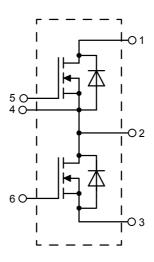
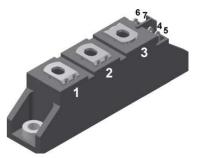


Preliminary

 $V_{DSS} = 200 V$

 $I_{D25} = 45 A$


 $R_{DS(on)} = 45 \text{ m}\Omega$


Dual Power HiPerFET™ Module

Phaseleg Configuration High dv/dt, Low t_{rr}, HDMOS™ Family

Part number

VMM45-02F

1 = Drain 1, 3 = Source 2, 5 = Gate 1 2 = Source 1, Drain 2 4 = Kelvin Source 1 6 = Gate 2

Features / Advantages:

- Two MOSFET's in phaseleg configuration
- Direct copper bonded Al₂O₃ ceramic base plate
- Low $R_{DS(on)}$ HDMOSTM process
- Easy to mount with two screws
- · Space and weight savings
- · High power density
- Low losses

Applications:

- Switched-mode and resonant-mode power supplies
- Uninterruptible power supplies (UPS)

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- · Reduced weight
- Advanced power cycling

Disclaimer Notice

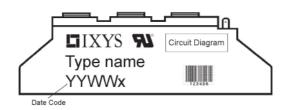
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

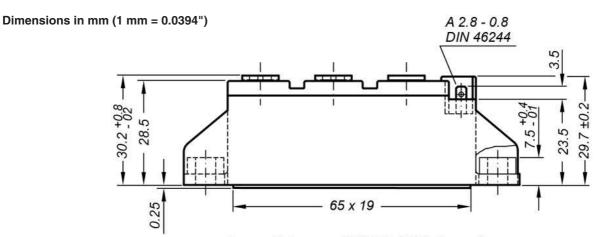
IXYS reserves the right to change limits, test conditions and dimensions

Preliminary

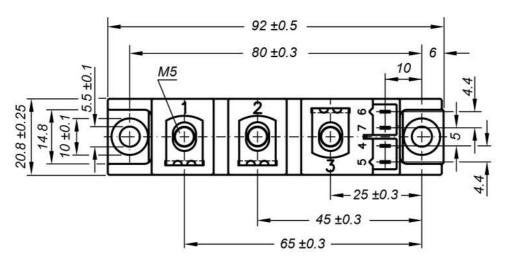
HiPerFET™s			Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	Unit
V _{DSS}	drain source breakdown voltage	$T_{VJ} = 25^{\circ}C \text{ to } 125^{\circ}C$			200	٧
V _{DGR}	drain gate voltage	$R_{GS} = 10 \text{ k}\Omega$ $T_{VJ} = 25^{\circ}\text{C to}125^{\circ}\text{C}$			200	٧
V _{GS} V _{GSM}	gate source voltage max. transient gate source voltage	Continuous Transient			±20 ±30	V V
I _{D25} I _{D80} I _{DM}	continuous drain current drain current maximum pulsed drain current	$$T_{\text{C}}=25^{\circ}\text{C}$$ $$T_{\text{C}}=80^{\circ}\text{C}$$ $$t_{\text{p}}=10~\mu\text{s},\text{pulse}}$ width limited by T_{JM} $$T_{\text{C}}=25^{\circ}\text{C}$$			45 34 180	A A A
P _{tot}	total power dissipation	T _C = 25°C			190	W
V _{DSS}	drain source breakdown voltage	$V_{GS} = 0 \text{ V}; I_{D} = 1 \text{ mA}$	200			V
V _{GS(th)}	gate threshold voltage	$V_{DS} = V_{GS}$; $I_D = 4 \text{ mA}$	2		4	V
I _{GSS}	gate source leakage current	$V_{GS} = \pm 20 \text{ V DC}; V_{DS} = 0$			500	nA
I _{DSS}	drain source leakage current	$V_{DS} = V_{DSS};$ $V_{GS} = 0 \text{ V}$ $T_{VJ} = 25^{\circ}\text{C}$ $V_{DS} = 0.8 \bullet V_{DSS};$ $V_{GS} = 0 \text{ V}$ $T_{VJ} = 125^{\circ}\text{C}$			15 1	μA mA
R _{DS(on)}	staticdrain source on resistance	$V_{GS} = 10 \text{ V}; I_D = 0.5 \bullet I_{D25}$ $T_{VJ} = 25^{\circ}\text{C}$ Pulse test, t $\leq 300 \ \mu\text{s}$, duty cycle d $\leq 2 \ \%$		39	45	mΩ
g _{fs}	forward transconductance	$V_{DS} = 10 \text{ V; } I_{D} = 0.5 \bullet I_{D25} \text{ pulsed}$	20	30		S
C _{iss} C _{oss} C _{rss}	input capacitance output capacitance reverse transfer (Miller) capacitance			4800 900 310	7500 2250 750	pF pF pF
$\begin{array}{c} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \end{array}$	turn-on delay time current rise time turn-off delay time current fall time	$V_{GS} = 10 \text{ V; } V_{DS} = 0.5 \bullet V_{DSS}; I_D = 0.5 \bullet I_{D25}$ $R_G = 1 \Omega \text{ (external), resistive load}$		40 45 300 45		ns ns ns ns
$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	total gate charge gate source charge gate drain (Miller) charge			190 35 45	225 55 115	nC nC nC
R_{thJC} R_{thJH}	thermal resistance junction to case thermal resistance junction to heatsink	with heat transfer paste		0.93	0.63	K/W K/W

Source-Drain Diodes				Ratings		
Symbol	Definitions	Conditions	min.	typ.	max.	
Is	continuous source current	V _{GS} = 0 V			45	Α
I _{SM}	maximum pulsed source current	Repetitive; pulse width limited by T _{JM}			180	Α
V _{SD}	forward voltage drop	$I_F = I_S$; $V_{GS} = 0 \text{ V}$ Pulse test, $t \le 300 \mu\text{s}$, duty cycle $d \le 2 \%$		0.9	1.2	V
t _{rr}	reverse recovery time	$I_F = I_S$, -di/dt = 100 A/ μ s $V_{DS} = 100 \text{ V}$; $V_{GS} = 0 \text{ V}$		200	400	ns

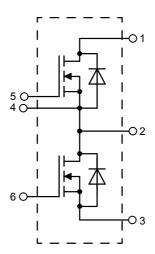

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated. $T_J = 25^{\circ}C$, unless otherwise specified


Preliminary

Package	TO-240AA			Ratings				
Symbol	Definitions	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{VJM}	maximum virtual junction temperature						150	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D M _T	mounting torque terminal torque				2.5 2.5		4 4	Nm Nm
d _{Spp/App}	creepage distance on surface striking dista	eepage distance on surface I striking distance through a	terminal to terminal	13.0	9.7			mm
$d_{Spb/Apb}$		3 · · · · · · · 3 · · · · · · 3 · · · · · · · 3 · · · · · · · 3 · · · · · · · · 3 · · · · · · · · · 3 · · · · · · · · · · · · · · · · · · ·	terminal to backside	16.0	16.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS, $I_{ISOL} \le 1 \text{ mA}$		4800			V
		t = 1 minute			4000			V



Outlines TO-240AA



General tolerance: DIN ISO 2768 class "c"

Optional accessories for modules

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = white, cathode = red Type ZY 200L (L = Left for pin pair 4/5) Type ZY 200R (R = Right for pin pair 6/7) UL 758, style 3751

