vs. frequency at $\mathrm{VCC}=1.8 \mathrm{~V}$

Figure 15: Distortion + noise vs. output voltage at $\mathrm{VCC}=5 \mathrm{~V}$

Figure 17: Distortion + noise vs. frequency at $\mathrm{VCC}=5 \mathrm{~V}$

Figure 18: Input offset voltage vs. input common mode at $\mathrm{VCC}=1.5 \mathrm{~V}$

Figure 19: Input offset voltage vs. input common mode at $\mathrm{VCC}=5 \mathrm{~V}$

Micropower with high merit factor cmos operational amplifiers

Figure 20: Test configuration for turn-on time (Vout pulled down)

Figure 22: Turn-on time, VCC $=5 \mathrm{~V}$, Vout pulled down, $\mathrm{T}=25^{\circ} \mathrm{C}$

Time ($\mu \mathrm{s}$)

Figure 21: Test configuration for turn-off time (Vout pulled down)

Figure 23: Turn-off time, VCC= 5 V , Vout pulled down, $\mathrm{T}=25^{\circ} \mathrm{C}$

Package Information

SC70-5 (SOT353)

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	Min	Max	Min	Max		
A	0.800	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.800	0.900	0.035	0.039		
b	0.150	0.350	0.006	0.014		
C	0.080	0.150	0.003	0.006		
D	1.8500	2.150	0.079	0.087		
E	1.100	1.400	0.045	0.053		
E1	1.950	2.200	0.085	0.096		
e	0.850 typ.		0.026			
typ.						
e1	1.200	1.400	0.047	0.055		
L	0.42 ref.		0.021 ref.			
L1	0.260	0.460	0.010			
θ	0°		8°	0°		8°

SOT23-5

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	Min	Max	Min	Max		
A	1.040	1.350	0.042	0.055		
A1	0.040	0.150	0.002	0.006		
A2	1.000	1.200	0.041	0.049		
b	0.380	0.480	0.015	0.020		
c	0.110	0.210	0.004	0.009		
D	2.720	3.120	0.111	0.127		
E	1.400	1.800	0.057	0.073		
E1	2.600	3.000	0.106	0.122		
e	0.950 typ.		0.037 typ.			
e1	1.900 typ.		0.078 typ.			
L	0.700 ref.		0.028 ref.			
L1	0.300		0.600	0.012		0.024
θ	0°		8°	0°		8°

Ordering information

Order code	Package	Baseqty	Deliverymode	Marking
UMW TSV6291AILT	SOT23-5	3000	Tape and reel	K113 U
UMW TSV6291ILT	SOT23-5	3000	Tape and reel	K107 U
UMW TSV6291AICT	SC70-5	3000	Tape and reel	K15 U

