

RL78/G1C

RENESAS MCU

R01DS0348EJ0130 Rev.1.30 May 26, 2023

Integrated USB Controller, True Low Power Platform (as low as 112.5 μ A/MHz, and 0.61 μ A for RTC + LVD), 2.4 V to 5.5 V Operation, 32 Kbyte Flash, 31 DMIPS at 24 MHz, for All USB Based Applications

1. OUTLINE

1.1 Features

Ultra-Low Power Technology

- 2.4 V to 5.5 V operation from a single supply
- Stop (RAM retained): 0.23 μ A, (LVD enabled): 0.31 μ A
- Halt (RTC + LVD): 0.57 μA
- Supports snooze
- Operating: 71 μA/MHz

16-bit RL78 CPU Core

- Delivers 31 DMIPS at maximum operating frequency of 24 MHz
- Instruction Execution: 86% of instructions can be executed in 1 to 2 clock cycles
- CISC Architecture (Harvard) with 3-stage pipeline
- Multiply Signed & Unsigned: 16 x 16 to 32-bit result in 1 clock cycle
- MAC: 16 x 16 to 32-bit result in 2 clock cycles
- 16-bit barrel shifter for shift & rotate in 1 clock cycle
- 1-wire on-chip debug function

Code Flash Memory

- Density: 32 KB
- Block size: 1 KB
- On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- Data Flash with background operation
- Data flash size: 2 KB
- Erase Cycles: 1 Million (typ.)
- Erase/programming voltage: 2.4 V to 5.5 V

RAM

- 5.5 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 24 MHz with +/- 1% accuracy over voltage (2.4 V to 5.5 V) and temperature (-20°C to +85°C)
- Pre-configured settings: 48 MHz, 24 MHz (TYP.)

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 9 setting options (Interrupt and/or reset function)

USB

- Complying with USB version 2.0, incorporating host/function controller
- Corresponding to full-speed transfer (12 Mbps) and low-speed (1.5 Mbps)
- Complying with Battery Charging Specification Revision 1.2
- Compliant with the 2.1A/1.0A charging mode prescribed in the Apple Inc. MFi specification in the USB power supply component specification Note1

Direct Memory Access (DMA) Controller

- Up to 2 fully programmable channels
- Transfer unit: 8- or 16-bit

Multiple Communication Interfaces

- Up to 2 x I2C master
- Up to 1 x I²C multi-master
- Up to 2 x Simplified SPI (CSINote2) (7-, 8-bit)
- Up to 1 x UART (7-, 8-, 9-bit)

Extended-Function Timers

- Multi-function 16-bit timer TAU: Up to 4 channels (remote control output available)
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- 12-bit interval timer: 1 channel
- 15 kHz watchdog timer: 1 channel (window function)

Rich Analog

- ADC: Up to 9 channels, 8/10-bit resolution, 2.1 μ s minimum conversion time
- Internal voltage reference (1.45 V)
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- RAM parity error check
- RAM write protection
- SFR write protection
- Illegal memory access detection
- Clock stop/frequency detection
- ADC self-test
- I/O port read back function (echo)

General Purpose I/O

- 5 V tolerant, high-current (up to 20 mA per pin)
- Open-Drain, Internal Pull-up support

Operating Ambient Temperature

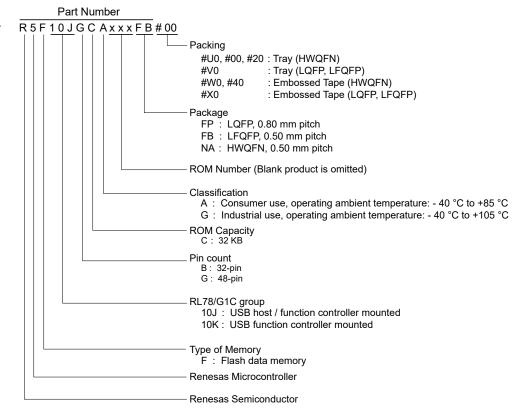
- Standard: -40°C to + 85°C
- Extended: -40°C to + 105°C

Package Type and Pin Count

- 32-pin plastic HWQFN (5 x 5)
- 32-pin plastic LQFP (7 x 7)
- 48-pin plastic LFQFP (7 x 7)
- 48-pin plastic HWQFN (7 x 7)
- Note 1. To use the Apple Inc. battery charging mode, you must join in Apple's Made for iPod/iPhone/iPad (MFi) licensing program. Before requesting this specification from Renesas Electronics, please join in the Apple's MFi licensing program.
- <R> Note 2. Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.

ROM, RAM capacities

, ,							
Flash ROM	Data flash	RAM	RL78/G1C				
			32-pin 48-pin				
32 KB	2 KB	5.5 KB Note	R5F10JBC, R5F10KBC	R5F10JGC, R5F10KGC			


Note This is about 4.5 KB when the self-programming function is used.

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C

Ordering Part Number

<R>

Table 1-1. List of Ordering Part Numbers

Pin	Package	USB Function	Fields of	Part Number		RENESAS Code
count			Application	Part Number	Packaging specification	
32 pins	32-pin plastic	Host/Function	А	R5F10JBCANA	#U0, #W0	PWQN0032KB-A
	HWQFN	controller			#00, #20, #40	PWQN0032KE-A
	(5 × 5 , 0.5 mm					PWQN0032KG-A
	pitch)		G	R5F10JBCGNA	#U0, #W0	PWQN0032KB-A
					#00, #20, #40	PWQN0032KE-A
						PWQN0032KG-A
		Function	Α	R5F10KBCANA	#U0, #W0	PWQN0032KB-A
		controller only			#00, #20, #40	PWQN0032KE-A
						PWQN0032KG-A
			G	R5F10KBCGNA	#U0, #W0	PWQN0032KB-A
					#00, #20, #40	PWQN0032KE-A
						PWQN0032KG-A
	32-pin plastic	Host/Function	Α	R5F10JBCAFP	#V0, #X0	PLQP0032GB-A
	LQFP	controller	G	R5F10JBCGFP		
	(7 × 7 , 0.8 mm	Function	Α	R5F10KBCAFP		
	pitch)	controller only	G	R5F10KBCGFP		
48 pins	48-pin plastic	Host/Function	Α	R5F10JGCAFB	#V0, #X0	PLQP0048KF-A
	LFQFP	controller	G	R5F10JGCGFB		
	(7 × 7 , 0.5 mm	Function	Α	R5F10KGCAFB		
	pitch)	controller only	G	R5F10KGCGFB		
	48-pin plastic	Host/Function	Α	R5F10JGCANA	#U0, #W0	PWQN0048KB-A
	HWQFN	controller			#00, #20, #40	PWQN0048KE-A
	(7 × 7 , 0.5 mm		G	R5F10JGCGNA	#U0, #W0	PWQN0048KB-A
	pitch)				#00, #20, #40	PWQN0048KE-A
		Function	Α	R5F10KGCANA	#U0, #W0	PWQN0048KB-A
		controller only			#00, #20, #40	PWQN0048KE-A
			G	R5F10KGCGNA	#U0, #W0	PWQN0048KB-A
					#00, #20, #40	PWQN0048KE-A

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G1C.

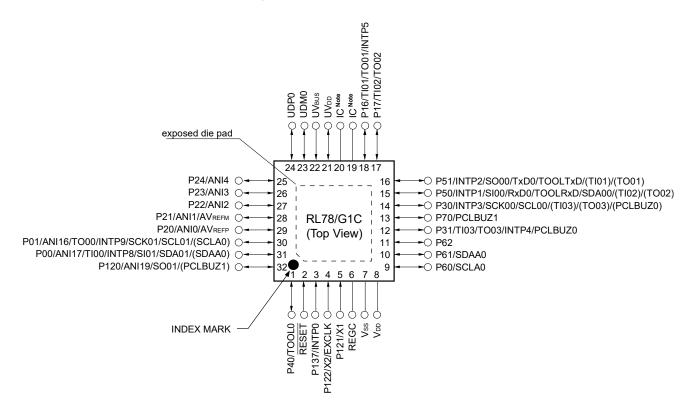

Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

(1) USB function: Host/Function controller (R5F10JBC)



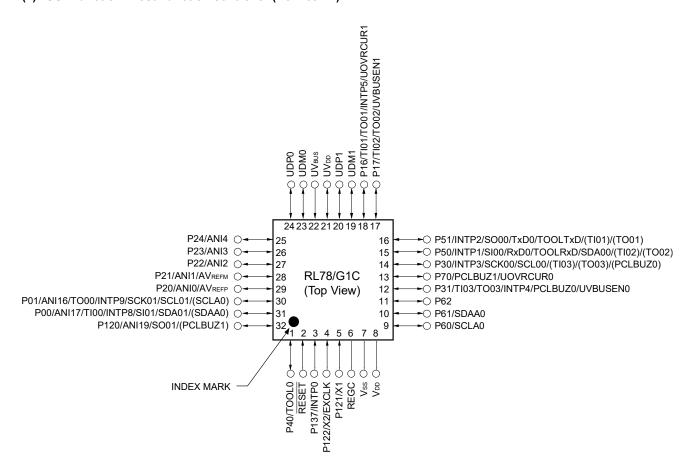
Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

(2) USB function: Function controller only (R5F10KBC)

Note IC: Internal Connection Pin. Leave open.


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)

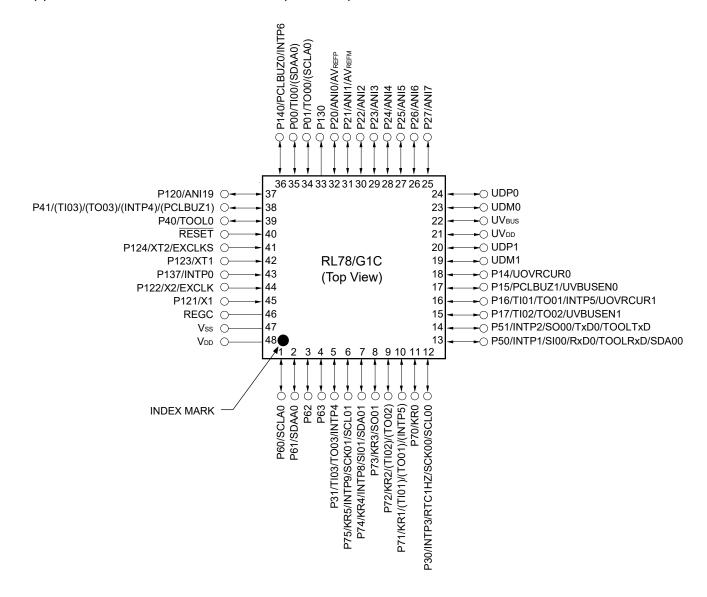

(1) USB function: Host/Function controller (R5F10JBC)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

(2) USB function: Function controller only (R5F10KBC)

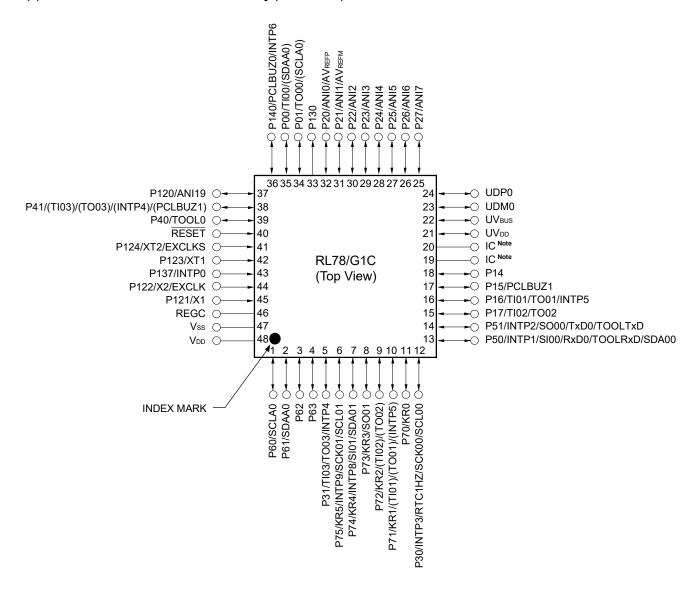
Note IC: Internal Connection Pin Leave open.


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

1.3.2 48-pin products

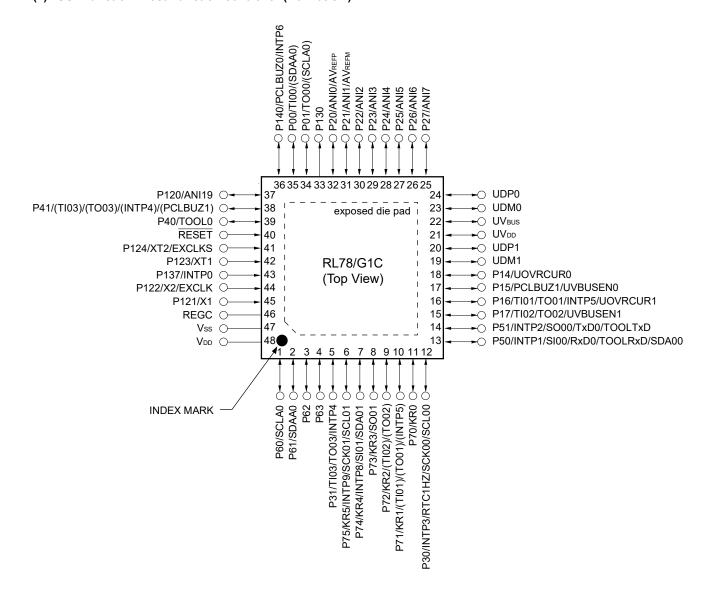
• 48-pin plastic LFQFP (fine pitch) (7 × 7, 0.5 mm pitch)


(1) USB function: Host/Function controller (R5F10JGC)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

(2) USB function: Function controller only (R5F10KGC)

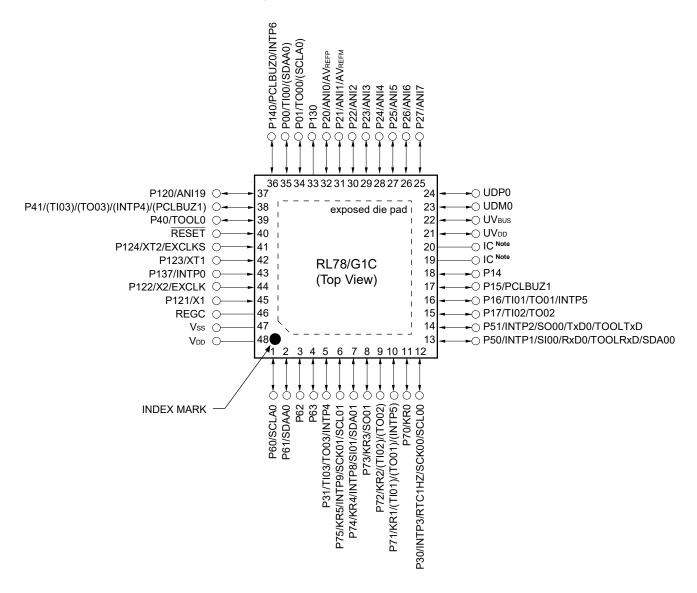

Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

• 48-pin plastic WHQFN (7 × 7, 0.5 mm pitch)

(1) USB function: Host/Function controller (R5F10JGC)



Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

(2) USB function: Function controller only (R5F10KGC)

Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

1.4 Pin Identification

ANI0 to ANI7, ANI16, ANI17, ANI19: Analog Input

AVREFM: Analog Reference Voltage Minus
AVREFP: Analog Reference Voltage Plus

EXCLK: External Clock Input (Main System Clock)

EXCLKS: External Clock Input (Sub System Clock)

INTP0 to INTP6, INTP8, INTP9: External Interrupt Input

KR0 to KR5: Key Return P00, P01: Port 0 P14 to P17: Port 1 P20 to P27: Port 2 P30, P31: Port 3 P40, P41: Port 4 P50, P51: Port 5 P60 to P63: Port 6 P70 to P75: Port 7 P120 to P124: Port 12 Port 13 P130, P137: Port 14 P140:

PCLBUZ0, PCLBUZ1: Programmable Clock Output/Buzzer Output

REGC: Regulator Capacitance

RESET: Reset

RTC1HZ: Real-time Clock Correction Clock (1 Hz) Output

RxD0: Receive Data

SCK00, SCK01: Serial Clock Input/Output
SCLA0, SCL00, SCL01: Serial Clock Input/Output
SDAA0, SDA00, SDA01: Serial Data Input/Output

SI00, SI01: Serial Data Input SO00, SO01: Serial Data Output

TI00 to TI03: Timer Input
TO00 to TO03: Timer Output

TOOL0: Data Input/Output for Tool

TOOLRxD, TOOLTxD: Data Input/Output for External Device

TxD0: Transmit Data
UDM0, UDM1, UDP0, UDP1: USB Input/Output

UOVRCUR0, UOVRCUR1: USB Input UVBUSEN0, UVBUSEN1: USB Output

UV_{DD}: USB Power Supply/USB Regulator Capacitance
UV_{BUS}: USB Input/USB Power Supply (USB Optional BC)

V_{DD}: Power Supply Vss: Ground


X1, X2: Crystal Oscillator (Main System Clock)
XT1, XT2: Crystal Oscillator (Subsystem Clock)

1.5 Block Diagram

1.5.1 32-pin products

1.5.2 48-pin products

1.6 Outline of Functions

[32-pin, 48-pin products]

(1/2)

	Item	32-	pin	48	-pin	
		R5F10JBC	R5F10KBC	R5F10JGC	R5F10KGC	
Code flash	memory (KB)	32 KB		32 KB		
Data flash n	memory (KB)	2 KB		2 KB		
RAM (KB)		5.5 KB Note 1 5.5 KB Note 1				
Memory spa	ace	1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V _{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V)				
	High-speed on-chip oscillator	to 24 MHz (V _{DD} = 2.7 to 5.5 V), 1 to 16 MHz (V _{DD} = 2.4 to 5.5 V)				
	PLL clock	6, 12, 24 MHz ^{Note 2} : V	_{DD} = 2.4 to 5.5 V			
Subsystem	clock	-	-	XT1 (crystal) oscillation 32.768 kHz (TYP.): Vot		
Low-speed on-chip oscillator		On-chip oscillation (Wat 15 kHz (TYP.): V _{DD} = 2.	_	clock/12-bit interval timer	clock)	
General-pur	rpose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum in	struction execution time	0.04167 μs (High-speed	d on-chip oscillator: fнос	o = 48 MHz /fін = 24 MHz	operation)	
		$0.04167~\mu s$ (PLL clock:	f _{PLL} = 48 MHz /f _{IH} = 24 N	ИНz ^{Note 2} operation)		
		$0.05~\mu \mathrm{s}$ (High-speed sy	stem clock: f _{MX} = 20 MH	z operation)		
		-	-	30.5 $μ$ s (Subsystem clock: f _{SUB} = 32.768 kHz operation)		
Instruction s	set	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	22		38		
	CMOS I/O	16 (N-ch O.D. I/O [VDD V	vithstand voltage]: 5)	28 (N-ch O.D. I/O [VDD	withstand voltage]: 6)	
	CMOS input	3		5		
	CMOS output	-	=	1		
	N-ch open-drain I/O (6 V tolerance)	3		4		
Timer	16-bit timer	4 channel				
	Watchdog timer	1 channel				
Real-time clock (RTC) 12-bit Interval timer (IT)		1 channel Note 3				
	Timer output	4 channels (PWM output	t: 3) Note 4			
	RTC output	_		1 • 1 Hz (subsystem cloc		

Notes 1. In the case of the 5.5 KB, this is about 4.5 KB when the self-programming function is used.

- 2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.
- **3.** In 32-pin products, this channel can only be used for the constant-period interrupt function based on the low-speed on-chip oscillator clock (f_{IL}).
- **4.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(2/2)

	Item	32-	oin	48-pin		
		R5F10JBC	R5F10KBC	R5F10JGC	R5F10KGC	
Clock outpu	ıt/buzzer output	2		2		
		(Main system clock: fmain 256 Hz, 512 H kHz	(Main system clock: f _{Main} = 24 MHz operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768			
8/10-bit reso	lution A/D converter	8 channels		9 channels		
Serial interfa	ce	Simplified SPI (CSI): 2 c	hannels/UART: 1 char	nnel/simplified I ² C: 2 chan	nels	
	I ² C bus	1 channel				
USB	Host controller	2 channels	_	2 channels	_	
	Function controller	1 channel				
Multiplier and divider/multiply-accumulator		 Multiplier: 16 bits × 16 bits = 32 bits (Unsigned or signed) Divider: 32 bits ÷ 32 bits = 32 bits (Unsigned) Multiply-accumulator:16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed) 				
DMA control	ler	2 channels				
Vectored	Internal	20		20		
interrupt sources	External	8		10		
Key interrupt		-		6		
Reset Power-on-reset circuit		Reset by RESET pin Internal reset by watce Internal reset by powe Internal reset by voltae Internal reset by illegae Internal reset by RAM Internal reset by illegae	er-on-reset age detector al instruction execution I parity error	ן ^{Note}		
		Power-on-reset: Power-down-reset: 1	1.51 V (TYI .50 V (TYP.)	P.)		
Voltage dete	ctor	2.45 V to 4.06 V (9 stage	es)			
On-chip deb	ug function	Provided				
Power supply	y voltage	V _{DD} = 2.4 to 5.5 V				
Operating ar	nbient temperature	T _A = -40 to +85 °C (A: C	onsumer applications)), T _A = -40 to +105°C (G:	Industrial application	

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (A: T_A = -40 to +85°C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)".

The target products A: Consumer applications; $T_A = -40$ to +85°C

R5F10JBCANA, R5F10JBCAFP, R5F10JGCANA, R5F10JGCAFB, R5F10KBCANA, R5F10KBCAFP, R5F10KGCANA, R5F10KGCAFB

G: Industrial applications ; when using T_A = -40 to +105°C specification products

at $T_A = -40$ to $+85^{\circ}$ C.

R5F10JBCGNA, R5F10JBCGFP, R5F10JGCGNA, R5F10JGCGFB, R5F10KBCGNA, R5F10KBCGFP, R5F10KGCGNA, R5F10KGCGFB

- Cautions 1. The RL78 microcontrollers has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	٧
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	٧
UV _{DD} pin input voltage	VIUVDD	UV _{DD}	-0.3 to V _{DD} +0.3	٧
Input voltage	VII	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P70 to P75, P120 to P124, P137, P140, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	٧
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	٧
	Vıз	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	٧
	V _{I4}	UV _{BUS}	-0.3 to +6.5	٧
Output voltage	V ₀₁	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140	-0.3 to V _{DD} +0.3 ^{Note 2}	\
	V _{O2}	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
Analog input voltage	V _{Al1}	ANI16, ANI17, ANI19	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V
	V _{Al2}	ANI0 to ANI7	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): The + side reference voltage of the A/D converter. This can be selected from AVREFP, the internal reference voltage (1.45 V), and VDD.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P14 to P17, P30, P31,	-40	
			P40, P41, P50, P51, P70 to P75,		
			P120, P130, P140		
		Total of all pins –170 mA	P00, P01, P40, P41, P120,	-70	mA
			P130, P140		
			P14 to P17, P30, P31,	-100	mA
			P50, P51, P70 to P75		
	I _{OH2}	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P00, P01, P14 to P17, P30, P31,	40	mA
			P40, P41, P50, P51, P60 to P63,		
			P70 to P75, P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	70	mA
		170 mA	P130, P140		
			P14 to P17, P30, P31,	100	mA
			P50, P51, P60 to P63, P70 to P75		
	lo _{L2}	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +85	°C
temperature		In flash memory programming mode			
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	amiestal reconstan	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx)Note		$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator		−20 to +85 °C	-1.0		+1.0	%
clock frequency accuracy		–40 to –20 °C	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - **2.** This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	f PLLIN	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	f _{PLL}			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μS
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μS

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4~V \leq V_{DD} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00, P01, P40, P41, P120, P130, P140 (When duty ≤ 70% Note 3)	$4.0~V \leq V_{DD} \leq 5.5~V$			-55.0	mA
			$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD}~<4.0~\textrm{V}$			-10.0	mA
			$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			-5.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P70 to P75 (When duty ≤ 70% Note 3)	$4.0~V \leq V_{DD} \leq 5.5~V$			-80.0	mA
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-19.0	mA
			$2.4 \text{ V} \leq \text{V}_{DD}$ < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{DD} \leq 5.5~V$			-135.0	mA
	Іон2	Per pin for P20 to P27	$2.4~V \leq V_{DD} \leq 5.5~V$			-0.1 ^{Not} e 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = (IoH × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and $I_{OH} = -10.0$ mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			20.0 Note 2	mA
		Per pin for P60 to P63	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			20.0 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{DD} \leq 5.5~V$			70.0	mA
		P130, P140 (When duty ≤ 70% Note 3)	$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}$			15.0	mA
			$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			9.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P60 to P63, P70 to P75 (When duty $\leq 70\%$ Note 3)	$4.0~V \leq V_{DD} \leq 5.5~V$			80.0	mA
			2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
			$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			20.0	mA
	Total of all pins (When duty ≤ 70% Note 3)	•	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			150.0	mA
	IoL2 Per pin for P20 to P27 Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			0.4 Note 2	mA	
		•	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00, P01, P30, P50	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	2.2		V _{DD}	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	2.0		V _{DD}	V
		D00 to D07	TTL input buffer $2.4~V \leq V_{DD} < 3.3~V$	1.5		V _{DD}	V
	V _{IH3}	P20 to P27		0.7V _{DD}		V_{DD}	V
	V _{IH4}	P60 to P63	0.7V _{DD}		6.0	V	
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLK	0.8V _{DD}		V _{DD}	V	
Input voltage, low	VIL1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0		0.2V _{DD}	V
	V _{IL2}	P00, P01, P30, P50	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4~V \leq V_{DD} < 3.3~V$	0		0.32	V
	V _{IL3}	P20 to P27		0		0.3V _{DD}	V
	VIL4	P60 to P63		0		0.3V _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2V _{DD}	V

Caution The maximum value of V_{IH} of pins P00, P01, P30, and P74 is V_{DD}, even in the N-ch open-drain mode.

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	V _{DD} – 1.5			V
		P120, P130, P140	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} – 0.7			V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} – 0.6			V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} – 0.5			V
	V _{OH2}	P20 to P27	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $\text{I}_{OH2} = -100 \ \mu \text{ A}$	V _{DD} – 0.5			V
Output voltage, low	Vol1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 20.0 \text{ mA}$			1.3	V
			$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 8.5 \text{ mA}$			0.7	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 0.6 \text{ mA}$			0.4	V
	V _{OL2}	P20 to P27	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $\text{I}_{OL2} = 400 \ \mu \text{ A}$			0.4	V
	V _{OL3}	Vol.3 P60 to P63	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 20.0 \text{ mA}$			2.0	V
			$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 2.0 \text{ mA}$			0.4	V

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Items	Symbol	Condition	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	$V_1 = V_{DD}$				1	μΑ
	Ілн2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μА
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	V _I = V _{SS}				-1	μΑ
	ILIL2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	Ru	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Vı = Vss, Iı	n input port	10	20	100	kΩ

2.3.2 Supply current characteristics

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(1/2)

Parameter	Symbol		Conditions					TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS	fносо = 48 MHz	Basic	V _{DD} = 5.0 V		1.7		mA
current Note 1		mode	(High-speed main) mode	f _{IH} = 24 MHz Note 3	operation	V _{DD} = 3.0 V		1.7		mA
			Note 6		Normal	V _{DD} = 5.0 V		3.7	5.5	mA
			operation \	V _{DD} = 3.0 V		3.7	5.5	mA		
				f _{HOCO} = 24 MHz Note 5	Normal	V _{DD} = 5.0 V		2.3	3.2	mA
				f _{IH} = 12 MHz Note 3	operation	V _{DD} = 3.0 V		2.3	3.2	mA
				fHOCO = 12 MHz Note 5	Normal	V _{DD} = 5.0 V		1.6	2.0	mA
				f _{IH} = 6 MHz Note 3	operation	V _{DD} = 3.0 V		1.6	2.0	mA
				fHOCO = 6 MHz Note 5	Normal	V _{DD} = 5.0 V		1.2	1.5	mA
				f _{IH} = 3 MHz Note 3	operation	V _{DD} = 3.0 V		1.2	1.5	mA
			HS	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
			(High-speed main) mode	VDD = 5.0 V	operation	Resonator connection		3.2	4.8	mA
			Note 6	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.6	mA
				VDD = 3.0 V	operation	Resonator connection		3.2	4.8	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal operation	Square wave input		1.9	2.7	mA
				VDD = 5.0 V		Resonator connection		1.9	2.7	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.7	mA
			VDD = 3.0 V	operation	Resonator connection		1.9	2.7	mA	
			HS (High-speed main) mode (PLL operation) Note 6 Subsystem clock operation	f _{PLL} = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	5.9	mA
				f _{CLK} = 24 MHz ^{Note 2}	operati on	V _{DD} = 3.0 V		4.0	5.9	mA
				f _{PLL} = 48 MHz,	Normal operati on	V _{DD} = 5.0 V		2.6	3.6	mA
				f _{CLK} = 12 MHz ^{Note 2}		V _{DD} = 3.0 V		2.6	3.6	mA
				f _{PLL} = 48 MHz,	Normal operation	V _{DD} = 5.0 V		1.9	2.4	mA
				fclk = 6 MHzNote 2		V _{DD} = 3.0 V		1.9	2.4	mA
				fsuB = 32.768 kHz	fsuB = 32.768 kHz Normal	Resonator connection		4.1	4.9	μA
				Note 4 $T_A = -40^{\circ}C$	operation	Square wave input		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.1	4.9	μА
				Note 4 $T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μА
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	5.5	μА
			Note 4	operation	Resonator connection		4.3	5.6	μА	
				T _A = +50°C f _{SUB} = 32.768 kHz	Normal operation	Saugro waya innut		4.2	6.3	,,,
				ISUB = 32.708 KHZ Note 4		Square wave input Resonator connection		4.2	6.4	μΑ
				T _A = +70°C		1 resortator contribution		4.3	0.4	μΑ
				fsuв = 32.768 kHz	Nomal	Square wave input		4.8	7.7	μΑ
				Note 4 T _A = +85°C	operation	Resonator connection		4.9	7.8	μА
				1A = +85°C						

(Notes and Remarks are listed on the next page.)

<R>

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, USB 2.0 host/function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- **5.** When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
- **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7~V \le V_{DD} \le 5.5~V @ 1~MHz~to~24~MHz$ $2.4~V \le V_{DD} \le 5.5~V @ 1~MHz~to~16~MHz$

- Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - **2.** f_{IH}: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fpll: PLL oscillation frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS	f _{HOCO} = 48 MHz	V _{DD} = 5.0 V		0.67	1.25	mA
current	Note 2	mode		f _{IH} = 24 MHz Note 4	V _{DD} = 3.0 V		0.67	1.25	mA
Note 1			main) mode	fHOCO = 24 MHz Note 6	V _{DD} = 5.0 V		0.50	0.86	mA
				f _{IH} = 12 MHz Note 4	V _{DD} = 3.0 V		0.50	0.86	mA
				fHOCO = 12 MHz Note 6	V _{DD} = 5.0 V		0.41	0.67	mA
				f _{IH} = 6 MHz Note 4	V _{DD} = 3.0 V		0.41	0.67	mA
				fHOCO = 6 MHz Note 6	V _{DD} = 5.0 V		0.37	0.58	mA
				f _{IH} = 3 MHz Note 4	V _{DD} = 3.0 V		0.37	0.58	mA
			HS	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.00	mA
			(High-speed	$V_{DD} = 5.0 V$	Resonator connection		0.45	1.17	mA
			main) mode	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.00	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	0.60	mA
				$V_{DD} = 5.0 V$	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	0.60	mA
				$V_{DD} = 3.0 V$	Resonator connection		0.26	0.67	mA
			HS (High-speed main) mode (PLL	f _{PLL} = 48 MHz, f _{CLK} = 24 MHz Note 3	V _{DD} = 5.0 V		0.91	1.52	mA
					V _{DD} = 3.0 V		0.91	1.52	mA
				f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.85	1.28	mA
		operation)	fclk = 12 MHz Note 3	V _{DD} = 3.0 V		0.85	1.28	mA	
			Note 8	f _{PLL} = 48 MHz, f _{CLK} = 6 MHz Note 3	V _{DD} = 5.0 V		0.82	1.15	mA
					V _{DD} = 3.0 V		0.82	1.15	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μА
			clock operation	T _A = -40°C	Resonator connection		0.44	0.76	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μА
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μА
				T _A = +50°C	Resonator connection		0.63	1.36	μΑ
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μА
				T _A = +70°C	Resonator connection		0.76	2.16	μΑ
			f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μΑ	
			T _A = +85°C	Resonator connection		1.16	3.56	μА	
	I _{DD3}		T _A = -40°C				0.18	0.50	μА
		mode Note 7	T _A = +25°C				0.23	0.50	μА
			T _A = +50°C				0.26	1.10	μА
			T _A = +70°C				0.29	1.90	μА
			T _A = +85°C	T _A = +85°C				3.30	μΑ

(Notes and Remarks are listed on the next page.)

<R>

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, USB 2.0 host/function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.
- **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- **6.** When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
- **7.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **8.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 24 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 16 \text{ MHz}$

Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)

- **2.** fih: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
- **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 4. fpll: PLL oscillation frequency
- 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 6. fclk: CPU/peripheral hardware clock frequency
- 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL ^{Note 1}				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μА
12-bit interval timer operating current	IT Notes 1, 2, 4				0.02		μА
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μА
A/D converter	IADC Notes 1,	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	I _{ADREF} Note				75.0		μА
Temperature sensor operating current	I _{TMPS} Note 1				75.0		μА
LVD operating current	I _{LVD} Notes 1,				0.08		μА
Self-programming operating current	_{FSP} Notes 1,				2.00	12.20	mA
BGO operating current	I _{BGO} Notes 1,				2.00	12.20	mA
SNOOZE operating	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	1.06	mA
current			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	1.62	mA
		Simplified SPI (CSI)	operation		0.70	0.84	mA

(Notes and Remarks are listed on the next page.)

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB operating current	lusbh Note 11	During USB communication operation under the following settings and conditions (VDD = 5.0 V, TA = +25°C): • The internal power supply for the USB is used. • X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (fPLL) = 48 MHz • The host controller (via two ports) is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). • The USB ports (two ports) are individually connected to a peripheral function via a 0.5 m USB cable.		9.0		mA
	lusbf Note 11	During USB communication operation under the following settings and conditions (VDD = 5.0 V, TA = +25°C): • The internal power supply for the USB is used. • X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (fPLL) = 48 MHz • The function controller is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). • The USB port (one port) is connected to the host device via a 0.5 m USB cable.		2.5		mA
	Isusp Note 12	 During suspended state under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The function controller is set to full-speed mode (the UDP0 pin is pulled up). The internal power supply for the USB is used. The system is set to STOP mode (When the high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When the watchdog timer is stopped.). The USB port (one port) is connected to the host device via a 0.5 m USB cable. 		240		μΑ

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

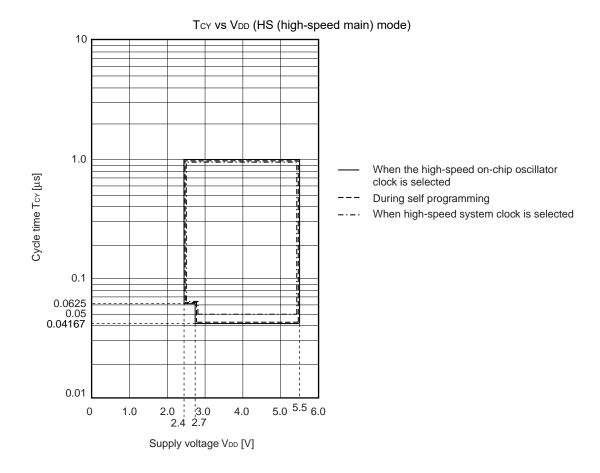
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of lob1, lob2 or lob3 and lwbT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78/G1C is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode.
- 11. Current consumed only by the USB module and the internal power supply for the USB.
- **12.** Includes the current supplied from the pull-up resistor of the UDP0 pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

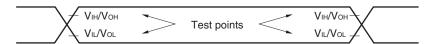
- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

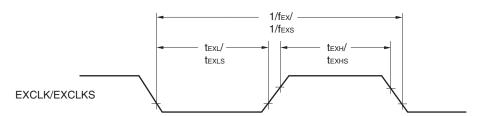
2.4.1 Basic operation

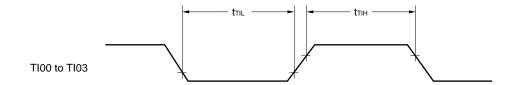

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

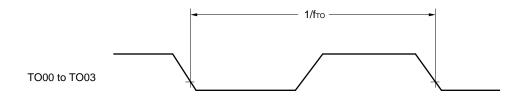
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	system (Hi		$2.7~V \leq V_{DD} \leq \\5.5~V$	0.04167		1	μS
		clock (fmain) operation	main) mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		Subsystem clock (fsub)		$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self programmin	HS (High-speed	$2.7~V \leq V_{DD} \leq \\5.5~V$	0.04167		1	μS
		g mode	main) mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
External system clock frequency	fex	$2.7~V \leq V_{DD} \leq 5.5~V$			1.0		20.0	MHz
		2.4 V ≤ V _{DD} < 2.7 V			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7~V \leq V_{DD} \leq 5.5~V$			24			ns
high-level width, low-level width		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$			30			ns
	texhs, texhs				13.7			μS
TI00 to TI03 input high-level width, low-level width	tтін, tті∟				1/fмск+10			ns
TO00 to TO03 output frequency	f то	High-speed n	nain 4.0 V	$\leq V_{DD} \leq 5.5 \text{ V}$			12	MHz
		mode	2.7 V	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			8	MHz
			2.4 V	$2.4 \text{ V} \leq \text{V}_{DD} \leq 2.7 \text{ V}$			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	High-speed n	nain 4.0 V	$\leq V_{DD} \leq 5.5 \text{ V}$			16	MHz
frequency		mode	2.7 V	≤ V _{DD} < 4.0 V			8	MHz
			2.4 V	2.4 V ≤ V _{DD} < 2.7 V			4	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0 to INT	*	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	tkr	KR0 to KR5	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl				10			μs


Remark fmck: Timer array unit operation clock frequency

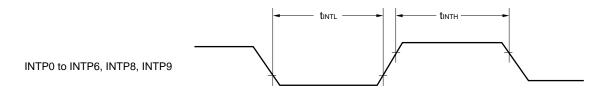
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 3))


Minimum Instruction Execution Time during Main System Clock Operation

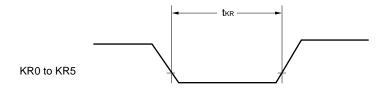

AC Timing Test Points

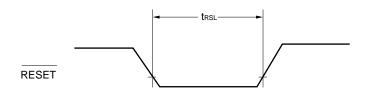


External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing

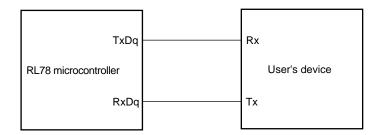
RESET Input Timing

2.5 Peripheral Functions Characteristics

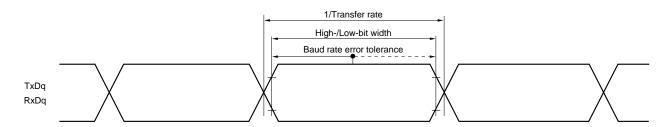
2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note			4.0	Mbps


Note The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))

(2) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 2/fcLk	$2.7~V \leq V_{DD} \leq 5.5~V$	83.3			ns
SCKp high-/low-level width	t _{KH1} ,	4.0 V ≤ V _{DD} ≤	5.5 V	tkcy1/2 - 7			ns
	t KL1	2.7 V ≤ V _{DD} ≤	5.5 V	tkcy1/2 - 10			ns
SIp setup time (to SCKp↑) Note 1	tsik1	4.0 V ≤ V _{DD} ≤	5.5 V	23			ns
		2.7 V ≤ V _{DD} ≤	5.5 V	33			ns
SIp hold time (from SCKp↑) Note 2	t _{KSI1}	2.7 V ≤ V _{DD} ≤	5.5 V	10			ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF ^{Note}	3			10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

- 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 3, 5)
- 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00))

(3) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	C	conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	167			ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	250			ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{DD} \leq$	5.5 V	txcy1/2 - 12			ns
	t KL1	$2.7~V \leq V_{DD} \leq$	5.5 V	txcy1/2 - 18			ns
		$2.4~V \leq V_{DD} \leq$	5.5 V	tkcy1/2 - 38			ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	$4.0~V \leq V_{DD} \leq$	5.5 V	44			ns
		$2.7~V \leq V_{DD} \leq$	5.5 V	44			ns
		$2.4~V \leq V_{DD} \leq$	5.5 V	75			ns
SIp hold time (from SCKp↑) Note 2	t _{KSI1}			19			ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF ^{Note 4}	1			25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

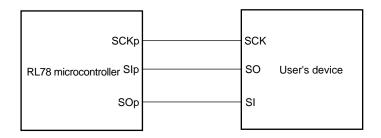
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 3, 5, 7)
 - 2. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

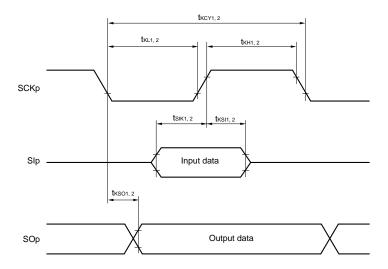
 n: Channel number (mn = 00, 01))

(4) During communication at same potential (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

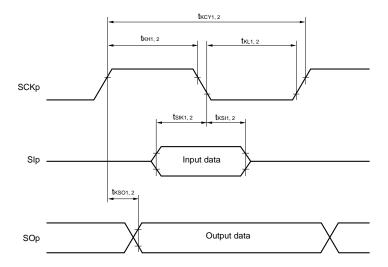
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 5	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fмск	8/fмск			ns
			fмcк ≤ 20 MHz	6/ƒмск			ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	8/fмск			ns
			fмск ≤ 16 MHz	6/ƒмск			ns
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		6/fмск and 500			ns
SCKp high-/low-level width	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.5~V$		tkcy2/2 - 7			ns
	t _{KL2}	$2.7~V \leq V_{DD} \leq 5.5~V$		tkcy2/2 - 8			ns
		$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		tксу2/2 — 18			ns
SIp setup time	tsik2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск+20			ns
(to SCKp↑) Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск+30			ns
Slp hold time	tksi2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск+31			ns
(from SCKp↑) Note 2		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		1/fмск+31			ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 5.5~V$			2/fмск+44	ns
SOp output Note 3			$2.4~V \leq V_{DD} \leq 5.5~V$			2/fмск+75	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 0, 3, 5, 7)
 - fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01))


Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

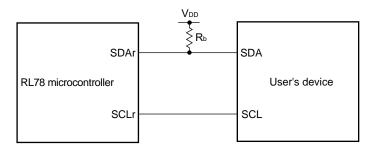
Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01)

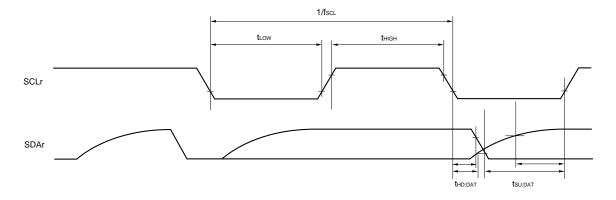
2. m: Unit number, n: Channel number (mn = 00, 01)

(5) During communication at same potential (simplified I^2C mode) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V},$		1000 Note 1	kHz
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$		400 Note 1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le V_{DD} \le 2.7 \text{ V},$		300 Note 1	kHz
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "L"	t Low	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	475		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1150		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le V_{DD} \le 2.7 \text{ V},$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	475		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1150		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le V_{DD} \le 2.7 \text{ V},$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V},$	1/fмск + 85		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	Note 2		
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1/fмск + 145		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note 2		
		$2.4 \text{ V} \le V_{DD} \le 2.7 \text{ V},$	1/fмск + 230		ns
		C_b = 100 pF, R_b = 5 k Ω	Note 2		
Data hold time (transmission)	thd:dat	$2.7~V \leq V_{DD} \leq 5.5~V,$	0	305	ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	0	355	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
		$2.4 \text{ V} \le V_{DD} \le 2.7 \text{ V},$	0	405	ns
		C_b = 100 pF, R_b = 5 k Ω			


Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Caution and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance

- 2. r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 3, 5)
- fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number
 (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \ V_{SS} = 0 \text{ V})$

Parameter	Symbol		Condition	ns	MIN.	TYP.	MAX.	Unit
Transfer rate		reception	$4.0~V \leq V_{DD} \leq 5.5~V,$				fmck/6 ^{Note 1}	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate fmck = fclk Note 2			4.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$				fmck/6 ^{Note 1}	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fmck = fclk Note 2			4.0	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$				fmck/6 ^{Note 1}	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate fmck = fclk Note 2			4.0	Mbps

Notes 1. Use it with V_{DD}≥V_b.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00)

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) ($T_A = -40$ to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$4.0~V \le V_{DD} \le 5.5~V,$				Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$			2.8 Note 2	Mbps
			2.7 V ≤ V _{DD} < 4.0 V				Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$, $V_b = 2.3 \text{ V}$			1.2 Note 4	Mbps
			2.4 V ≤ V _{DD} < 3.3 V	00 00 pt , 100 2.1 102 00 2.0 v			Notes 5, 6	bps
			$1.6~V \leq V_b \leq 2.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$			0.43 Note 7	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \end{aligned} \text{ [bps]}$$

$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- This value is the theoretical value of the relative difference between the transmission and reception sides.
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

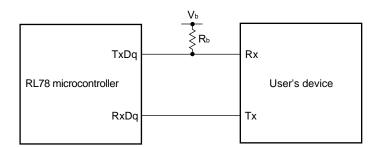
$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.0}{V_b})\} \times 3} \text{ [bps]}$$

$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{In} \\ \text{Baud rate error (theoretical value)} = \frac{(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

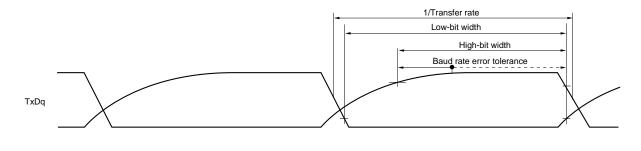
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

Notes 6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))

(7) Communication at different potential (2.5 V, 3 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tксү1 ≥ 2/f cLk	$ \begin{aligned} 4.0 & \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 & \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	200			ns
			$ \begin{aligned} & 2.7 \; \text{V} \leq \text{V}_{\text{DD}} < 4.0 \; \text{V}, \\ & 2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ & \text{C}_{\text{b}} = 20 \; \text{pF}, \; \text{R}_{\text{b}} = 2.7 \; \text{k}\Omega \end{aligned} $	300			ns
SCKp high-level width	t _{KH1}	$4.0~V \leq V_{DD} \leq$	$5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	tkcy1/2 - 50			ns
		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq \text{V}_{DD} <$	$4.0 \ V, \ 2.3 \ V \le V_b \le 2.7 \ V,$	tkcy1/2 -			ns
		C _b = 20 pF, R	b = 2.7 kΩ	120			
SCKp low-level width	t _{KL1}	$4.0~V \leq V_{DD} \leq$	$5.5 \text{ V}, \ 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	tксү1/2 – 7			ns
		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq \text{V}_{DD} <$	$4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	tkcy1/2 - 10			ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
SIp setup time	tsıĸ1	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	58			ns
(to SCKp↑) Note 1		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq \text{V}_{DD} <$	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	121			ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
SIp hold time	t _{KSI1}	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	10			ns
(from SCKp↑) Note 1		$C_b = 20 \text{ pF}, R_b = 1.4 \text{ k}\Omega$					
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$	10			ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$					
Delay time from SCKp↓ to	tkso1	$4.0~V \leq V_{DD} \leq$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$			60	ns
SOp output Note 1		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$			130	ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
SIp setup time	tsık1	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$	23			ns
(to SCKp↓) Note 2		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq \text{V}_{DD} <$	$4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	33			ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
SIp hold time	t _{KSI1}	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	10			ns
(from SCKp↓) Note 2		C _b = 20 pF, R	_b = 1.4 kΩ				
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$	10			ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
Delay time from SCKp↑ to	tkso1	4.0 V ≤ V _{DD} ≤	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$			10	ns
SOp output Note 2		C _b = 20 pF, R	_b = 1.4 kΩ				
	_	2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$			10	ns
		C _b = 20 pF, R	_b = 2.7 kΩ				

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remark are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.
- (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (1/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

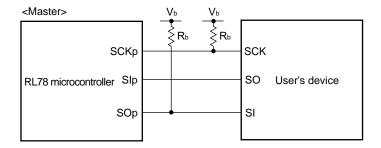
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1 tkcy1 ≥ 4,		$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	300			ns
			$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$	500			ns
			$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 2.4 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150			ns
SCKp high-level width	tкн1	4.0 V ≤ V _{DD} ≤	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V},$	tkcy1/2 - 75			ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$					
		$2.7 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF, } F$	$<4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$ $R_{\text{b}} = 2.7 \text{ k}\Omega$	tксу1/2 — 170			ns
		$2.4 \text{ V} \leq \text{V}_{DD} \leq C_b = 30 \text{ pF, f}$	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$	tксү1/2 – 458			ns
SCKp low-level width	t _{KL1}	4.0 V ≤ V _{DD} ≤ C _b = 30 pF, f	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V},$ $R_b = 1.4 \text{ k}\Omega$	tксү1/2 — 12			ns
		2.7 V ≤ V _{DD} <	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	tксү1/2 – 18			ns
		C _b = 30 pF, f	R _b = 2.7 kΩ				
		2.4 V ≤ V _{DD} <	< 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V,	tkcy1/2 - 50			ns
		C _b = 30 pF, F	$R_b = 5.5 \text{ k}\Omega$				

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

(Remarks are listed two pages after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (2/2)

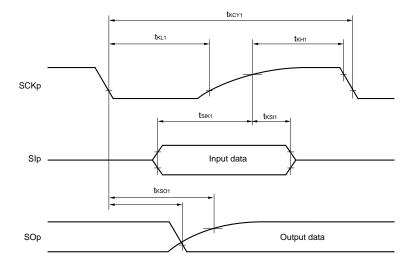
(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SIp setup time	tsik1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	81			ns
(to SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	177			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \le V_{DD} \le 3.3~V,~1.6~V \le V_b \le 2.0~V^{\text{Note 3}},$	479			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	t ksi1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	19			ns
(from SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↓ to	tkso1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$			100	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$			195	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$			483	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp setup time	tsıĸ1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	44			ns
(to SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$	44			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$	110			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	t _{KSI1}	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	19			ns
(from SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$	19			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↑ to	tkso1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$			25	ns
SOp output Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$			25	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$			25	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				

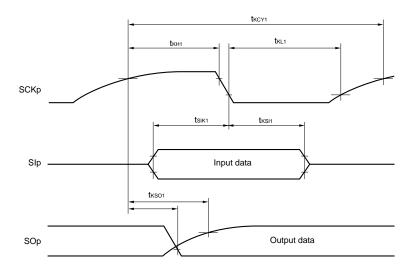
(Notes, Cautions and Remarks are listed on the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3 Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.


Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential)

(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential)

(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

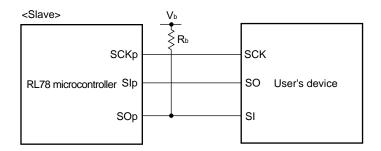
- **Remarks 1.** p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - **2.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

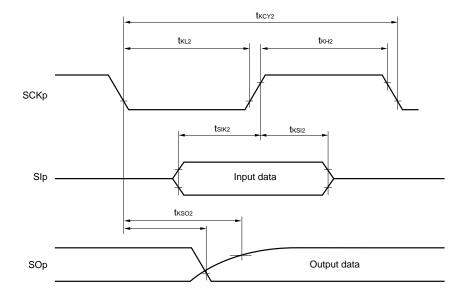
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	C	conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	12/fмск			ns
		$2.7 \ V \leq V_b \leq 4.0 \ V$	8 MHz < fмcк ≤ 20 MHz	10/fмск			ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск			ns
			fмcк ≤ 4 MHz	6/ƒмск			ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	16/fмск			ns
		$2.3V \le V_b \le 2.7V$	16 MHz < f _{MCK} ≤ 20 MHz	14/fмск			ns
			8 MHz < fмcк ≤ 16 MHz	12/fмск			ns
			4 MHz < fмck ≤ 8 MHz	8/ƒмск			ns
			fмcк ≤ 4 MHz	6/ƒмск			ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	36/fмск			ns
		$1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}$	16 MHz < fмcк ≤ 20 MHz	32/fмск			ns
		2	8 MHz < fмcк ≤ 16 MHz	26/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	16/f мск			ns
			fмcк ≤ 4 MHz	10/fмск			ns
SCKp high-/low-level width	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.5~V$	$V_{b} \leq V_{b} \leq 4.0 \text{ V}$	tkcy2/2 – 12			ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	$V_{b} \leq V_{b} \leq 2.7 \text{ V}$	tkcy2/2 – 18			ns
		2.4 V ≤ V _{DD} < 3.3 V	$^{\prime}$, 1.6 V \leq V _b \leq 2.0 V Note 2	tkcy2/2 - 50			ns
SIp setup time (to SCKp↑) Note 3	tsık2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	$V_{a}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V}$	1/fмск + 20			ns
		2.7 V ≤ V _{DD} < 4.0 V	$^{\prime}$, 2.3 V \leq V _b \leq 2.7 V	1/fмск + 20			ns
		2.4 V ≤ V _{DD} < 3.3 V	$^{\prime}$, 1.6 V \leq V _b \leq 2.0 V Note 2	1/fмск + 30			ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмcк + 31			ns
Delay time from SCKp↓ to	tkso2	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	$V_{1}, 2.7 \text{ V} \le V_{b} \le 4.0 \text{ V},$			2/fмск +	ns
SOp output Note 5		C _b = 30 pF, R _b = 1.	4 kΩ			120	
		2.7 V ≤ V _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \leq V_{b} \leq 2.7 \text{ V},$			2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 2.$	7 kΩ			214	
			$V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}},$			2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 5.$	5 kΩ			573	

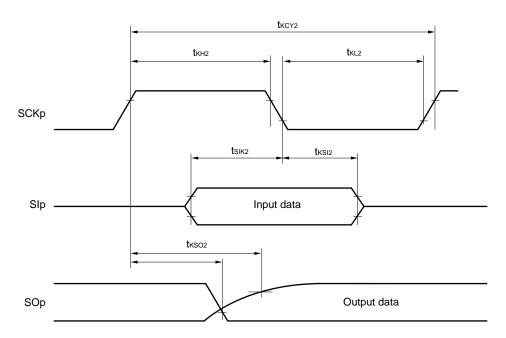
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- **2.** Use it with $V_{DD} \ge V_b$.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remarks are listed on the next page.)


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)

2. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

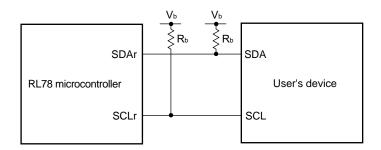
(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$ \begin{aligned} 4.0 & \ V \le V_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $		1000 Note 1	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1	kHz
		$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $		400 Note 1	kHz
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} < 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		400 Note 1	kHz
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1	kHz
Hold time when SCLr = "L"	tLow	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{aligned} $	475		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b < 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega $	475		ns
		$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned}$	1150		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{b} < 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega $	1150		ns
		$ \begin{split} 2.4 \ V & \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V & \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	1550		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	245		ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_b < 2.7 \text{ V}, \\ C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	200		ns
		$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $	675		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	600		ns
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_{b} \leq 2.0 \ V^{Note2}, \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	610		ns

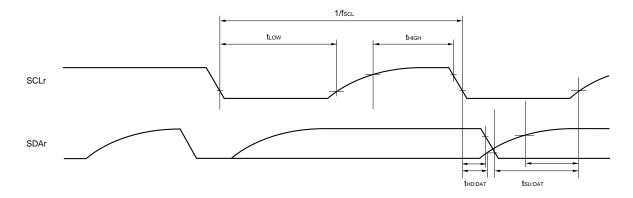
(Notes, Caution and Remarks are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 & \ V \le V_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 135 Note 3		ns
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} < 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega $	1/f _{MCK} + 135 Note 3		ns
		$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	1/f _{MCK} + 190 Note 3		ns
		$ \begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 190 Note 3		ns
		$ \begin{array}{c} 2.4 \; \text{V} \leq \text{V}_{\text{DD}} < 3.3 \; \text{V}, \\ 1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \; \text{V}^{\text{Notes 2}}, \\ C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5.5 \; \text{k}\Omega \end{array} $	1/f _{MCK} + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	305	ns
		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_b < 2.7 \text{ V}, \\ C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega $	0	305	ns
		$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	355	ns
		$ \begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{aligned} $	0	355	ns
		$ \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $	0	405	ns


Notes 1. The value must also be equal to or less than fmck/4.

- 2. Use it with $V_{DD} \ge V_b$.
- 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00), g: PIM, POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)

2.5.2 Serial interface IICA

(1) I²C standard mode

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-spe	ed main) mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard mode: fclk≥ 1	$2.7~V \leq V_{DD} \leq 5.5~V$	0	100	kHz
		MHz	$2.4~V \leq V_{DD} \leq 5.5~V$	0	100	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		4.7		μs
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.7		μS
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		4.0		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.0		μS
Hold time when SCLA0 = "L"	tLOW	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		4.7		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$	4.7		μS	
Hold time when SCLA0 = "H"	thigh	$2.7~V \leq V_{DD} \leq 5.5~V$		4.0		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.0		μS
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		250		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$		250		μS
Data hold time	thd:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		0	3.45	μS
(transmission)Note 2		$2.4~V \leq V_{DD} \leq 5.5~V$		0	3.45	μS
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{DD} \leq 5.5~V$		4.0		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.0		μS
Bus-free time	t BUF	$2.7~V \leq V_{DD} \leq 5.5~V$		4.7		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$		4.7		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The <u>maximum</u> value (MAX.) of thd:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5	$2.7~V \leq V_{DD} \leq 5.5~V$	0	400	kHz
		MHz	$2.4~V \leq V_{DD} \leq 5.5~V$	0	400	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{DD} \leq 5.5~V$	$2.7~V \leq V_{DD} \leq 5.5~V$			μ S
		$2.4~V \leq V_{DD} \leq 5.5~V$		0.6		μ S
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		0.6		μ S
		$2.4~V \leq V_{DD} \leq 5.5~V$	0.6		μ S	
Hold time when SCLA0 = "L"	tLOW	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$		1.3		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$		1.3		μS
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq V_{DD} \leq 5.5~V$		0.6		μS
		$2.4~V \leq V_{DD} \leq 5.5~V$		0.6		μS
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		100		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		100		ns
Data hold time	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0	0.9	μS
(transmission)Note 2		$2.4~V \leq V_{DD} \leq 5.5~V$		0	0.9	μS
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{DD} \leq 5.5~V$		0.6		<i>μ</i> s
		$2.4~V \leq V_{DD} \leq 5.5~V$		0.6		<i>μ</i> s
Bus-free time	t BUF	$2.7~V \leq V_{DD} \leq 5.5~V$		1.3		<i>μ</i> s
		$2.4~V \leq V_{DD} \leq 5.5~V$		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

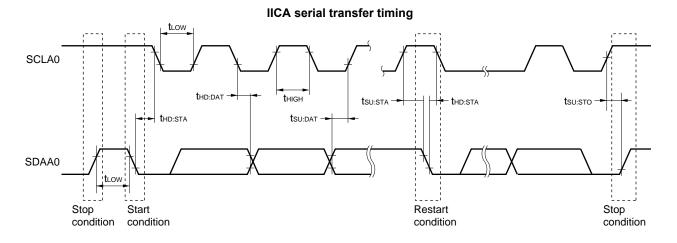
Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

^{2.} The maximum value (MAX.) of thd:DAT is during normal transfer and a clock stretch state is inserted in the \overline{ACK} (acknowledge) timing.

(3) I²C fast mode plus

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus:	$2.7~V \leq V_{DD} \leq 5.5~V$	0	1000	kHz
		fclk≥ 10 MHz				
Setup time of restart condition	t su:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		0.26		μ S
Hold time ^{Note 1}	thd:sta	$2.7~V \leq V_{DD} \leq 5.5~V$		0.26		μS
Hold time when SCLA0 = "L"	tLow	$2.7~V \leq V_{DD} \leq 5.5~V$		0.5		μS
Hold time when SCLA0 = "H"	t HIGH	$2.7~V \leq V_{DD} \leq 5.5~V$		0.26		μS
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		50		ns
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq V_{DD} \leq 5.5~V$		0	0.45	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{DD} \leq 5.5~V$		0.26		μs
Bus-free time	t BUF	$2.7~V \leq V_{DD} \leq 5.5~V$		0.5		μ s


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: $C_b = 120 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

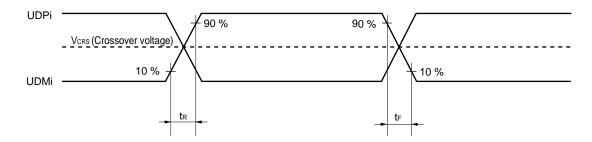
2.5.3 USB

(1) Electrical specifications

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UV _{DD} UV _{DD} input voltage characteristic		UV _{DD}	V_{DD} = 3.0 to 5.5 V, PXXCON = 1, VDDUSEB = 0 (UV _{DD} \leq V _{DD})	3.0	3.3	3.6	V
	UV _{DD} output voltage characteristic	UV _{DD}	V _{DD} = 4.0 to 5.5 V, PXXCON = VDDUSEB = 1	3.0	3.3	3.6	V
UV _{BUS}	UV _{BUS} input voltage characteristic	UV _{BUS}	Function	4.35 (4.02 ^{Note})	5.00	5.25	V
			Host	4.75	5.00	5.25	V

Note Value of instantaneous voltage


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 3.0 \text{ V} \le U\text{V}_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	Input voltage		VIH		2.0			V
pins input characteristic			VIL				0.8	V
(FS/LS receiver)	Difference input sensitivity Difference common mode range		V _{DI}	UDP voltage	0.2			V
			Vсм		0.8		2.5	V
UDPi/UDMi	Output v	oltage	Vон	Ioн = -200 μA	2.8		3.6	V
pins output characteristic			Vol	IoL = 2.4 mA	0		0.3	V
(FS driver)	Transi-ti	Rising	trR	Rising: From 10% to 90 % of	4		20	ns
,	on time	Falling	tff	amplitude, Falling: From 90% to 10 % of	4		20	ns
	Matching (TFR/TFF)		VFRFM	amplitude, CL = 50 pF	90		111.1	%
	Crossover voltage		VFCRS]	1.3		2.0	V
	Output Impedance		ZDRV	UV _{DD} voltage = 3.3 V, Pin voltage = 1.65 V	28		44	Ω
UDPi/UDMi pins output characteristic	Output v	oltage	Vон		2.8		3.6	V
			Vol		0		0.3	V
(LS driver)	Transi-ti	Rising	tlr	Rising: From 10% to 90 % of	75		300	ns
	on time	Falling	tlf	amplitude, Falling: From 90% to 10 % of	75		300	ns
	Matching (TFR/TFF) Note Crossover voltage Note		VLTFM	amplitude, CL = 200 to 600 pF	80		125	%
			VLCRS	When the host controller function is selected: The UDMi pin (i = 0, 1) is pulled up via 1.5 k Ω . When the function controller function is selected: The UDP0 and UDM0 pins are individually pulled down via 15 k Ω	1.3		2.0	V
UDPi/UDMi	Pull-dow	n resistor	RPD		14.25		24.80	kΩ
pins pull-up, pull-down	Pull-up resistor	Idle	Rpui		0.9		1.575	kΩ
(i = 0	Recep-t ion	RPUA		1.425		3.09	kΩ	
UV _{BUS}	UV _{BUS} puresistor	ill-down	Rvbus	UV _{BUS} voltage = 5.5 V		1000		kΩ
	UV _{BUS} in	out	VIH		3.20			V
	voltage		VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Remark i = 0, 1

Timing of UDPi and UDMi

(2) BC standard

(TA = -40 to +85°C, 3.0 V \leq UVDD \leq 3.6 V, 3.0 V \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDPi sink current	IDP_SINK		25		175	μΑ
standard BC1.2	UDMi sink current	IDM_SINK		25		175	μΑ
BC 1.2	DCD source current	IDP_SRC		7		13	μΑ
	Dedicated charging port resistor	RDCP_DAT	0 V < UDP/UDM voltage < 1.0 V			200	Ω
	Data detection voltage	VDAT_REF		0.25		0.4	V
	UDPi source voltage	V _{DP_SRC}	Output current 250 μA	0.5		0.7	V
	UDMi source voltage	V _{DM_SRC}	Output current 250 μA	0.5		0.7	V

Remark i = 0, 1

(3) BC option standard (Host)

 $(\text{Ta} = -40 \text{ to } +85^{\circ}\text{C}, \ 4.75 \text{ V} \leq \text{UV}_{\text{BUS}} \leq 5.25 \text{ V}, \ 3.0 \text{ V} \leq \text{UV}_{\text{DD}} \leq 3.6 \text{ V}, \ 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ \text{Vss} = 0 \text{ V})$

55.6 % 42 % 72 % 42 % 42 % 55.6 %	6 UVBUS
42 % 72 % 42 % 42 % 55.6 %	6 UVBUS 6 UVBUS 6 UVBUS 6 UVBUS 6 UVBUS
72 % 42 % 42 % 55.6 %	6 UVBUS 6 UVBUS 6 UVBUS
42 % 42 % 55.6 %	6 UVBUS
42 % 55.6 %	6 UV _{BUS}
55.6 %	6 UV _{BUS}
72 %	. HVpue
) O V BOS
%	6 UV _{BUS}
29.4 %	6 UV _{BUS}
%	Ú UV _{BUS}
45.0 %	6 UV _{BUS}
%	ώ UV _{BUS}
29.4 %	6 UV _{BUS}
%	ώ UV _{BUS}
29.4 %	6 UV _{BUS}
%	6 UV _{BUS}
29.4 %	6 UV _{BUS}
%	6 UV _{BUS}
45.0 %	6 UV _{BUS}
1.575	$k\Omega$
1.575	kΩ
	μA

- **Notes 1.** If the voltage output from UDPi or UDMi (i = 0, 1) exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.
 - 2. If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi (i = 0, 1), DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

Remark i = 0, 1

(4) BC option standard (Function)

 $(T_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C}, \ 4.35 \text{ V} \leq \text{UV}_{\text{BUS}} \leq 5.25 \text{ V}, \ 3.0 \text{ V} \leq \text{UV}_{\text{DD}} \leq 3.6 \text{ V}, \ 2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	VDSELi	0000	V _{DDET0}		27	32	37	% UV _{BUS}
input	[3:0]	0001	V _{DDET1}		29	34	39	% UV _{BUS}
reference voltage	(i = 0)	0010	V _{DDET2}		32	37	42	% UV _{BUS}
(UV _{BUS} divider		0011	V _{DDET3}		35	40	45	% UV _{BUS}
ratio)		0100	V _{DDET4}		38	43	48	% UV _{BUS}
• VDOUEi = 0		0101	V _{DDET5}		41	46	51	% UV _{BUS}
(i = 0))	1	0110	VDDET6		44	49	54	% UV _{BUS}
		0111	V _{DDET7}		47	52	57	% UV _{BUS}
		1000	V _{DDET8}		51	56	61	% UV _{BUS}
		1001	V _{DDET9}		55	60	65	% UV _{BUS}
		1010	VDDET10		59	64	69	% UV _{BUS}
		1011	V _{DDET11}		63	68	73	% UV _{BUS}
		1100	VDDET12		67	72	77	% UV _{BUS}
		1101	VDDET13		71	76	81	% UV _{BUS}
		1110	VDDET14		75	80	85	% UV _{BUS}
		1111	VDDET15		79	84	89	% UV _{BUS}

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage	
	Reference voltage (+) = AVREFP		Reference voltage (+) = V _{BGR}
	Reference voltage (–) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (-) = AVREFM
ANI0 to ANI7	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4) .
ANI16, ANI17, ANI19	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 2.4 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq V \text{DD} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI7	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		AINIT	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		reference voltage.	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
			$2.4~\textrm{V} \leq \textrm{VDD} \leq 5.5~\textrm{V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\textrm{V} \leq \textrm{Vdd} \leq 5.5~\textrm{V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\textrm{V} \leq \textrm{Vdd} \leq 5.5~\textrm{V}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI7		0		AVREFP	V
		Internal reference volt $(2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V},\\ \text{mode})$	tage HS (high-speed main)		V _{BGR} Note 4		V
		Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4			V

(Notes are listed on the next page.)

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.

 Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

 Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

 Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16, ANI17, ANI19

(TA = -40 to +85°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		ANI16. ANI17. ANI19	$2.7~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$	3.1875		39	μs
			$2.4~\textrm{V} \leq \textrm{Vdd} \leq 5.5~\textrm{V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\textrm{V} \leq \textrm{Vdd} \leq 5.5~\textrm{V}$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.00	LSB
Analog input voltage	Vain	ANI16, ANI17, ANI19		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) Reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), Reference voltage (-) = V_{SS} (ADREFM = 0), target ANI pin : ANI0 to ANI7, ANI16, ANI17, ANI19, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin :	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
	AN	ANI0 to ANI7, ANI16, ANI17, ANI19	$2.4~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$	17		39	μS
		10-bit resolution Target ANI pin : Internal	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI7, ANI16, ANI	17, ANI19	0		V_{DD}	V
	Internal reference voltage $(2.4~\text{V} \leq \text{VDD} \leq 5.5~\text{V},~\text{HS (high-special mode)}$		nigh-speed main)		V _{BGR} Note 3		
·		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (I mode)	· ·	V _{TMPS25} Note 3			V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0 to ANI7, ANI16, ANI17, ANI19

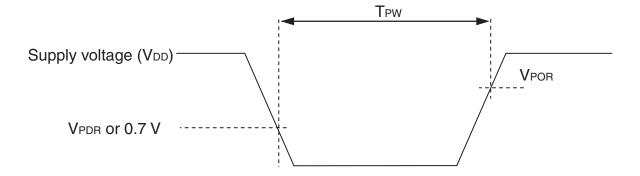
(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR} Note 3, Reference voltage (-) = AV_{REFM} Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res				8		Bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to $+85^{\circ}$ C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR} . This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (fmain) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +85°C, $V_{PDR} \le V_{DD} \le 5.5 \text{ V}$, V_{SS} = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		V _{LVD1}	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	٧
		V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
			Power supply fall time	3.00	3.06	3.12	V
		V _{LVD3}	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	٧
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	٧
		V _{LVD7}	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
Minimum pulse width		tLW		300			μS
Detection d	elay time	t LD				300	μS

LVD Detection Voltage of Interrupt & Reset Mode

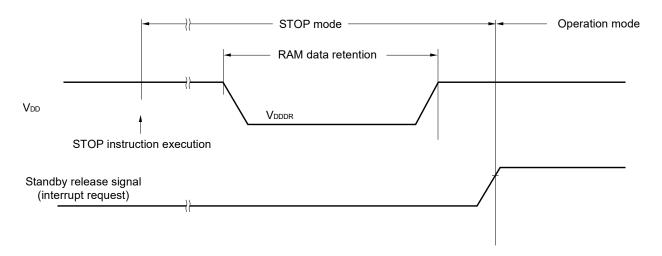
(Ta = -40 to +85°C, $V_{PDR} \le V_{DD} \le 5.5 \text{ V}$, V_{SS} = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit	
Interrupt and reset	V _{LVDC0}	VPOC	C2, VPOC1, VPOC0 =	0, 1, 0, falling reset voltage	2.40	2.45	2.50	V	
mode	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	٧	
				Falling interrupt voltage	2.50	2.55	2.60	٧	
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V	
VLVDC3			Falling interrupt voltage	2.60	2.65	2.70	>		
	V _{LVDC3}			Rising release reset voltage	3.68	3.75	3.82	٧	
				Falling interrupt voltage	3.60	3.67	3.74	٧	
	V _{LVDD0}	V _{LVDD0}	VPOC	C2, VPOC1, VPOC0 =	0, 1, 1, falling reset voltage	2.70	2.75	2.81	٧
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	٧	
				Falling interrupt voltage	2.80	2.86	2.91	V	
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	٧	
	VLVDD3			Falling interrupt voltage	2.90	2.96	3.02	V	
			LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V	
				Falling interrupt voltage	3.90	3.98	4.06	V	

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	Svdd				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

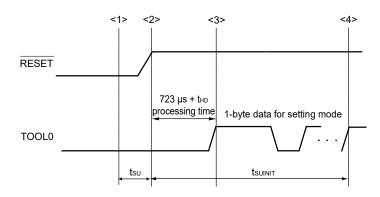
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4~V \leq V_{DD} \leq 5.5~V$	1		24	MHz
Number of code flash rewrites	Cerwr	Retaining years: 20 years T _A = +85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retaining years: 1 year T _A = +25°C		1,000,000		
		Retaining years: 5 years T _A = +85°C	100,000			
		Retaining years: 20 years T _A = +85°C	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library.
 - **3.** These specifications show the characteristics of the flash memory and the results obtained from Renesas Electronics reliability testing.

2.9 Dedicated Flash Memory Programmer Communication (UART)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing Specs for Switching Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuіліт	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

 t_{SU} : How long from when the TOOL0 pin is placed at the low level until an external reset ends

thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)".

The target products

G: Industrial applications ; T_A = -40 to +105°C

R5F10JBCGNA, R5F10JBCGFP, R5F10JGCGNA, R5F10JGCGFB, R5F10KBCGNA, R5F10KBCGFP, R5F10KGCGNA, R5F10KGCGFB

- Cautions 1. The RL78 microcontrollers has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product.
 - 3. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

There are following differences between the products "G: Industrial applications ($T_A = -40 \text{ to } +105^{\circ}\text{C}$)" and the products "A: Consumer applications".

Parameter	Appli	cation
	A: Consumer applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
High-speed on-chip oscillator clock accuracy	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $\pm 1.0\%$ @ T _A = -20 to +85°C $\pm 1.5\%$ @ T _A = -40 to -20°C	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ $\pm 2.0\%$ T _A = +85 to +105°C $\pm 1.0\%$ T _A = -20 to +85°C $\pm 1.5\%$ T _A = -40 to -20°C
Serial array unit	UART Simplified SPI (CSI): fclk/2 (supporting 16 Mbps), fclk/4 Simplified I ² C communication	UART Simplified SPI (CSI): fclk/4 Simplified I ² C communication
IICA	Normal mode Fast mode Fast mode plus	Normal mode Fast mode

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications". For details, refer to **3.1** to **3.10**.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25^{\circ}C$) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.5	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	٧
UV _{DD} pin input voltage	VIUVDD	UV _{DD}	−0.3 to V _{DD} +0.3	V
Input voltage	VII	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P70 to P75, P120 to P124, P137, P140, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	٧
	V _{I2}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vıз	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
	V _{I4}	UV _{BUS}	-0.3 to +6.5	V
Output voltage	V ₀₁	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P130, P140	-0.3 to V _{DD} +0.3 ^{Note 2}	V
	V _{O2}	UDP0, UDM0, UDP1, UDM1	-0.3 to +6.5	V
Analog input voltage	V _{Al1}	ANI16, ANI17, ANI19	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	٧
	V _{Al2}	ANI0 to ANI7	-0.3 to V _{DD} +0.3 and -0.3 to AV _{REF} (+) +0.3 Notes 2, 3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF (+): The + side reference voltage of the A/D converter. This can be selected from AVREFP, the internal reference voltage (1.45 V), and VDD.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P14 to P17, P30, P31,	-40	mA
			P40, P41, P50, P51, P70 to P75,		
			P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	-70	mA
		–170 mA	P130, P140		
			P14 to P17, P30, P31,	-100	mA
			P50, P51, P70 to P75		
	I _{OH2}	Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	P00, P01, P14 to P17, P30, P31,	40	mA
			P40, P41, P50, P51, P60 to P63,		
			P70 to P75, P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	70	mA
		170 mA	P130, P140		
			P14 to P17, P30, P31,	100	mA
			P50, P51, P60 to P63, P70 to P75		
	lol2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +105	°C
temperature		In flash memory	In flash memory programming mode		
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
	Ceramic resonator/	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator clock frequency accuracy		−20 to +85 °C	-1.0		+1.0	%
		–40 to −20 °C	-1.5		+1.5	%
		+85 to +105 °C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

3.2.3 PLL oscillator characteristics

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fellin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	f _{PLL}			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μs
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μs

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			–3.0 ^{Note} 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{DD} \leq 5.5~V$			-30.0	mA
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-10.0	mA
		(When duty ≤ 70% Note 3)	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			-5.0	mA
		P50, P51, P70 to P75	$4.0~V \leq V_{DD} \leq 5.5~V$			-30.0	mA
			$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			-19.0	mA
		(When duty ≤ 70% Note 3)	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-60.0	mA
	Іон2	Per pin for P20 to P27	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$			-0.1 ^{Note}	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{DD} \leq 5.5~V$	_		-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = (IoH × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			8.5 Note 2	mA
		Per pin for P60 to P63	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			15.0 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{DD} \leq 5.5~V$			40.0	mA
		P130, P140	$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$			15.0	mA
		(When duty ≤ 70% Note 3)	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			9.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P60 to P63, P70 to P75	$4.0~V \leq V_{DD} \leq 5.5~V$			40.0	mA
			2.7 V ≤ V _{DD} < 4.0 V			35.0	mA
		(When duty ≤ 70% Note 3)	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)	$2.4V \le V_{DD} \le 5.5 V$			80.0	mA
	lo _{L2}	Per pin for P20 to P27	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			5.0	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	V _{IH1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00, P01, P30, P50	TTL input buffer $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	2.2		V _{DD}	V
			TTL input buffer $3.3 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	2.0		V _{DD}	V
			TTL input buffer $2.4~V \leq V_{DD} < 3.3~V$	1.5		V _{DD}	V
	V _{IH3}	P20 to P27		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60 to P63		0.7V _{DD}		6.0	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0.8V _{DD}		V _{DD}	V
Input voltage, low	V _{IL1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P00, P01, P30, P50	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4~V \leq V_{DD} < 3.3~V$	0		0.32	V
	V _{IL3} P20 to P27 V _{IL4} P60 to P63			0		0.3V _{DD}	V
				0		0.3V _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2V _{DD}	V

Caution The maximum value of V_{IH} of pins P00, P01, P30, and P74 is V_{DD}, even in the N-ch open-drain mode.

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OH1}} = -3.0 \text{ mA}$	V _{DD} - 0.7			٧
		P120, P130, P140	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} - 0.6			V
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} - 0.5			٧
	V он2	P20 to P27	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OH2}} = -100 \ \mu \text{ A}$	V _{DD} - 0.5			>
Output voltage, low	V _{OL1}	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$4.0~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V},$ $I_\textrm{OL1} = 8.5~\textrm{mA}$			0.7	V
		P120, P130, P140	$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	٧
			$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
			$2.4~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	>
	V _{OL2}	P20 to P27	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{I}_{\text{OL2}} = 400 \ \mu \text{ A}$			0.4	٧
	Vоьз	P60 to P63	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $I_{\text{OL1}} = 15.0 \text{ mA}$			2.0	V
			$4.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 5.0~mA$			0.4	٧
			$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.4	٧
			$2.4~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 2.0~mA$			0.4	V

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	$V_I = V_{DD}$				1	μΑ
	ILIH2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	V _I = V _{DD}	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	Iul1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	V _I = V _{SS}				-1	μΑ
	ILIL2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up resistance	R∪	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Vı = Vss, Iı	n input port	10	20	100	kΩ

3.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	I _{DD1}	Operating	HS	fносо = 48 MHz	Basic	V _{DD} = 5.0 V		1.7		mA		
current Note 1		mode	(High-speed	f _{IH} = 24 MHz Note 3	operation	V _{DD} = 3.0 V		1.7		mA		
			main) modffe ^{Note 6}		Normal	V _{DD} = 5.0 V		3.7	5.8	mA		
					operation	V _{DD} = 3.0 V		3.7	5.8	mA		
				fHOCO = 24 MHz Note 5	Normal	V _{DD} = 5.0 V		2.3	3.4	mA		
				f _{IH} = 12 MHz Note 3	operation	V _{DD} = 3.0 V		2.3	3.4	mA		
				fHOCO = 12 MHz Note 5	Normal	V _{DD} = 5.0 V		1.6	2.2	mA		
				fih = 6 MHz Note 3	operation	V _{DD} = 3.0 V		1.6	2.2	mA		
				fHOCO = 6 MHz Note	Normal	V _{DD} = 5.0 V		1.2	1.6	mA		
				f _{IH} = 3 MHz Note 3	operation	V _{DD} = 3.0 V		1.2	1.6	mA		
			HS	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA		
			(High-speed main) mode	$V_{DD} = 5.0 V$	operation	Resonator connection		3.2	5.0	mA		
			Note 6	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		3.0	4.9	mA		
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.0	mA		
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		1.9	2.9	mA		
				$V_{DD} = 5.0 V$	operation	Resonator connection		1.9	2.9	mA		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.9	mA		
				$V_{DD} = 3.0 V$	operation	Resonator connection		1.9	2.9	mA		
		HS (High-speed main) mode	fpll = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	6.3	mA			
				fclk = 24 MHz Note 2	operation	V _{DD} = 3.0 V		4.0	6.3	mA		
			(PLL operation)	f _{PLL} = 48 MHz,	Nomal	V _{DD} = 5.0 V		2.6	3.9	mA		
		Note 6		f _{PLL} = 48 MHz,	operation)	fclk = 12 MHz Note 2	operation	V _{DD} = 3.0 V		2.6	3.9	mA
					_ ·	Normal	V _{DD} = 5.0 V		1.9	2.7	mA	
				fclk = 6 MHz Note 2	operation	V _{DD} = 3.0 V		1.9	2.7	mA		
			Subsystem	fsuB = 32.768 kHz	Normal	Resonator connection		4.1	4.9	μA		
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Square wave input		4.2	5.0	μA		
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.1	4.9	μА		
				T _A = +25°C	operation	Resonator connection		4.2	5.0	μА		
				fsub = 32.768 kHz	Nomal	Square wave input		4.2	5.5	μΑ		
				Note 4 T _A = +50°C	operation	Resonator connection		4.3	5.6	μА		
				fsuB = 32.768 kHz	Normal	Square wave input		4.2	6.3	μА		
				Note 4	operation	Resonator connection		4.3	6.4	μA		
				T _A = +70°C		- :			_	,		
				fsub = 32.768 kHz Note 4	Normal operation	Square wave input		4.8	7.7	μA		
			No		No	T _A = +85°C	oporation	Resonator connection		4.9	7.8	μA
				fsuB = 32.768 kHz	Nomal	Square wave input		6.9	19.7	μА		
				Note 4 T _A = +105°C	operation	Resonator connection		7.0	19.8	μА		
		1	<u> </u>	1A - +105°C								

(Notes and Remarks are listed on the next page.)

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, or Vss. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, USB 2.0 host/function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **5.** When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
- **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 24 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

- Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - 2. fil: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fpll: PLL oscillation frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

•		•		, ,					`
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS	f _{HOCO} = 48 MHz	V _{DD} = 5.0 V		0.67	2.25	mA
current Note 1	Note 2	mode		f _{IH} = 24 MHz Note 4	V _{DD} = 3.0 V		0.67	2.25	mA
Note 1			main) mode	fHOCO = 24 MHz Note 6	V _{DD} = 5.0 V		0.50	1.55	mA
				f _{IH} = 12 MHz Note 4	V _{DD} = 3.0 V		0.50	1.55	mA
				fHOCO = 12 MHz Note 6	V _{DD} = 5.0 V		0.41	1.21	mA
				f _{IH} = 6 MHz Note 4	V _{DD} = 3.0 V		0.41	1.21	mA
				fHOCO = 6 MHz Note 6	V _{DD} = 5.0 V		0.37	1.05	mA
				f _{IH} = 3 MHz Note 4	V _{DD} = 3.0 V		0.37	1.05	mA
			HS	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.90	mA
			(High-speed	$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.45	2.00	mA
			main) mode	f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.90	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.00	mA
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	1.02	mA
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	1.10	mA
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
			HS	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.91	2.74	mA
			fclk = 24 MHz Note 3	V _{DD} = 3.0 V		0.91	2.74	mA	
			main) mode (PLL	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.85	2.31	mA
			operation)	fclk = 12 MHz Note 3	V _{DD} = 3.0 V		0.85	2.31	mA
			Note 8	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.82	2.07	mA
				fclk = 6 MHz Note 3	V _{DD} = 3.0 V		0.82	2.07	mA
			Subsystem	fsuB = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μА
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μA
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μА
				fsuB = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μA
				T _A = +50°C	Resonator connection		0.63	1.36	μА
				fsuB = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μА
				T _A = +70°C	Resonator connection		0.76	2.16	μА
				fsuB = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μА
				T _A = +85°C	Resonator connection		1.16	3.56	μA
				fsuB = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				T _A = +105°C	Resonator connection		3.20	15.56	μА
	I _{DD3}	STOP	T _A = -40°C		•		0.18	0.50	μА
		mode Note 7	T _A = +25°C				0.23	0.50	μА
			T _A = +50°C				0.26	1.10	μА
			T _A = +70°C				0.29	1.90	μΑ
			T _A = +85°C				0.90	3.30	μΑ
			T _A = +105°C				2.94	15.30	μA

(Notes and Remarks are listed on the next page.)

<R>

<R>

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, USB 2.0 host/function module, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.
- **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- **6.** When Operating frequency setting of option byte = 48 MHz. When fHoco is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
- **7.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **8.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 24 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{0}1 \text{ MHz to } 16 \text{ MHz}$

- Remarks 1. fhoco: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - 2. f_{IH}: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fpll: PLL oscillation frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C.

(Ta = -40 to $+105^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V) (1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1				0.20		μА
RTC operating current	IRTC Notes 1, 2, 3				0.02		μА
12-bit interval timer operating current	Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 5	f∟ = 15 kHz			0.22		μА
A/D converter	I _{ADC} Notes 1,	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.8	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	8.0	mA
A/D converter reference voltage current	I _{ADREF} Note				75.0		μА
Temperature sensor operating current	_{TMPS} Note 1				75.0		μА
LVD operating current	_{LVD} Notes 1,				0.08		μА
Self-programming operating current	_{FSP} Notes 1,				2.00	12.30	mA
BGO operating current	I _{BGO} Notes 1, 8				2.00	12.30	mA
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.80	1.97	mA
current			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	3.00	mA
		Simplified SPI (CSI)	operation		0.70	1.56	mA

(Notes and Remarks are listed on the next page.)

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB operating current	luseh Note 11	 During USB communication operation under the following settings and conditions (VDD = 5.0 V, TA = +25°C): The internal power supply for the USB is used. X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (fPLL) = 48 MHz The host controller (via two ports) is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). The USB ports (two ports) are individually connected to a peripheral function via a 0.5 m USB cable. 		9.0		mA
	IUSBF Note 11	During USB communication operation under the following settings and conditions (V _{DD} = 5.0 V, T _A = +25°C): • The internal power supply for the USB is used. • X1 oscillation frequency (f _X) = 12 MHz, PLL oscillation frequency (f _{PLL}) = 48 MHz • The function controller is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). • The USB port (one port) is connected to the host device via a 0.5 m USB cable.		2.5		mA
	Isusp Note 12	 During suspended state under the following settings and conditions (VDD = 5.0 V, TA = +25°C): The function controller is set to full-speed mode (the UDP0 pin is pulled up). The internal power supply for the USB is used. The system is set to STOP mode (When the high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When the watchdog timer is stopped.). The USB port (one port) is connected to the host device via a 0.5 m USB cable. 		240		μΑ

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to VDD.

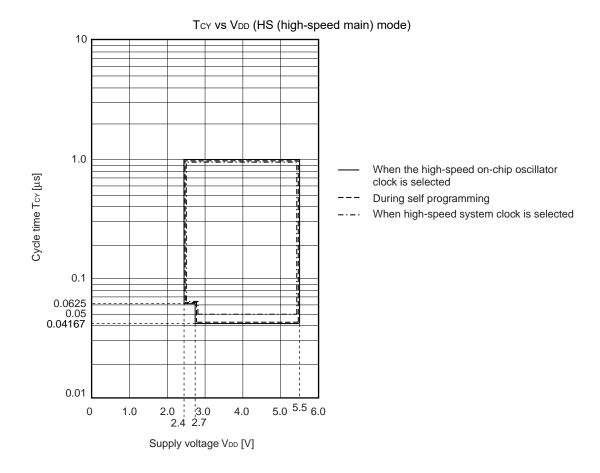
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of lob1, lob2 or lob3 and lwbT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of the RL78/G1C is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode.
- 11. Current consumed only by the USB module and the internal power supply for the USB.
- **12.** Includes the current supplied from the pull-up resistor of the UDP0 pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

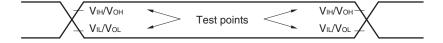
- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- **4.** Temperature condition of the TYP. value is T_A = 25°C

3.4 AC Characteristics

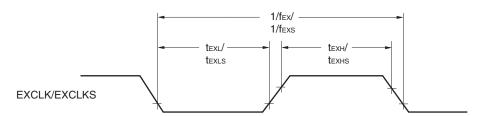
3.4.1 Basic operation

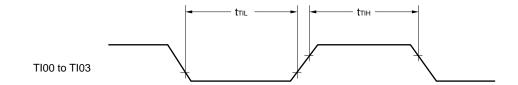

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

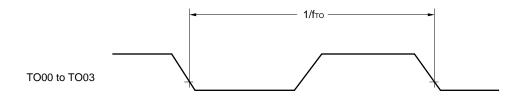
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system	HS (High-speed	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$ 5.5 V	0.04167		1	μs
		clock (f _{MAIN}) operation	main) mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem cooperation	lock (fsuв)	$2.4~V \le V_{DD} \le \\5.5~V$	28.5	30.5	31.3	μs
		In the self programmin	HS (High-speed	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$ 5.5 V	0.04167		1	μs
		g mode	main) mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
External system clock frequency	fex	2.7 V ≤ V _{DD} ≤	5.5 V		1.0		20.0	MHz
		2.4 V ≤ V _{DD} <	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	2.7 V ≤ V _{DD} ≤	5.5 V		24			ns
high-level width, low-level width		2.4 V ≤ V _{DD} <	2.7 V		30			ns
	texhs, texhs				13.7			μS
TI00 to TI03 input high-level width, low-level width	tтін, tті∟				1/fмск+10			ns
TO00 to TO03 output frequency	f то	High-speed n	nain 4.0 V	$\leq V_{DD} \leq 5.5 \text{ V}$			12	MHz
		mode	2.7 V	≤ V _{DD} < 4.0 V			8	MHz
			2.4 V	≤ V _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	High-speed n	nain 4.0 V	$\leq V_{DD} \leq 5.5 \text{ V}$			16	MHz
frequency		mode	2.7 V	≤ V _{DD} < 4.0 V			8	MHz
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$				4	MHz	
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INT		≤ V _{DD} ≤ 5.5 V	1			μs
Key interrupt input low-level width	tkr	KR0 to KR5	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl		•		10			μS


Remark fmck: Timer array unit operation clock frequency

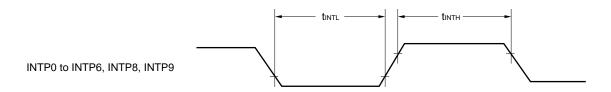
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 3))


Minimum Instruction Execution Time during Main System Clock Operation

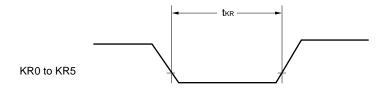

AC Timing Test Points

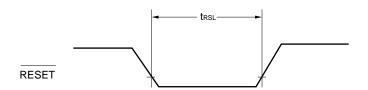


External System Clock Timing



TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing

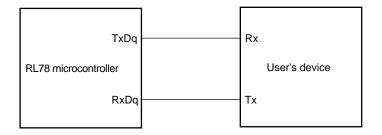
RESET Input Timing

3.5 Peripheral Functions Characteristics

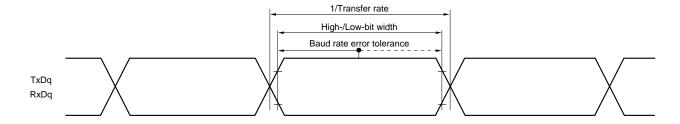
3.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/12	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note			2.0	Mbps


Note The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00))

(2) During communication at same potential (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	C	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	250			ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	500			ns
SCKp high-/low-level width	t _{KH1} ,	$4.0~V \leq V_{DD} \leq$	5.5 V	tkcy1/2 - 24			ns
	t _{KL1}	$2.7~V \leq V_{DD} \leq$	5.5 V	tkcy1/2 - 36			ns
		$2.4~V \leq V_{DD} \leq$	5.5 V	tkcy1/2 - 76			ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	$4.0~V \leq V_{DD} \leq$	5.5 V	66			ns
		$2.7~V \leq V_{DD} \leq$	5.5 V	66			ns
		$2.4~V \leq V_{DD} \leq$	$2.4~V \leq V_{DD} \leq 5.5~V$				ns
SIp hold time (from SCKp↑) Note 2	t _{KSI1}			38			ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF ^{Note 4}	1			50	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 3, 5, 7)

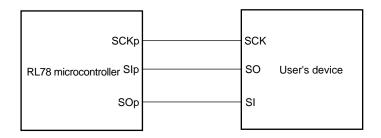
2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

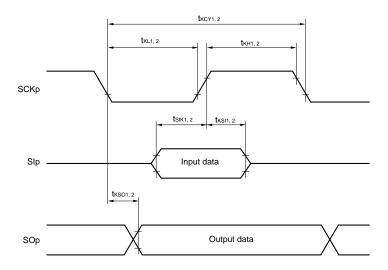
n: Channel number (mn = 00, 01))

(3) During communication at same potential (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

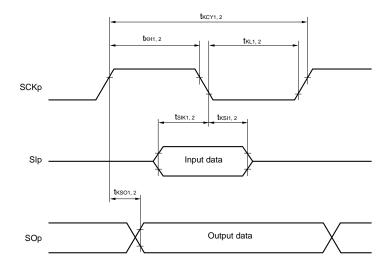
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 5	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < f _{MCK}	16/fмск			ns
			fмcк ≤ 20 MHz	12/fмск			ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	16/fмск			ns
			fмcк ≤ 16 MHz	12/fмск			ns
		$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		12/fмск and 1000			ns
SCKp high-/low-level width	tkH2,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 – 14			ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		tксү2/2 – 16			ns
		$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 5.5~\textrm{V}$		tксү2/2 – 36			ns
Slp setup time	tsik2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск+40			ns
(to SCKp↑) Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск+60			ns
SIp hold time	tksı2	2.7 V ≤ V _{DD} ≤ 5.5 V		1/fмск+62			ns
(from SCKp↑) Note 2	SCKp↑) Note 2		$2.4~V \leq V_{DD} \leq 5.5~V$				ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 5.5~V$			2/fмск+66	ns
SOp output Note 3			$2.4~V \leq V_{DD} \leq 5.5~V$			2/fмск+113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 0, 3, 5, 7)
 - fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00, 01))


Simplified SPI (CSI) mode connection diagram (during communication at same potential)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

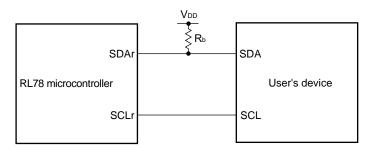
Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01)

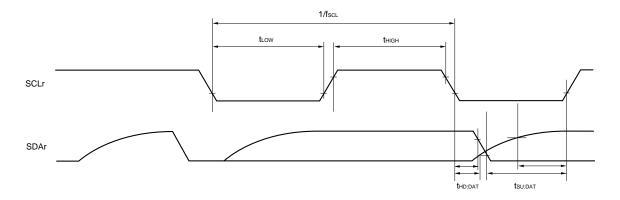
2. m: Unit number, n: Channel number (mn = 00, 01)

(4) During communication at same potential (simplified I^2C mode) $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V},$		400 Note 1	kHz
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$		100 Note 1	kHz
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "L"	tLow	$2.7~V \leq V_{DD} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Hold time when SCLr = "H"	t HIGH	$2.7~V \leq V_{DD} \leq 5.5~V,$	1200		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	4600		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{DD} \leq 5.5~V,$	1/f _{MCK} + 220		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	Note 2		
		$2.4~V \leq V_{DD} \leq 5.5~V,$	1/fмск + 580		ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	Note 2		
Data hold time (transmission)	thd:dat	$2.7~V \leq V_{DD} \leq 5.5~V,$	0	770	ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.4~V \leq V_{DD} \leq 5.5~V,$	0	1420	ns
		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$			


Notes 1. The value must also be equal to or less than fmck/4.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Caution and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** $R_b[\Omega]$:Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance
 - 2. r: IIC number (r = 00, 01), g: PIM number (g = 5), h: POM number (h = 3, 5)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number
 (m = 0), n: Channel number (n = 0, 1), mn = 00, 01)

(5) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Condition	ons	MIN.	TYP.	MAX.	Unit
Transfer rate		reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$				fMCK/12 Note 1	bps
				Theoretical value of the maximum transfer rate fclk = 24 MHz, fmck = fclk Note 2			2.0	Mbps
			$2.7 \text{ V} \le V_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$				fmck/12 Note 1	bps
			2.5 7 2 75 2 2.7 7	Theoretical value of the maximum transfer rate fclk = 24 MHz, fMCK = fclk Note 2			2.0	Mbps
			2.4 V \leq V _{DD} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V				fmck/12 Note 1	bps
				Theoretical value of the maximum transfer rate fclk = 24 MHz, fMCK = fclk Note 2			2.0	Mbps

Notes 1. Use it with VDD≥Vb.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V) 16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected

Remarks 1. V_b[V]: Communication line voltage

- **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
- 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00)

(5) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$4.0~V \leq V_{DD} \leq 5.5~V,$				Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate			2.6 Note 2	Mbps
				$C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$				
			$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V},$				Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate			1.2 Note 4	Mbps
				$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$				
			$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$				Notes	bps
			$1.6~V \leq V_b \leq 2.0~V$				5, 6	
				Theoretical value of the maximum transfer rate			0.43 Note 7	Mbps
				$C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$				

Notes 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \end{aligned} \text{ [bps]}$$

$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- 3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

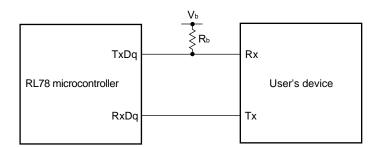
$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.0}{V_b})\} \times 3} \text{ [bps]}$$

$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{In} \\ \text{Baud rate error (theoretical value)} = \frac{(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

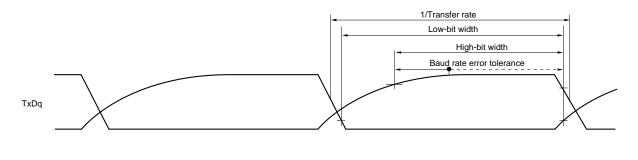
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $V_{DD} \ge V_b$.

Notes 6. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


$$\label{eq:maximum transfer rate} \begin{split} & \frac{1}{\{-C_b \times R_b \times ln\ (1-\frac{1.5}{V_b})\} \times 3} \end{split} \text{ [bps]}$$

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{1.5}{V_b})}\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $R_b[\Omega]$:Communication line (TxDq) pull-up resistance, $C_b[F]$: Communication line (TxDq) load capacitance, $V_b[V]$: Communication line voltage
 - **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
 - fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

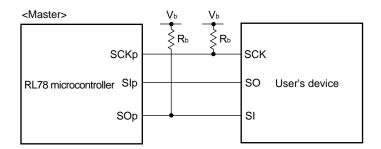
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	600			ns
			$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V},$ $C_{b} = 30 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	1000			ns
			$2.4 \ V \leq V_{DD} < 3.3 \ V,$ $2.4 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	2300			ns
SCKp high-level width	tкн1	$\begin{aligned} &4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 1.4 \text{ k}\Omega \\ &2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$		tксү1/2 – 150			ns
				tксү1/2 – 340			ns
		$2.4 \text{ V} \leq \text{V}_{DD} \leq C_b = 30 \text{ pF}, \text{ I}$	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $\text{R}_b = 5.5 \text{ k}\Omega$	tксу1/2 — 916			ns
SCKp low-level width	t _{KL1}	4.0 V \leq V _{DD} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, C _b = 30 pF, R _b = 1.4 k Ω		tkcy1/2 - 24			ns
		$2.7 \text{ V} \le \text{V}_{DD} \le C_b = 30 \text{ pF}, \text{ I}$	$<$ 4.0 V, 2.3 V \le V _b \le 2.7 V, $<$ R _b = 2.7 kΩ	tkcy1/2 - 36			ns
		$2.4 \text{ V} \leq \text{V}_{DD} \leq C_b = 30 \text{ pF}, \text{ I}$	$< 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$ $R_b = 5.5 \text{ k}Ω$	tксу1/2 — 100			ns

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified SPI (CSI) mode) (master mode, SCKp... internal clock output) (2/2)

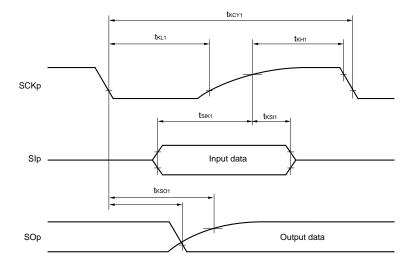
(TA = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SIp setup time (to SCKp↑) Note 1	tsıĸ1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	162			ns
		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	354			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 \text{ V} \le V_{DD} \le 3.3 \text{ V}, \ 1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note 3}},$	958			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	t _{KSI1}	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	38			ns
(from SCKp↑) Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \le V_{DD} \le 3.3~V,~1.6~V \le V_b \le 2.0~V^{\text{Note 3}},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↓ to	tkso1	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$			200	ns
SOp output Note 1		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$			390	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$			966	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp setup time	tsıĸ1	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	88			ns
(to SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V},$	88			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$	220			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
SIp hold time	t _{KSI1}	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	38			ns
(from SCKp↓) Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$	38			ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				
Delay time from SCKp↑ to	tkso1	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$			50	ns
SOp output Note 2		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$				
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, \ 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$			50	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4~V \leq V_{DD} \leq 3.3~V,~1.6~V \leq V_b \leq 2.0~V^{\text{Note 3}},$			50	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$				

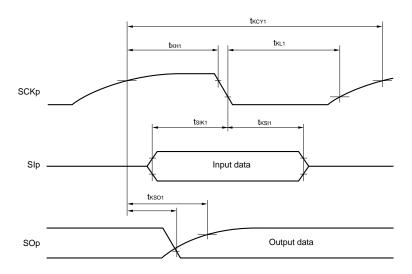
(Notes, Cautions and Remarks are listed on the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3 Use it with $V_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


Simplified SPI (CSI) mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.


Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential)

(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential)

(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

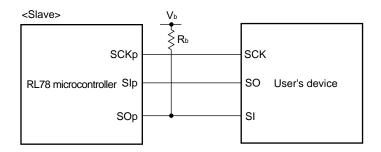
- **Remarks 1.** p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - **2.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

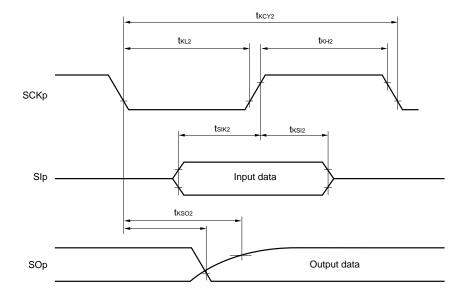
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	С	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	24/fмск			ns
		$2.7 \ V \leq V_b \leq 4.0 \ V$	8 MHz < fмcк ≤ 20 MHz	20/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	16/ f мск			ns
			fмcк ≤ 4 MHz	12/ f мск			ns
		$2.7 \text{ V} \le V_{DD} \le 4.0 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	32/fмск			ns
		$2.3 \ V \leq V_b \leq 2.7 \ V$	16 MHz < f _{MCK} ≤ 20 MHz	28/fмск			ns
			8 MHz < f _{MCK} ≤ 16 MHz	24/fмск			ns
			4 MHz < f _{MCK} ≤8 MHz	16/ f мск			ns
			fмcк ≤ 4 MHz	12/ f мск			ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V},$	20 MHz < f _{MCK} ≤ 24 MHz	72/f мск			ns
		$1.6~V \leq V_b \leq 2.0~V^{\text{Note}}$	16 MHz < f _{MCK} ≤ 20 MHz	64/ f мск			ns
		2	8 MHz < f _{MCK} ≤ 16 MHz	52/f мск			ns
			4 MHz < f _{MCK} ≤8 MHz	32/fмск			ns
			fмcк ≤ 4 MHz	20/fмск			ns
SCKp high-/low-level width	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.5~V$	$V_{b} \leq V_{b} \leq 4.0 \text{ V}$	tkcy2/2 - 24			ns
		2.7 V ≤ V _{DD} < 4.0 V	$V_{1}, 2.3 \text{ V} \leq V_{b} \leq 2.7 \text{ V}$	tkcy2/2 - 36			ns
		$2.4~\text{V} \leq \text{V}_{\text{DD}} < 3.3~\text{V},~1.6~\text{V} \leq \text{V}_{\text{b}} \leq 2.0~\text{V}^{\text{Note 2}}$		tkcy2/2 - 100			ns
SIp setup time (to SCKp↑) Note 3	tsik2	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	$^{\prime}$, 2.7 V \leq V _b \leq 4.0 V	1/f _{MCK} + 40			ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}$	$V_{1}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$	1/f _{MCK} + 40			ns
		2.4 V ≤ V _{DD} < 3.3 V	$^{\prime}$, 1.6 V \leq V _b \leq 2.0 V Note 2	1/f _{MCK} + 60			ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fmck + 62			ns
Delay time from SCKp↓ to	tkso2	$4.0 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$	$'$, 2.7 V \leq V _b \leq 4.0 V,			2/fмск +	ns
SOp output Note 5		C _b = 30 pF, R _b = 1.	4 kΩ			240	
		$2.7 \text{ V} \le \text{V}_{DD} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$				2/fмск +	ns
		C _b = 30 pF, R _b = 2.	$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			428	
		2.4 V ≤ V _{DD} < 3.3 V	$V_{\rm h} = 1.6 \text{ V} \le V_{\rm b} \le 2.0 \text{ V}^{\text{Note 2}},$			2/fмск +	ns
		C _b = 30 pF, R _b = 5.	5 kΩ			1146	

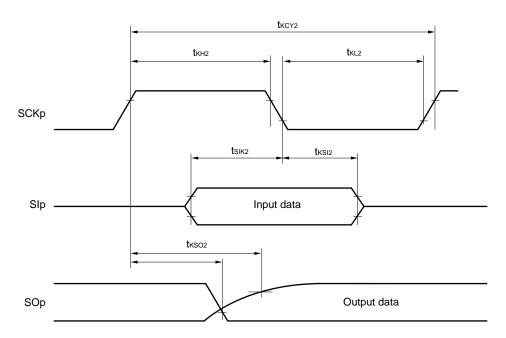
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- 2. Use it with $V_{DD} \ge V_b$.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remarks are listed on the next page.)


Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)

2. CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

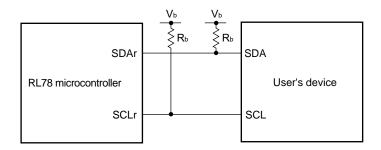
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$\begin{aligned} 4.0 & \ V \le V_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 50 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$		400 Note 1	kHz
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_b < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		400 Note 1	kHz
		$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $		100 Note 1	kHz
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_b < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		100 Note 1	kHz
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1200		ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_b < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns
		$\begin{aligned} 4.0 & \ V \le V_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned}$	4600		ns
		$\begin{split} 2.7 & \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{b} < 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, \text{ R}_{b} = 2.7 \text{ k}\Omega \end{split}$	4600		ns
		$\begin{split} 2.4 \ V &\leq V_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	4650		ns
Hold time when SCLr = "H"	tнісн	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned}$	620		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b < 2.7 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	500		ns
		$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, $ $ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $	2700		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} < 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	2400		ns
		$ 2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}^{\text{Note 2}}, \\ C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega $	1830		ns

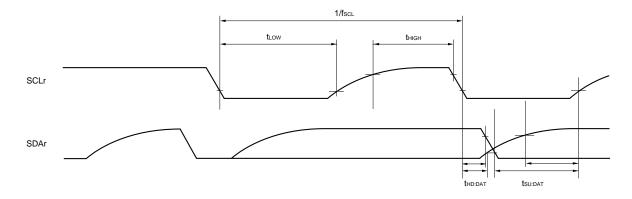
(Notes, Caution and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 & \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/f _{MCK} + 340 Note 3		ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$	1/f _{MCK} + 340 ^{Note 3}		ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	1/f _{MCK} + 760 Note 3		ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$	1/f _{MCK} + 760 Note 3		ns
		$ \begin{aligned} 2.4 \; & \text{V} \leq \text{V}_{\text{DD}} < 3.3 \; \text{V}, \\ 1.6 \; & \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \; \text{V}^{\text{Notes 2}}, \\ C_{\text{b}} = 100 \; \text{pF}, \; & \text{R}_{\text{b}} = 5.5 \; \text{k}\Omega \end{aligned} $	1/f _{MCK} + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} & = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	0	770	ns
		$ \begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 50 \ pF, \ R_{b} = 2.7 \ k \Omega \end{aligned} $	0	770	ns
		$ \begin{aligned} &4.0 \; V \leq V_{DD} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	0	1420	ns
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} < 2.7 \ V, \\ C_{b} &= 100 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$	0	1420	ns
		$ \begin{aligned} &2.4 \; \text{V} \leq \text{V}_{\text{DD}} < 3.3 \; \text{V}, \\ &1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \; \text{V}^{\text{Note 2}}, \\ &C_{\text{b}} = 100 \; \text{pF}, \; R_{\text{b}} = 5.5 \; \text{k}\Omega \end{aligned} $	0	1215	ns


Notes 1. The value must also be equal to or less than fmck/4.

- 2. Use it with $V_{DD} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

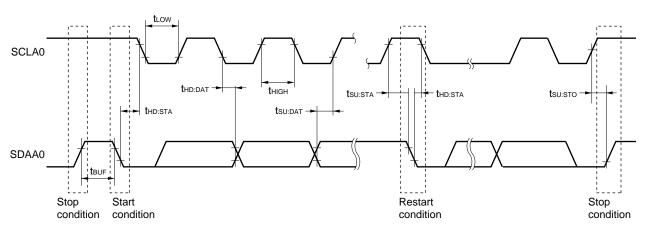
Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. $R_b[\Omega]$:Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage
 - 2. r: IIC number (r = 00), g: PIM, POM number (g = 0, 3, 5, 7)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 00)

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (hi	HS (high-speed main) Mode		Mode	Unit
			Standard Mode		Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLκ ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fcLk ≥ 1 MHz	0	100	ı	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:STA		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS


- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

IICA serial transfer timing

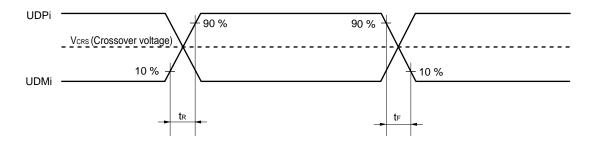
3.5.3 USB

(1) Electrical specifications

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UV _{DD}	UV _{DD} input voltage characteristic	UV _{DD}	V_{DD} = 3.0 to 5.5 V, PXXCON = 1, VDDUSEB = 0 (UV _{DD} \leq V _{DD})	3.0	3.3	3.6	V
	UV _{DD} output voltage characteristic	UV _{DD}	V _{DD} = 4.0 to 5.5 V, PXXCON = VDDUSEB = 1	3.0	3.3	3.6	V
UV _{BUS}	UV _{BUS} input voltage characteristic	UV _{BUS}	Function	4.35 (4.02 ^{Note})	5.00	5.25	V
			Host	4.75	5.00	5.25	V

Note Value of instantaneous voltage


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	Input volt	tage	VIH		2.0			V
pins input characteristic			VIL				0.8	V
(FS/LS receiver)	Difference sensitivity		V _{DI}	UDP voltage	0.2			V
	Difference common mode range		Vсм		0.8		2.5	V
UDPi/UDMi	Output vo	oltage	Vон	Ioн = -200 μA	2.8		3.6	V
pins output characteristic			Vol	IoL = 2.4 mA	0		0.3	V
(FS driver)	Transi-ti	Rising	trR	Rising: From 10% to 90 % of	4		20	ns
,	on time	Falling	tff	amplitude, Falling: From 90% to 10 % of	4		20	ns
	Matching (TFR/TFF)		VFRFM	amplitude, CL = 50 pF	90		111.1	%
	Crossover voltage		VFCRS]	1.3		2.0	V
	Output Impedance		ZDRV	UV _{DD} voltage = 3.3 V, Pin voltage = 1.65 V	28		44	Ω
pins output characteristic	Output vo	oltage	Vон		2.8		3.6	V
			Vol		0		0.3	V
	Transi-ti on time	Rising	tlr	Rising: From 10% to 90 % of	75		300	ns
		Falling	tlf	amplitude, Falling: From 90% to 10 % of	75		300	ns
	Matching (TFR/TFF) Note		VLTFM	amplitude, CL = 200 to 600 pF	80		125	%
	Crossover voltage		VLCRS	When the host controller function is selected: The UDMi pin (i = 0, 1) is pulled up via 1.5 k Ω . When the function controller function is selected: The UDP0 and UDM0 pins are individually pulled down via 15 k Ω	1.3		2.0	V
UDPi/UDMi	Pull-dow	n resistor	Rpd		14.25		24.80	kΩ
pins pull-up, pull-down	Pull-up resistor	Idle	Rpui		0.9		1.575	kΩ
	(i = 0 only)	Recep-t ion	RPUA		1.425		3.09	kΩ
UV _{BUS}	UV _{BUS} puresistor	II-down	Rvbus	UV _{BUS} voltage = 5.5 V		1000		kΩ
	UV _{BUS} in	out	VIH		3.20			V
	voltage		VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Remark i = 0, 1

Timing of UDPi and UDMi

(2) BC standard

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB standard BC1.2	UDPi sink current	IDP_SINK		25		175	μΑ
	UDMi sink current	IDM_SINK		25		175	μΑ
	DCD source current	IDP_SRC		7		13	μА
	Dedicated charging RDCP_DAT port resistor		0 V < UDP/UDM voltage < 1.0 V			200	Ω
	Data detection voltage	VDAT_REF		0.25		0.4	V
	UDPi source voltage	V _{DP_SRC}	Output current 250 μA	0.5		0.7	V
	UDMi source voltage	V _{DM_SRC}	Output current 250 μA	0.5		0.7	V

Remark i = 0, 1

(3) BC option standard (Host)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 4.75 \text{ V} \le UV_{\text{BUS}} \le 5.25 \text{ V}, 3.0 \text{ V} \le UV_{\text{DD}} \le 3.6 \text{ V}, 2.4 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}, V_{\text{SS}} = 0 \text{ V})$

(IA TO LO .	100 0, 4.	10 t <u>-</u> 1	0 T B00 = 0.2	3 V, 3.0 V \ 0 V D D \ 3.0 V, 2.4 V \ 5	* O.O _: O.O	v, vss – u	-,	
Par	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi output	VDSELi	1000	V _{P20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{P27}		51.6	53.6	55.6	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V _{P20}		38	40	42	% UV _{BUS}
•VDOUEi = 1		1100	V _{P33}		60	66	72	% UV _{BUS}
UDMi output	VDSELi	1000	V _{M20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{M20}		38	40	42	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V _{M27}		51.6	53.6	55.6	% UV _{BUS}
•VDOUEi = 1		1100	Vмзз		60	66	72	% UV _{BUS}
UDPi	VDSELi	1000	VHDETP_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing	[3:0]		VHDETP_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
voltage Note 1 (UV _{BUS} divider	(i = 0, 1)	1001	VHDETP_UP1	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
ratio)			VHDETP_DWN1	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
•VDOUEi = 1		1010	VHDETP_UP2	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
• CUSDETEi = 1			VHDETP_DWN2	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
UDMi	VDSELi	1000	VHDETM_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage ^{Note 1}	[3:0]		VHDETM_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
(UV _{BUS} divider	(1 = 0, 1)	(i = 0, 1) 1001	VHDETM_UP1	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
ratio)			VHDETM_DWN1	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
•VDOUEi = 1		1010	VHDETM_UP2	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
• CUSDETEi = 1			VHDETM_DWN2	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
UDPi pull-up de	etection	1000	RHDET_PULL	In full-speed mode, the power supply			1.575	kΩ
Note 2		1001		voltage range of pull-up resistors				
Connect detect the full speed for (pull-up resistor)	unction	1010		connected to the USB function module is between 3.0 V and 3.6 V.				
UDMi pull-up d	etection	1000	RHDET_PULL	In low-speed mode, the power supply			1.575	kΩ
Note 2		1001	_	voltage range of pull-up resistors				
Connect detection with the low-speed (pull-up resistor)		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
UDMi sink curr	ont	1000	HDET SINK		25			μΑ
detection Note 2		1000	IUDE1 SINK		20			μη
Connect detect	ion with	1010	-					
the BC1.2 porta		1010						
device (sink res	sistor)]

- **Notes 1.** If the voltage output from UDPi or UDMi (i = 0, 1) exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.
 - 2. If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi (i = 0, 1), DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

Remark i = 0, 1

(4) BC option standard (Function)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 4.35 \text{ V} \le \text{UV}_{\text{BUS}} \le 5.25 \text{ V}, 3.0 \text{ V} \le \text{UV}_{\text{DD}} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Par	ameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi/UDMi	VDSELi	0000	V _{DDET0}		27	32	37	% UV _{BUS}
input	[3:0]	0001	V _{DDET1}		29	34	39	% UV _{BUS}
reference voltage	(i = 0)	0010	V _{DDET2}		32	37	42	% UV _{BUS}
(UV _{BUS} divider		0011	V _{DDET3}		35	40	45	% UV _{BUS}
ratio)		0100	VDDET4		38	43	48	% UV _{BUS}
• VDOUEi = 0 (i = 0))		0101	V _{DDET5}		41	46	51	% UV _{BUS}
		0110	V _{DDET6}		44	49	54	% UV _{BUS}
		0111	V _{DDET7}		47	52	57	% UV _{BUS}
		1000	V _{DDET8}		51	56	61	% UV _{BUS}
		1001	V _{DDET9}		55	60	65	% UV _{BUS}
		1010	VDDET10		59	64	69	% UV _{BUS}
		1011	V _{DDET11}		63	68	73	% UV _{BUS}
		1100	V _{DDET12}		67	72	77	% UV _{BUS}
		1101	V _{DDET13}		71	76	81	% UV _{BUS}
		1110	V _{DDET14}		75	80	85	% UV _{BUS}
i		1111	VDDET15		79	84	89	% UV _{BUS}

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage					
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = VSS	Reference voltage (+) = V _{BGR} Reference voltage (-) = AV _{REFM}			
ANI0 to ANI7	Refer to 3.6.1 (1) .	Refer to 3.6.1 (3) .	Refer to 3.6.1 (4) .			
ANI16, ANI17, ANI19	Refer to 3.6.1 (2) .					
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_			

(1) When AV_{REF (+)} = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI7, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	2.125		39	μS
		Target pin: ANI2 to ANI7	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		AINIT	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
			$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~\text{V} \leq \text{AV}_{\text{REFP}} \leq 5.5~\text{V}$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le AV_{REFP} \le 5.5~V$			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI7		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
		Temperature sensor of (2.4 V \leq VDD \leq 5.5 V, mode)	output voltage HS (high-speed main)	V	/ _{TMPS25} Note	4	V

(Notes are listed on the next page.)

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16, ANI17, ANI19

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin :	$2.7~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le AV_{REFP} \le 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le AV_{REFP} \le 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
Analog input voltage	VAIN	ANI16, ANI17, ANI19		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(3) Reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), Reference voltage (-) = V_{SS} (ADREFM = 0), target ANI pin : ANI0 to ANI7, ANI16, ANI17, ANI19, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{DD}, \text{Reference voltage (-)} = \text{Vss})$

Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin :	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI0 to ANI7, ANI16, ANI17, ANI19	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target ANI pin : Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	2.4 V ≤ VDD ≤ 5.5 V	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			±0.60	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI7, ANI16, ANI	17, ANI19	0		V_{DD}	V
	Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (hi mode) Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (hi mode)		nigh-speed main)	V _{BGR} Note 3		V	
			· ·	V _{TMPS25} Note 3			V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0 to ANI7, ANI16, ANI17, ANI19

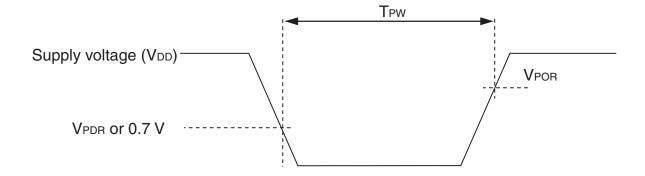
(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	Res				8		Bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	T _{PW}		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR} . This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		V _{LVD1}	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		V _{LVD2}	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		V _{LVD4}	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		V _{LVD5}	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		V _{LVD6}	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		V _{LVD7}	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	ulse width	tLW		300			μS
Detection d	elay time	t LD				300	μS

LVD Detection Voltage of Interrupt & Reset Mode

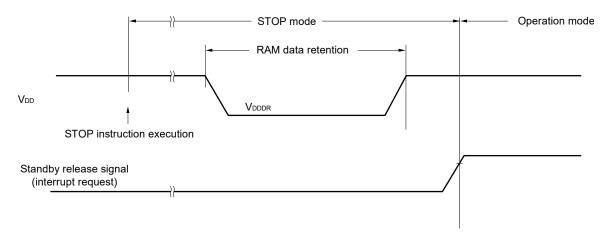
(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC	2, VPOC1, VPOC0 =	0, 1, 1, falling reset voltage	2.64	2.75	2.86	V
mode	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	Svdd				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

3.8 Flash Memory Programming Characteristics

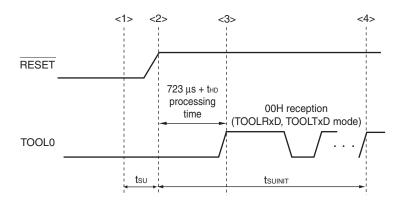
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.4~V \leq V \text{DD} \leq 5.5~V$	1		24	MHz
Number of code flash rewrites	Cerwr	Retaining years: 20 years T _A = +85°C Note 4	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retaining years: 1 year T _A = +25°C Note 4		1,000,000		
		Retaining years: 5 years T _A = +85°C Note 4	100,000			
		Retaining years: 20 years T _A = +85°C Note 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library.
 - **3.** These specifications show the characteristics of the flash memory and the results obtained from Renesas Electronics reliability testing.
 - 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

(TA = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

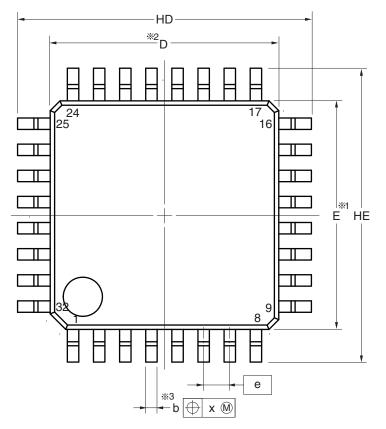
3.10 Timing Specs for Switching Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must end before the external reset ends.	1			ms

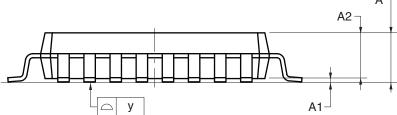
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.


tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends

thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

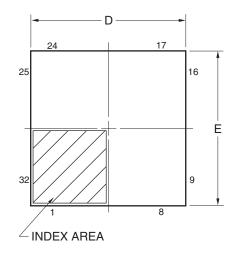
4. PACKAGE DRAWINGS


4.1 32-pin Products

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

с — ______

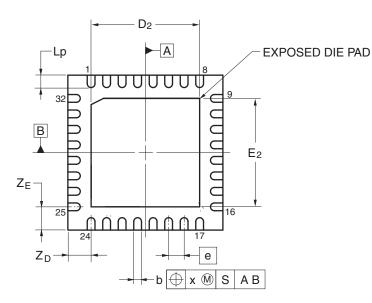
detail of lead end

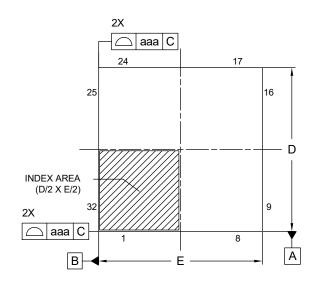


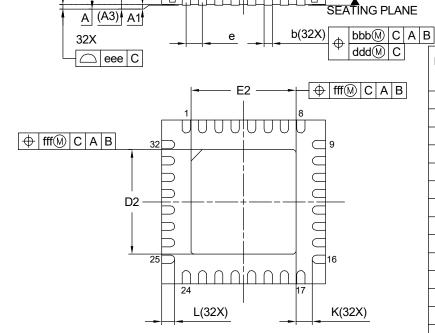
	(UNII:mm
ITEM	DIMENSIONS
D	7.00±0.10
Е	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
Α	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	0.37±0.05
С	0.145±0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
х	0.20
У	0.10

NOTE

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.


JEITA F	ackage code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQ	FN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

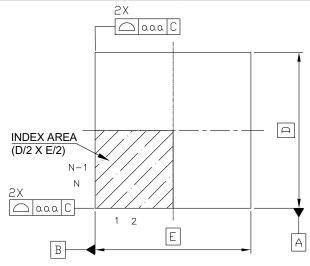


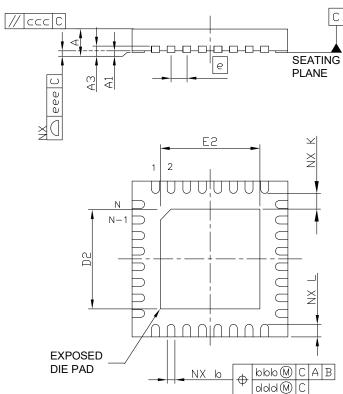

Referance	Dimens	ion in Mil	limeters
Symbol	Min	Nom	Max
D	4.95	5.00	5.05
Е	4.95	5.00	5.05
А			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х			0.05
у			0.05
Z _D		0.75	
Z _E		0.75	
C ₂	0.15	0.20	0.25
D ₂		3.50	
E ₂		3.50	

©2013 Renesas Electronics Corporation. All rights reserved.

// ccc C

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN032-5x5-0.50	PWQN0032KE-A	0.06

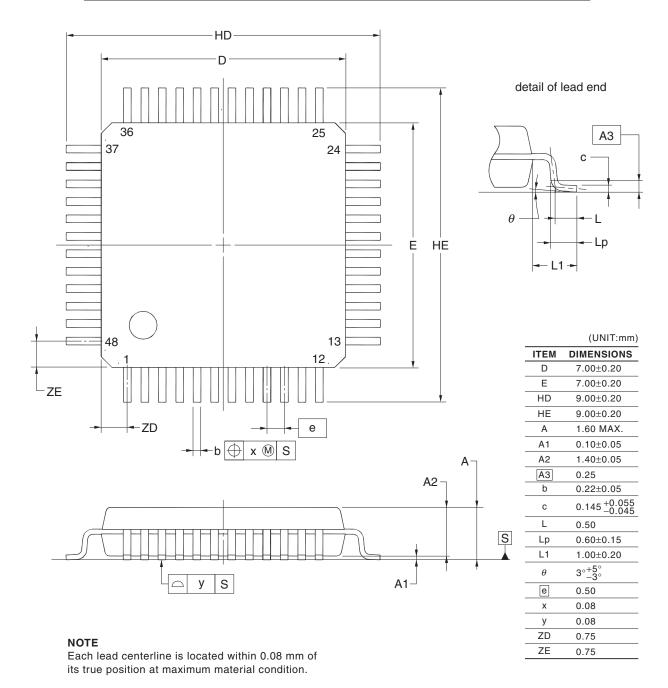




Reference	Dimension in Millimeters			
Symbol	Min.	Nom.	Max.	
Α	-	-	0.80	
A ₁	0.00	0.02	0.05	
Aз		0.203 REF	•	
b	0.18	0.25	0.30	
D		5.00 BSC		
Е		5.00 BSC		
е	0.50 BSC			
L	0.35	0.40	0.45	
K	0.20	-	1	
D ₂	3.15	3.20	3.25	
E ₂	3.15	3.20	3.25	
aaa		0.15		
bbb		0.10		
ccc	0.10			
ddd	0.05			
eee	0.08			
fff		0.10		

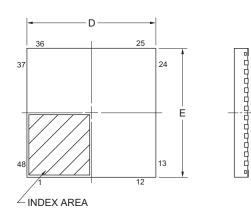
<R>

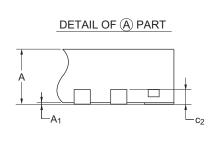
JEITA Package Code	RENESAS Code	MASS(Typ.)[g]
P-HWQFN32-5×5-0.50	PWQN0032KG-A	0.06

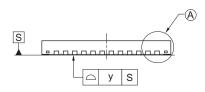


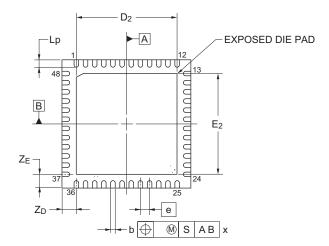
Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
Α	_	_	0.80
A ₁	0.00	_	0.05
A ₃	0	.20 REF	₹.
b	0.20	0.25	0.30
D	_	5.00	_
E	_	5.00	_
е	_	0.50	_
N		32	
L	0.30	0.40	0.50
K	0.20	_	_
D_2	3.10	3.20	3.30
E_2	3.10	3.20	3.30
aaa	_	_	0.15
bbb	_	_	0.10
ссс	_	_	0.10
ddd	_	_	0.05
eee	_	_	0.08

4.2 48-pin Products

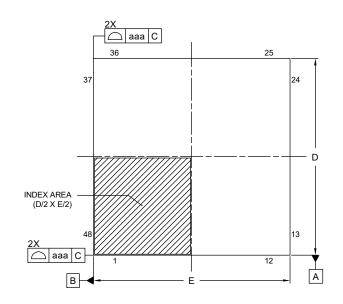

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

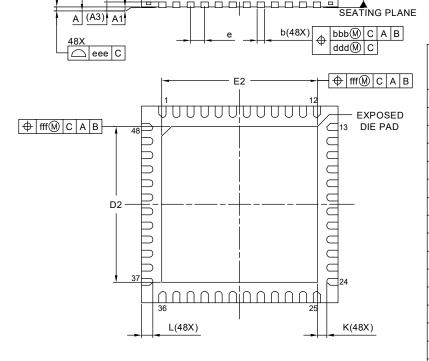



©2012 Renesas Electronics Corporation. All rights reserved.


JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-7	0.13

Unit: mm




Reference	Dimensi	ons in mi	llimeters
Symbol	Min	Nom	Max
D	6.95	7.00	7.05
Е	6.95	7.00	7.05
Α	_	_	0.80
A ₁	0.00	_	_
b	0.18	0.25	0.30
е	_	0.50	_
Lp	0.30	0.40	0.50
х	_	_	0.05
У	_	_	0.05
Z_{D}	_	0.75	_
ZE	_	0.75	_
C ₂	0.15	0.20	0.25
D ₂		5.50	_
E ₂	_	5.50	_

 $\hbox{@ 2015 Renesas Electronics Corporation.}$ All rights reserved.

// ccc C

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN048-7x7-0.50	PWQN0048KE-A	0.13

Reference Symbol	Dimension in Millimeters			
	Min.	Nom.	Max.	
Α	-	-	0.80	
A ₁	0.00	0.02	0.05	
A ₃	0.203 REF.			
b	0.20	0.25	0.30	
D	7.00 BSC			
E	7.00 BSC			
e	0.50 BSC			
L	0.30	0.40	0.50	
K	0.20	-	1	
D_2	5.50	5.55	5.60	
E ₂	5.50	5.55	5.60	
aaa	0.15			
bbb	0.10			
ccc	0.10			
ddd	0.05			
eee	0.08			
fff	0.10			

С

RL78/G1C Data Sheet

			Description	
Rev.	Date	Page	Summary	
0.01	Sep 20, 2012	-	First Edition issued	
1.00	Aug 08, 2013	Throughout	Deletion of the bar over SCK and SCKxx	
11.00		Renaming of fext to fexs		
			Renaming of interval timer (unit) to 12-bit interval timer	
			Addition of products for G: Industrial applications (T _A = -40 to +105 °C)	
		1	Change of 1.1 Features	
		2	Change of 1.2 List of Part Numbers	
		3	Modification of Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C	
		4, 5	Addition of remark to 1.3 Pin Configuration (Top View)	
		15, 16	Change of 1.6 Outline of Functions	
		17 to 76	Addition of a whole chapter	
		77 to 131	Addition of a whole chapter	
		132	Addition of products for G: Industrial applications (T _A = -40 to +105 °C)	
1.10 Nov 15, 201	Nov 15, 2013	77	Caution 3 added.	
		79	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.	
1.20	Sep 30, 2016	4 to 7	Modification of pin configuration in 1.3.1 32-pin products	
		8 to 11	Modification of pin configuration in 1.3.2 48-pin products	
		15	Modification of description of main system clock in 1.6 Outline of Functions	
		74	Modification of title of 2.7 RAM Data Retention Characteristics and figure	
		74	Modification of table of 2.8 Flash Memory Programming Characteristics	
		129	Modification of title of 3.7 RAM Data Retention Characteristics and figure	
		129	Modification of table of 3.8 Flash Memory Programming Characteristics and addition of Note 4	
		132	Change of figure in 4.1 32-pin Products	
		134	Change of figure in 4.2 48-pin Products	
1.30	May 26, 2023	All	The module name for CSI was changed to Simplified SPI	
		All	"wait" for IIC was modified to "clock stretch"	
		1	Addition of note2 in 1.1 Features	
		3	Modification of Table 1-1 List of Ordering Part Numbers	
		28	Modification of note1 and note4 in 2.3.2 Supply current characteristics ($T_A = -40 \text{ to} +85^{\circ}\text{C}$, 2.4 V $\leq V_{DD} \leq 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$) (1/2)	
		30	Modification of note1, note5 and note6 in 2.3.2 Supply current characteristics ($T_A = -40$ to +85°C, 2.4 V $\leq V_{DD} \leq 5.5$ V, $V_{SS} = 0$ V) (2/2)	
		75	Modification of figure in 2.10 Timing Specs for Switching Flash Memory Programming Modes	
		87	Modification of note1 in 3.3.2 Supply current characteristics ($T_A = -40 \text{ to } +105^{\circ}\text{C}$, 2.4 V $\leq V_{DD} \leq 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$) (1/2)	
		89	Modification of note1, note5 and note6 in 3.3.2 Supply current characteristics ($T_A = -40$ to +105°C, 2.4 V \leq V _{DD} \leq 5.5 V, V _{SS} = 0 V) (1/2)	
		130	Modification of figure in 3.10 Timing Specs for Switching Flash Memory Programming Modes	
		134	Addition of figure in 4.1 32-pin Products	

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/