

DATA SHEET

ANTI-SULFURATED CHIP RESISTORS AUTOMOTIVE GRADE

AA series

±5%, ±1%, ±0.5%

sizes 0201/0402/0603/0805/1206/ 1210/1218/2010/2512 RoHS compliant & Halogen free

YAGEO

SCOPE

This specification describes AA0201 to AA2512 chip resistors with lead-free terminations made by thick film process.

APPLICATIONS

- Car electronics
- Engine control unit
- Body control system
- Safety devices

FEATURES

- Superior resistance against sulfur containing atmosphere
- AEC-Q200 qualified
- Moisture sensitivity level: MSLI
- AA series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AA XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0201 / 0402 / 0603 / 0805 / 1206 / 1210 / 1218 / 2010 / 2512

(2) TOLERANCE

 $D = \pm 0.5\%$ F = ±1%

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper/PE taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia. Reel

(6) RESISTANCE VALUE

$I\,\Omega$ to $I0\,M\Omega$

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. IK2, not IK20.

(7) DEFAULT CODE

Letter L is the system default code for ordering only. ^(Note)

Resistance rule of global part

number Resistance coding rule	Example
XRXX (I to 9.76 Ω)	R = Ω R5 = .5 Ω 9R76 = 9.76 Ω
XXRX	IOR = IO Ω
(10 to 97.6 Ω)	97R6 = 97.6 Ω
XXXR	100R = 100 Ω
(100 to 976 Ω)	976R = 976 Ω
XKXX	ικ = 1,000 Ω
(1 to 9.76 K Ω)	9K76 = 9760 Ω
XMXX	IM = 1,000,000 Ω
(I to 9.76 MΩ)	9M76= 9,760,000 Ω
XXMX (10 MΩ)	$10M = 10,000,000 \Omega$

ORDERING EXAMPLE

The ordering code for an AA0402 chip resistor, value 100 K Ω with ±1% tolerance, supplied in 7-inch tape reel is: AA0402FR-07100KL

NOTE

- All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
- 2. On customized label, "LFP" or specific symbol can be printed.

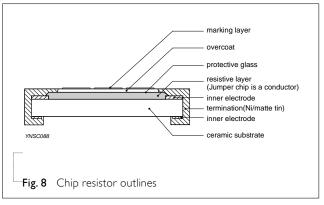
MARKING

AA0201 / AA0402

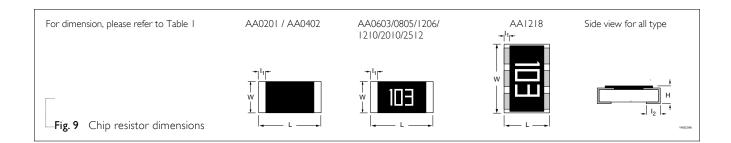
Fig. I	No marking
AA0603 / AA0805 / AA1206 / A	A1210 / AA2010 / AA2512
Γig. 2 Value=10 KΩ	E-24 series: 3 digits, ±5% First two digits for significant figure and 3rd digit for number of zeros
AA0603	
Ζ<u>Η</u> Fig. 3 Value = 24 Ω	E-24 series: 3 digits, ±1% One short bar under marking letter
Fig. 4 Value = 12.4 KΩ	E-96 series: 3 digits, ±1% First two digits for E-96 marking rule and 3rd letter for number of zeros
AA0805 / AA1206 / AA1210 / A	A2010 / AA2512
Γig. 5 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, ±1% First three digits for significant figure and 4th digit for number of zeros
AA1218	
Fig. 6 Value = 10 KΩ	E-24 series: 3 digits, ±5% First two digits for significant figure and 3rd digit for number of zeros
11102 Fig. 7 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, $\pm 1\%$ First three digits for significant figure and 4th digit for number of zeros

ΝΟΤΕ

For further marking information, please refer to data sheet "Chip resistors marking". Marking of AA series is the same as RC series.



CONSTRUCTION


The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added, as shown in Fig.8.

OUTLINES

DIMENSIONS

Table I	For outlines, please refer to Fig. 9				
TYPE	L (mm)	W (mm)	H (mm)	I₁ (mm)	l ₂ (mm)
AA0201	0.60 ±0.03	0.30 ±0.03	0.23 ±0.03	0.12 ±0.05	0.15 ±0.05
AA0402	1.00 ±0.05	0.50 ±0.05	0.35 ±0.05	0.20 ±0.10	0.25 ±0.10
AA0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
AA0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
AA1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.50 ±0.20
AA1210	3.10 ±0.10	2.60 ±0.15	0.57 ±0.10	0.45 ±0.20	0.50 ±0.20
AA1218	3.10 ±0.10	4.60 ±0.10	0.57 ±0.10	0.45 ±0.20	0.50 ±0.20
AA2010	5.00 ±0.10	2.50 ±0.15	0.57 ±0.10	0.55 ±0.20	0.55 ±0.20
AA2512	6.35 ±0.10	3.20 ±0.15	0.57 ±0.10	0.60 ±0.20	0.60 ±0.20

ELECTRICAL CHARACTERISTICS

Table 2							
				CH	ARACTERISTI	CS	
ТҮРЕ	RESISTANCE RANGE	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance	Jumper Criteria
AA0201			25V	50V	50V	IΩ≤R≤10Ω, -100/+400 ppm/°C	Rated Current 0.5A
					500	10Ω <r≤10 mω,<br="">±300 ppm/°C</r≤10>	Max. Current 1.0A
AA0402			50 V	100 V	100 V		Rated Current IA
			20 V	100 V	100 V	-	Max. Current 2A
AA0603	5% (E24)		75V	150 V	150 V		Rated Current IA
	$I\Omega \le R \le 22M\Omega$	-				-	Max. Current 2A
AA0805	(0201: Max, 10MΩ, 1218: Max, 1MΩ)	0.5%, 1% (E24/E96)́ _55 °C to +155 °C − IΩ≤ R ≤10MΩ	150 V	300 V	300 V		Rated Current 2A
	0.5%, 1% (E24/E96)					$ \Omega \leq R \leq 0\Omega $	Max. Current 5A
AA1206	$ \Omega \leq R \leq OM\Omega $ (1218: Max. $ M\Omega $)		200 V	400 V	500 V	±200 ppm/°C	Rated Current 2A
	Jumper < 50m Ω	-				$10\Omega < R \le 10 M\Omega$,	Max. Current 10A Rated Current 2A
AA1210			200 V	500 V	500 V	±150 ppm/°C 10 MΩ < R ≤ 22 MΩ,	Rated Current 2A Max. Current 10A
		-				±200 ppm/°C -	Rated Current 6A
AA1218			200 V	500 V	500 V		Max, Current 10A
						-	Rated Current 2A
AA2010			200 V	500 V	500 V		Max. Current 10A
		-				-	Rated Current 2A
AA2512			200 V	500 V	500 V		Max. Current 10A

Chip Resistor Surface Mount | AA | series | 0201 to 2512

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

 Table 3
 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AA0201	AA0402	AA0603	AA0805	AA1206	AA1210	AA1218	AA2010	AA2512
Paper/PE taping reel (R)	7" (178 mm)	10,000	10,000	5,000	5,000	5,000	5,000			
	13" (330 mm)	50,000	50,000	20,000	20,000	20,000	20,000			
Embossed taping reel (K)	7" (178 mm)							4,000	4,000	4,000

NOTE

1. For paper/PE/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55°C to +155°C

POWER RATING

Each type rated power at 70°C: AA0201=1/20W (0.05W) AA0402=1/16 W (0.0625W) AA0603=1/10 W (0.1W) AA0805=1/8 W (0.125W) AA1206=1/4 W (0.25W) AA1210=1/2 W (0.5W) AA1218=1 W AA2010=3/4 W (0.75W) AA2512=1 W

Fig. 10 Maximum dissipation (P_{max}) in percentage of rated power as a function of the operating ambient temperature (T_{amb})

RATED VOLTAGE

The DC or AA (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

 $V = \sqrt{(P \times R)}$

Or Maximum working voltage whichever is less Where

- V = Continuous rated DC or AA (rms) working voltage (V)
- P = Rated power (W)
- $R = Resistance value (\Omega)$

TESTS AND REQUIREMENTS

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature	AEC-Q200 Test 3	1,000 hours at T_A = 155 °C, unpowered	±(1.0%+0.05Ω)
Exposure	MIL-STD-202 Method 108		$<\!50~\text{m}\Omega$ for Jumper
Moisture	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at	$\pm(0.5\%+0.05\Omega)$ for D/F tol.
Resistance		8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	\pm (2.0%+0.05 Ω) for J tol. <100 m Ω for Jumper
		Parts mounted on test-boards, without condensation on parts	
Biased	AEC-Q200 Test 7	1,000 hours; 85 °C / 85% RH	±(3.0%+0.05Ω)
Humidity	MIL-STD-202 Method 103	10% of operating power	<100 m Ω for Jumper
		Measurement at 24±4 hours after test conclusion.	
Operational Life	AEC-Q200 Test 8	1,000 hours at 125 °C, derated voltage applied for	±(1.0%+0.05Ω)
	MIL-STD-202 Method 108	1.5 hours on, 0.5 hour off, still-air required	<100 m Ω for Jumper
Resistance to	AEC-Q200 Test 15	Condition B, no pre-heat of samples	±(0.5%+0.05Ω) for D/F tol
Soldering Heat	MIL-STD-202 Method 210	Lead-free solder, 260±5 °C, 10±1 seconds	$\pm (1.0\% {+} 0.05 \Omega)$ for J tol.
		immersion time	<50 m Ω for Jumper
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	No visible damage
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C	±(1.0%+0.05Ω)
		Number of cycles is 300. Devices mounted	<50 m Ω for Jumper
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
ESD	AEC-Q200 Test 17	I pos. + I neg. discharges	±(3.0%+0.05Ω)
	AEC-Q200-002	0201: 500V	<50 m Ω for Jumper
		0402/0603: IKV	
		0805 and above: 2KV	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability			
- Wetting	AEC-Q200 Test 18	Electrical Test not required Magnification 50X	Well tinned (≥95% covered)
	J-STD-002	SMD conditions:	No visible damage
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.	
		(b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds.	
Board Flex	AEC-Q200 Test 21	Chips mounted on a 100mm × 40mm glass	±(1.0%+0.05Ω)
	AEC-Q200-005	epoxy resin PCB (FR4)	<50 m Ω for Jumper
		Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm	
		Holding time: minimum 60 seconds	
Temperature Coefficient of Resistance (T.C.R.)	IEC 60115-1 4.8 MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 2
		Formula:	
		T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where	
		t_1 =+25 °C or specified room temperature	
		t ₂ =–55 °C or +125 °C test temperature	
		R ₁ =resistance at reference temperature in ohms	
		R_2 =resistance at test temperature in ohms	
Short Time	IEC60115-18.1	2.5 times of rated voltage or maximum	±(1.0%+0.05Ω)
Overload		overload voltage whichever is less for 5 sec at room temperature	$<$ 50 m Ω for Jumper
FOS	ASTM-B-809-95	- Sulfur (saturated vapor) 1000 hours, 90±2 °C unpowered	±(1.0%+0.05Ω)
	ASTM-B-809-95* *Modified	- Sulfur 750 hours, 105 °C. unpowered	±(4.0%+0.05 Ω)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 3	Dec. 08, 2015	-	- Update Dielectric Withstanding Voltage
Version 2	Apr. 09, 2015	-	- Modified FOS test procedure
Version I	Jan. 27, 2015	-	- Dimensions update
Version 0	Feb. 27, 2014	-	- First issue of this specification

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.