,

Spec No. :DS70-2015-0093
Effective Date: 10/12/2017
Revision: B

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Data Sheet

4.0 Amp Output Current IGBT Gate Drive Photocoupler with Rail-to-Rail Output Voltage in Stretched SO6

1. Description

The LTV-341 series Photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 2.5A peak output current is capable of directly driving most IGBTs with ratings up to $1200 \mathrm{~V} / 200 \mathrm{~A}$. For IGBTs with higher ratings, the LTV-341 series can be used to drive a discrete power stage which drives the IGBT gate.
The Photocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.

1.1 Features

- 4.0 A maximum peak output current
- 3.0 A minimum peak output current

■ Rail-to-rail output voltage

- 200 ns maximum propagation delay
- 100 ns maximum propagation delay difference
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- $35 \mathrm{kV} / \mathrm{us}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500$

■ Wide operating range: 15 to 30 Volts (V_{CC})

- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.
- MSL Level 1
- Safety approval:

UL 1577 recognized with $5000 \mathrm{~V}_{\text {RMS }}$ for 1 minute for
LTV-341P and LTV-341W
VDE DIN EN 60747-5-5 Approved
$\mathrm{V}_{\text {IORM }}=891 \mathrm{Vpeak}$ for LTV-341P
$V_{\text {IORM }}=1140$ Vpeak for LTV-341 W

1.2 Applications

- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- AC/Brushless DC motor drives
- Switching power suppliers

Functional Diagram

Pin No. and Internal connection diagram

1. Anode
2. Cathode
3. GND
4. Vo (Output)
5. Vcc

Truth Table

LED	Vcc-GND (Turn-ON, +ve going)	Vcc-GND (Turn-OFF, -ve going)	Vo
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	Low
ON	$0-11.0 \mathrm{~V}$	$0-9.5 \mathrm{~V}$	Low
ON	$11.0-13.5 \mathrm{~V}$	$9.5-12 \mathrm{~V}$	Transition
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	High

Note: A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between
Pin 4 and 6.

Data Sheet

Photocoupler

 LTV-341 series
2. PACKAGE DIMENSIONS

2.1 LTV-341W

Notes:

1. Year date code.
2. 2-digit work week.
3. Factory identification mark (Y : Thailand).
4. "4" or "V" for VDE option.

* Dimensions are in Millimeters and (Inches).

Dimensions are in Milimeters and (Inches).

Data Sheet

Photocoupler LTV-341 series

3. TAPING DIMENSIONS

3.1 LTV-341W-TA

3.3 LTV-341P-TA

Description	Symbol	Dimension in mm (inch) For W type	Dimension in mm (inch) For P type
Tape wide	W	$16 \pm 0.3(0.63)$	$16 \pm 0.3(0.63)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.16)$	$4 \pm 0.1(0.16)$
Distance of compartment	F	$7.5 \pm 0.1(0.3)$	$7.5 \pm 0.1(0.3)$
	P_{2}	$2 \pm 0.1(0.079)$	$2 \pm 0.1(0.079)$
Distance of compartment to compartment	P_{1}	$16 \pm 0.1(0.63)$	$12 \pm 0.1(0.47)$

3.5 Quantities Per Reel

Package Type	LTV-341 series
Quantities (pcs)	1000

4. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Description	Symbol	LTV-341P	LTV-341W	Unit
Climatic Classification	-	55/100/21	55/100/21	-
Pollution Degree (DIN VDE 0110/1.89)	-	2	2	-
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	891	1140	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method b* $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1671	2137	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR }}$, Type and Sample Test, $\mathrm{tm}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1426	1824	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {Іотм }}$	6000	8000	$V_{\text {peak }}$

Safety-limiting values - maximum values allowed in the event of a failure.

Case Temperature	T_{S}	175	175	
Input Current	$\mathrm{I}_{\mathrm{S}, \text { INPUT }}$	150	150	mA
Output Power	$\mathrm{P}_{\mathrm{S}, \text { OUTPUT }} \mathrm{C}$	600	600	
Insulation Resistance at TS, $\mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	R_{S}	$>10^{9}$	$>10^{9}$	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

Note: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.

4.1 Insulation and Safety Related Specification

Parameter	Symbol	LTV-341P	LTV-341W	Unit	Test Condition
Minimum External Air Gap (External Clearance)	$\mathrm{L}(101)$	7.0	8.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Clearance)	$\mathrm{L}(102)$	8.0	8.0	mm	Measured from input terminals to output terminals, shortest distance
Tracking Resistance (Comparative Tracking Index)	CTI	>175	>175	V	DIN EN 60112 (VDE 0303 Teil 11)

Data Sheet

Photocoupler LTV-341 series

5. RATING AND CHARACTERISTICS

5.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$	-
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+105	${ }^{\circ} \mathrm{C}$	-
Output IC Junction Temperature	TJ	-	125	${ }^{\circ} \mathrm{C}$	-
Total Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0	35	V	-
Average Forward Input Current	$\mathrm{I}_{\text {F }}$	-	25	mA	-
Reverse Input Voltage	$V_{\text {R }}$	-	5	V	-
Peak Transient Input Current	$\mathrm{I}_{\text {(tTRAN }}$	-	1.0	A	1
"High" Peak Output Current	ІОh(PEAK) $^{\text {a }}$	-	3.0	A	2
"Low" Peak Output Current	IOL(PEAK)	-	3.0	A	2
Input Current (Rise/Fall Time)	$\mathrm{tr}_{\text {(IN) }} / \mathrm{If}_{\text {(IN }}$	-	500	ns	3
Output Voltage	$\mathrm{V}_{\text {O(PEAK) }}$	-	V_{cc}	V	-
Power Dissipation	P_{1}	-	45	mW	-
Output IC Power Dissipation	Po	-	700	mW	-
Total Power Dissipation	$\mathrm{P}_{\text {T }}$	-	745	mW	-
Lead Solder Temperature	$\mathrm{T}_{\text {sol }}$	-	260	${ }^{\circ} \mathrm{C}$	-

Note: Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
Note: A ceramic capacitor $(0.1 \mu \mathrm{~F})$ should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.
Note 1: Pulse width (PW) $\leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$
Note 3: The rise and fall times of the input on-current should be less than 500 ns
5.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	15	30	V
Input Current (ON)	$\mathrm{I}_{\text {FL(ON) }}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.0	0.8	V

5.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	V_{F}	1.2	1.37	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	13	-
	Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$	-	-1.237	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	-
	Input Reverse Voltage	$B V_{\text {R }}$	5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	-	-
	Input Threshold Current (Low to High)	1 FLH	-	1.8	5	mA	$\mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	$\begin{gathered} 6, \\ 7,18 \end{gathered}$	-
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\text {FHL }}$	0.8	-	-	V	$\mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	-	-
	Input Capacitance	$\mathrm{CIN}_{\text {I }}$	-	33	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	-	-
Output	High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}$	-	2.4	3.5	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open } \end{aligned}$	4, 5	-
	Low Level Supply Current	ICCL	-	2.5	3.5	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open } \end{aligned}$		-
	High level output current	Іон	-1.0	-	-	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	16	1
			-3.0	-	-		$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}} \leq 15 \mathrm{~V}$		2
	Low level output current	lob	1.0	-	-	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}\right)$	17	1
			3.0	-	-		$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \leq 15 \mathrm{~V}$		2
	High level output voltage	V OH	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 0.3 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} . \\ 0.1 \end{gathered}$	-	V	$l_{F}=10 \mathrm{~mA}, \mathrm{l}_{0}=-100 \mathrm{~mA}$	$\begin{gathered} 1,2, \\ 14 \end{gathered}$	-
	Low level output voltage	VoL	-	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.1 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}+} \\ & 0.25 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	3, 15	-
	UVLO Threshold	Vuvio+	11.0	12.7	13.5	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	19	-
		Vuvlo	9.5	11.2	12.0	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	UVLO Hysteresis	UVLO ${ }_{\text {HYs }}$	-	1.5	-	V	-		-

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 5.2)
Note 1: Maximum pulse width $=50 \mu \mathrm{~s}$.
Note 2: Maximum pulse width $=10 \mu \mathrm{~s}$.

Part No. : LTV-341 series

6. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note	
Propagation Delay Time to High Output Level	$t_{\text {PLH }}$	50	130	200	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=25 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	$\begin{gathered} 8,9,10 \\ 11,12 \\ 20 \end{gathered}$	-	
Propagation Delay Time to Low Output Level	tphL	50	130	200				-	
Pulse Width Distortion	PWD	-	5	70				-	
Propagation delay difference between any two parts or channels	PDD	-100	-	100				3	
Output Rise Time (10 to 90\%)	Tr	-	35	-				-	
Output Fall Time (90 to 10\%)	Tf	-	35	-				-	
Common mode transient immunity at high level output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	35	50	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		1	
Common mode transient immunity at low level output	\|CML		35	50	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		2

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 5.2)
Note 1: CM_{H} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$).
Note 2: CM_{L} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{V}_{\mathrm{O}}<1 \mathrm{~V}$).
Note 3: The difference between tPHL and tPLH between any two parts series parts under same test conditions.

Part No. : LTV-341 series

Data Sheet

Photocoupler

 LTV-341 series
7. ISOLATION CHARACTERISTIC

Parameter	Symbo	Device	Min.	Typ.	Max.	Unit	Test Condition	Note
Withstand Insulation Test Voltage	Viso	LTV-341W	5000	-	-	V	$\begin{aligned} & R H \leq 40 \%-60 \%, \\ & t=1 \mathrm{~min}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1,2
		LTV-341P						
Input-Output Resistance	Rt-O	-	-	10^{12}	-	Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V}$ DC	1
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$	-	-	0.92	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 5.2)
Note 1: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.
Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage $6000 \mathrm{~V}_{\text {RMs }}$ for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge

Photocoupler LTV-341 series

8. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS

Figure 1: High output rail voltage vs. Temperature

Figure 3: Vol vs. Temperature

Figure 5: Icc vs. Vcc

Figure 2: $\mathrm{V}_{\text {он }}$ vs. Temperature

Figure 4: Icc vs. Temperature

Figure 6: IfLH Hysteresis

Figure 7: $I_{\text {FLH }}$ vs. Temperature

Figure 9: Propagation Delays vs. IF

Figure 11: Propagation Delays vs. R_{g}

Data Sheet

Photocoupler LTV-341 series

Figure 8: Propagation Delays vs. Vcc

Figure 10: Propagation Delays vs. Temperature

Figure 12: Propagation Delays vs. C_{g}

LITEON ${ }^{\circ}$
 OPTOELECTRONICS

Data Sheet

Photocoupler LTV-341 series

Figure 13: Input Current vs. Forward Voltage

Figure 14 : Vон Test Circuit

Figure 16 : Іон Test Circuit

Figure 15 : Vol Test Circuit

Figure 17 : Iol Test Circuit

Figure 19 : UVLO Test Circuit

LITEONI ${ }^{\circ}$
OPTOELECTRONICS

Data Sheet

Photocoupler LTV-341 series

Figure 20 : tr, tf, tpLH and tphl Test Circuit and Waveforms

Figure 21 : CMR Test Circuit and Waveforms

Data Sheet

9. TEMPERATURE PROFILE OF SOLDERING

9.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\mathrm{Smin}}$) - Temperature Max ($\mathrm{T}_{\mathrm{smax}}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60 \sim 100 \mathrm{sec} \end{gathered}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec}$ max.
Ramp-down rate	$3 \sim 6^{\circ} \mathrm{C} / \mathrm{sec}$

LITEON ${ }^{\circ}$
OPTOELECTRONICS

Data Sheet

Photocoupler LTV-341 series
9.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature: 25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

9.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

10. NAMING RULE

Part Number Options
LTV-341P-TA
LTV-341P-TA1
LTV-341W-TA
LTV-341W-TA1
LTV341PTA-V
LTV341PTA1-V
LTV341WTA-V
LTV341WTA1-V

Definition of Suffix	Remark
"341"	LiteOn model name
"P"	clearance distance 7mm typical
"W"	clearance distance 8mm typical
"TA"	Pin 1 location at lower right of the tape
"TA1"	Pin 1 location at upper left of the tape
"V"	VDE approved option

11. Notes

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

