

ESD

TVS

TSS

MOV

GDT

PLED

PAM2804AAB010(MS)

Product specification

GENERAL DESCRIPTION

The PAM2804AAB010(MS) is a constant frequency, current mode PWM step-down LED driver with 1A output current and 1.5MHz switch frequency. The device integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. This device offers two operation modes, PWM control and PFM Mode switching control, which allows a high efficiency over the wider range of the LED current. The feedback voltage is 0.1V typically. The device also integrates many protection features included input OVP, cycle-by-cycle current limit, over temperature protection.

FEATURES

- 1.5MHz Constant Frequency Operation
- 1.0A Output Current
- No Schottky Diode Required
- 2.5V to 5.5V Input Voltage Range
- Feedback Voltage as Low as 0.1V
- 100% Duty Cycle in Dropout
- Low Quiescent Current: 50μA
- Short Circuit Protection
- Thermal Fault Protection
- Input over voltage protection (OVP)
- <1μA Shutdown Current
- SOT-23-5 Package

APPLICATIONS

LED Drivers

PACKAGE OUTLINEPin ConfigurationCircuit DiagramImage: ConfigurationImage: ConfigurationImage: Circuit DiagramImage: ConfigurationImage: Circuit DiagramImage: Circuit DiagramImage: ConfigurationImage: Circuit Diagr

TYPICAL APPILCATION

Figure 1. Typical Application Circuits

<u>www.msksemi.com</u>

Pin Configuration and Functions

PIN FUNCTIONS

Pin	Name	Function
		Chip Enable Pin. Drive EN above 1.5V to turn on the part. Drive EN below 0.4V to turn it
1	EN	off. Do not leave EN floating.
2	GND	Ground Pin
3	LX	Power Switch Output. It is the switch node connection to Inductor.
4	VIN	Power Supply Input. Must be closely decoupled to GND with a $4.7\mu F$ or greater ceramic
4	VIIN	capacitor.
5	FB	Feedback Pin. A resistor connected between FB to GND is used to program LED current.

ESD RATING

Items	Description	Value	Unit
V _{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

ltems	Description	Min	Max	Unit
Voltage Range	IN	2.5	5.5	V
TJ	Operating Junction Temperature Range	-40	125	°C

THERMAL RESISITANCE (Note 3)

Items	Description	Value	Unit
θ _{JA}	Junction-to-ambient thermal resistance	200	°C/W

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Value	Unit
Input Supply Voltages	-0.3~6.5	V
LX Voltages	-0.3~6.5	V
EN, FB Voltage	-0.3~6.5	V
Storage Temperature Range	-65~150	°C
Junction Temperature (Note 2)	-40~150	°C
Power Dissipation	600	mW
Lead Temperature Soldering, 10sec	260	°C

ELECTRICAL CHARACTERISTICS

(V_{IN}=V_{EN}=5V, T_A = 25°C, unless otherwise noted.)

Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range		2.5		5.5	V
OVP Threshold			6.0		V
UVLO Threshold			2.1		V
Quiescent Current	V _{EN} =2.0V, I _{OUT} =0, V _{FB} =V _{REF} *105%		50	65	μΑ
Shutdown Current	V _{EN} =0V		0.1	10	μΑ
Regulated Feedback Voltage	T _A = 25°C		100		mV
Ossillation Fragmann	V _{FB} =100mV		1.5		MHz
Oscillation Frequency	V _{FB} =0V		400		kHz
On Resistance of PMOS	I _{LX} =100mA		0.29		Ω
On Resistance of NMOS	I _{LX} =-100mA		0.18		Ω
Peak Current Limit		1.5			А
EN Input Low Level Voltage				0.4	V
EN Input High Level Voltage		1.5			V
EN Leakage Current			±0.01	±1.0	μA
LX Leakage Current	V _{EN} =0V, V _{IN} =V _{LX} =5V		±0.01	±1.0	μA
Thermal Shutdown Threshold (Note 4)			155		°C
Thermal Shutdown Hysteresis (Note 4)			20		°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. **Note 2:** T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the

following formula: $T_J = T_A + (P_D) \times \theta_{JA}$.

Note 3: Measured on JESD51-7, 4-layer PCB.

Note 4: Thermal shutdown threshold and hysteresis are guaranteed by design.

FUNCTION DESCRIPTION

The PAM2804AAB010(MS) is a high performance 1.0A, 1.5MHz monolithic step-down LED driver. The PAM2804AAB010(MS) requires only three external power components (C_{in} , C_{out} and L). The LED driver current can be programmed with external feedback resistance between FB and GND pin up to 1.0A. At dropout, the converter duty cycle increases to 100% and the output voltage tracks the input voltage minus the $R_{DS(ON)}$ drop of the high-side MOSFET.

The internal error amplifier and compensation provides excellent load, and line regulation. he device also integrates many protection features such as input OVP, cycle-by-cycle current limit, over temperature protection.

FUNCTIONAL BLOCK DIAGRAM

Figure 2. PAM2804AAB010(MS) Block Diagram

APPLICATION INFORMATION

Setting the Output Voltage

Figure 1 shows the basic application circuit for the PAM2804AAB010(MS). LED drive current of the PAM2804AAB010(MS) can be externally programmed by resistor R1. The external resistor sets the LED current according to the following equation:

$$I_{LED} = \frac{V_{FB}}{R1}$$

Inductor Selection

For most designs, 2.2µH inductance can satisfy most application conditions. Inductance value is related to inductor ripple current value, input voltage, output voltage and switching frequency. The inductor value can be derived from the following equation:

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_L \times f_{OSC}}$$

Where ΔI_L is inductor ripple current. Large value inductors result in lower ripple current and small value inductors result in high ripple current, so inductor value has effect on output voltage ripple value. DC resistance of inductor which has impact on efficiency of DC/DC converter should be taken into account when selecting the inductor.

Input Capacitor Selection

The input capacitor reduces the surge current drawn from the input and switching noise from the device. The input capacitor impedance at the switching frequency should be less than input source impedance to prevent high frequency switching current passing to the input.

A low ESR input capacitor sized for maximum RMS current must be used. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. A 4.7µF ceramic capacitor for most applications is sufficient. A large value may be used for improved input

Output Capacitor Selection

voltage filtering.

The output capacitor is required to keep the output voltage ripple small and to ensure regulation loop stability. The output capacitor must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and high ripple current ratings. The output ripple V_{OUT} is determined by:

$$\Delta V_{OUT} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times L \times f_{OSC}} \times (ESR + \frac{1}{8 \times f_{osc} \times C_{OUT}})$$

A $10\mu F$ ceramic can satisfy most applications.

Layout Consideration

When laying out the printed circuit board, the Following checking should be used to ensure proper operation of the PAM2804AAB010(MS). Check the following in your layout:

1. The power traces, consisting of the GND trace, the LX trace and the VIN trace should be kept short, direct and wide.

2. Does the (+) plates of Cin connect to Vin as closely as possible. This capacitor provides the AC current to the internal power MOSFETs.

3. Keep the switching node, LX, away from the sensitive VOUT node.

4. Keep the (-) plates of Cin and Cout as close as possible

PAM2804AAB010(MS)

SOT-23-5 Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	2.650	2.950	0.104	0.116
E1	1.500	1.700	0.059	0.067
е	0.950(BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-23-5 Suggested Pad Layout

Note:

1.Controlling dimension in millimeters.

2.General tolerance:±0.05mm.

3. The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
PAM2804AAB010(MS)	SOT-23-5	3000

Attention

Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.

Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to

product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.