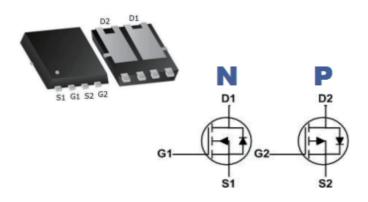


Features

Description


★ Green Device Available

- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Product Sum	mery	RoHS
BVDSS	RDSON	ID
30V	14mΩ	16A
-30V	25mΩ	-14A
		1

PDFN5x6 Pin Configuration

The 30G20F is th high performance complementary N-ch and P-ch MOSFETs with high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The 30G20F meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

Absolute Maximum Ratings

Symbol	Parameter	Rat	ing	Units
Symbol	Falameter	N-Ch	P-Ch	Units
Vds	Drain-Source Voltage	30	-30	V
Vgs	Gate-Source Voltage	±20	±20	V
l₀@Ta=25°C	Continuous Drain Current, Vos@ 10V ¹	16	-14	А
l⊳@Ta=100°C	Continuous Drain Current, VGs@ 10V ¹	10	-10	А
Ідм	Pulsed Drain Current ²	46	-40	А
EAS	Single Pulse Avalanche Energy ³	28	66	mJ
Pp@Tc=25°C	Total Power Dissipation ⁴	15	21.3	W
Тятс	Storage Temperature Range	-55 to 150	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹	-	45	°C/W
Rejc	Thermal Resistance Junction-Case ¹	-	5	°C/W

N-Channel Electrical Characteristics TJ=25°C unless otherwise s ecified

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V, Ib=250uA	30			V
$\Delta BV_{DSS} / \Delta T_{J}$	[′] △T _J BVDSS Temperature Coefficient Reference to 25°C , ID=1mA			0.023		V/°C
RDS(ON)	Static Drain-Source On-Resistance ₂	Vgs=10V , Id=10A		14	20	mΩ
NDS(ON)	Static Dialit-Source Off-Resistance2	V _{GS} =4.5V , I _D =6A		20	25	11152
VGS(th)	Gate Threshold Voltage		1		2.5	V
$\triangle V_{GS(th)}$	VGs(th) Temperature Coefficient	- V _{GS} =V _{DS} , I _D =250uA		-4.2		mV/℃
DSS	Drain-Source Leakage Current	V_{DS} =24V, V_{GS} =0V, T_{J} =25°C			1	
ID85	Dialii-Source Leakage Current	V_{DS} =24V, V_{GS} =0V, T_{J} =55°C			5	uA
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	VDS=5V, ID=10A		14		S
Rg	Gate Resistance	VDS=0V, VGS=0V, f=1MHz		2.3		Ω
Qg	Total Gate Charge (4.5V)			5		
Qgs	Gate-Source Charge	V_{DS} =20V , V_{GS} =4.5V , I_{D} =10A		1.11		nC
Qgd	Gate-Drain Charge			2.61		
Td(on)	Turn-On Delay Time			7.7		
Tr	Rise Time	V_{DD} =12V, V_{GS} =10V, R_{G} =3.3 Ω		46		ns
Td(off)	Turn-Off Delay Time	l⊳=6A		11		
T _f	Fall Time			3.6		
Ciss	Input Capacitance			416		
Coss	Output Capacitance	Vos=15V, Vos=0V, f=1MHz		62		pF
Crss	Reverse Transfer Capacitance			51		

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
ls	Continuous Source Current _{1,5}	Vg=VD=0V. Force Current			16	A
lsм	Pulsed Source Current ^{2,5}	vg-vb-ov, Force Current			30	A
Vsd	Diode Forward Voltage ²	Vgs=0V, Is=1A, TJ=25°C			1.2	V

Note :

1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1mH,IAS=12.7A

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics (TJ=25°Cunless otherwise specified)

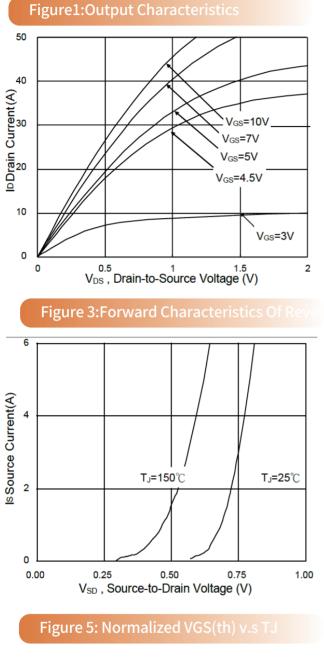
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	age VGs=0V, ID=-250uA				V
$\triangle BV_{DSS} / \triangle T_{J}$	TJ BVDss Temperature Coefficient Reference to 25°C, ID=-1mA			-0.021		V/°C
RDS(ON)	Static Drain-Source On-Resistance ₂	Vgs=-10V , Id=-8A		25	30	mΩ
RDS(ON)	Static Drain-Source On-Resistance2	Vgs=-4.5V , Id=-6A		30	35	11152
VGS(th)	Gate Threshold Voltage		-1		-2.5	V
riangle VGS(th)	VGs(th) Temperature Coefficient	VGS-VDS, ID2500A		-4.2		mV/°C
DSS	Drain-Source Leakage Current	VDS=-24V, VGS=0V, TJ=25°C			1	uA
1055	Diam-Source Leakage Guitent	VDS=-24V , VGS=0V , TJ=55°C			5	uЛ
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance V _{DS} =-5V, I _D =-8A			12.6		S
Rg	Gate Resistance	VDS=0V, VGS=0V, f=1MHz		15		Ω
Q _g	Total Gate Charge (-4.5V)			9.8		
Qgs	Gate-Source Charge	VDS=-20V, VGS=-4.5V, ID=-6A		2.2		nC
Qgd	Gate-Drain Charge			3.4		
Td(on)	Turn-On Delay Time			16.4		
Tr	Rise Time	V_{DD} =-24V, V_{GS} =-10V, R_{G} =3.3 Ω ,		20.2		
Td(off)	Turn-Off Delay Time	I _D =-1A		55		ns
Tf	Fall Time			10		
Ciss	Input Capacitance			930		
Coss	Output Capacitance	Vos=-15V, Vos=0V, f=1MHz		148		рF
Crss	Reverse Transfer Capacitance			115		

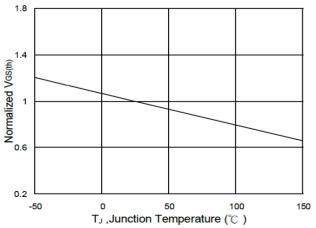
Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
ا _s	Continuous Source Current ^{1,5}				-14	А
lsм	Pulsed Source Current _{2,5}	V _G =V _D =0V , Force Current			-24	Α
Vsd	Diode Forward Voltage ₂	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V

Note :

1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.


2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%


3.The EAS data shows Max. rating . The test condition is VDD=-25V,VGs=-10V,L=0.1mH,IAS=-30A

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

N-Channel Typical Performance Characteristics

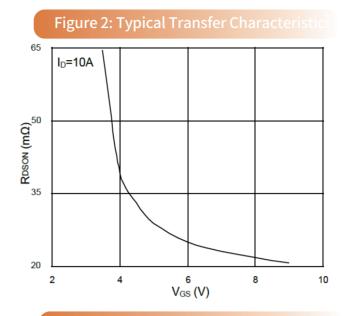
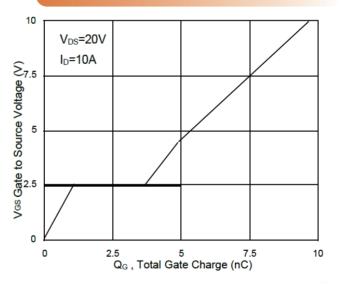
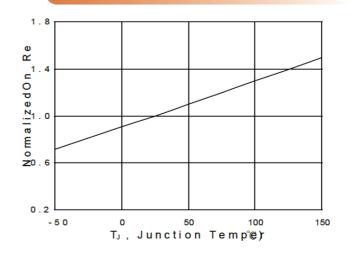
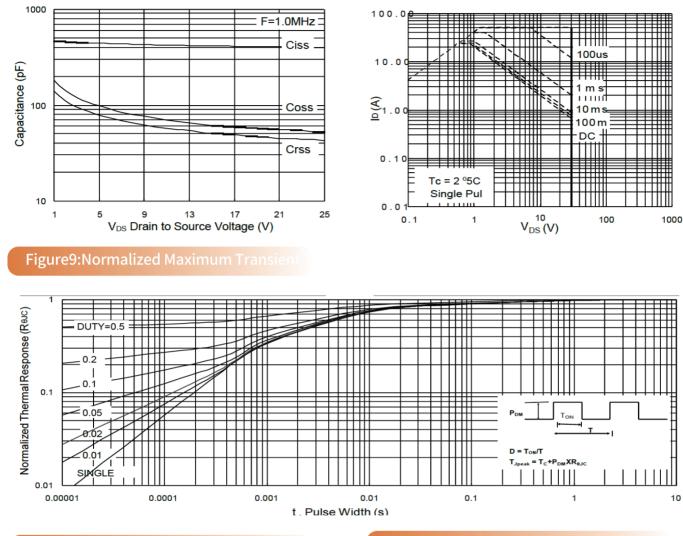




Figure 4: Gate-Charge Characteristics

Figure 6: Normalized RDSON v.s TJ



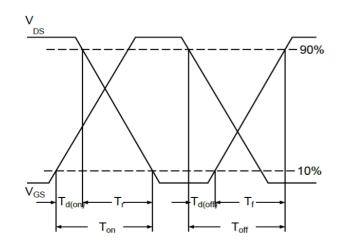

N-Channel Typical Performance Characteristics

Figure7:Capacitance

Figure 8:Safe Operating Areaature

Figure11:Unclamped Inductive Switching

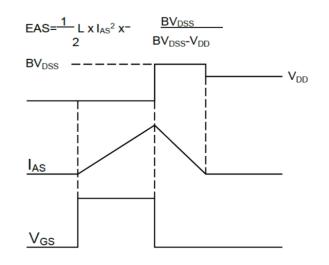


Figure1:Capacitance

P-Channel Typical Performance Characteristics

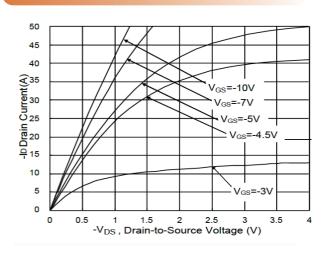


Figure3:Forward Characteristics Of Reve

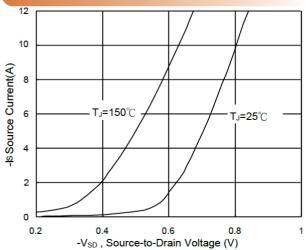


Figure5:Normalized VGS(th) v.s TJ

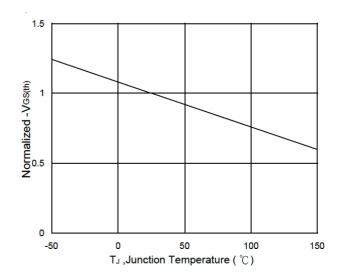


Figure 2: On-Resistance v.s Gate-Source

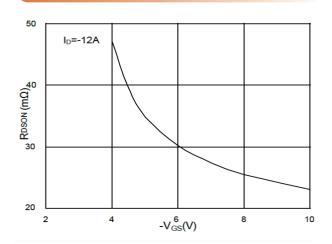
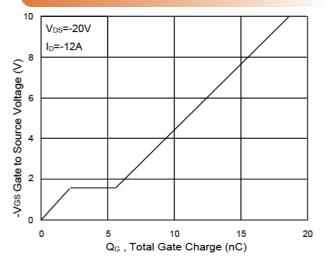
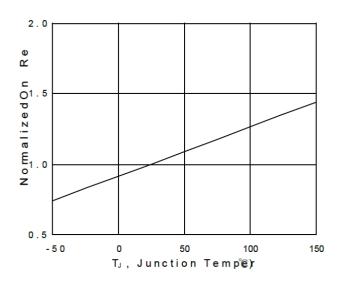
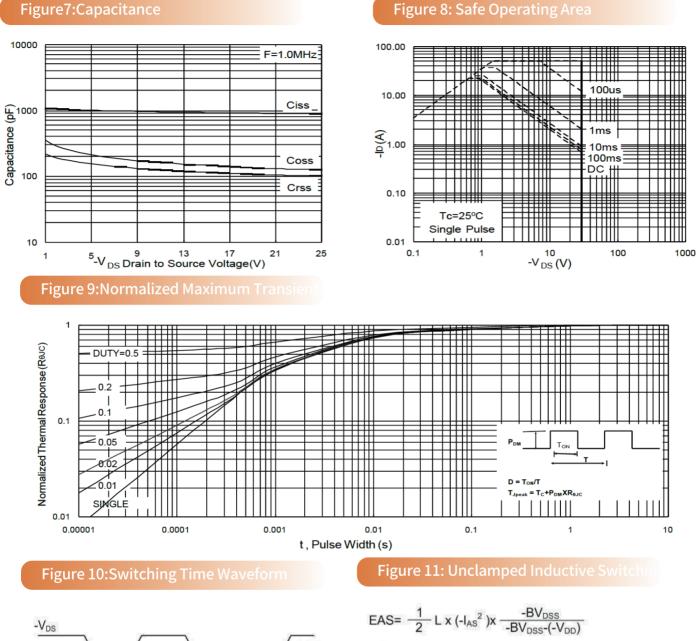
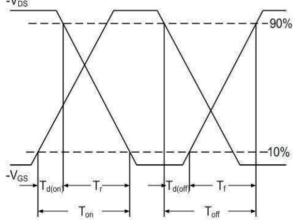
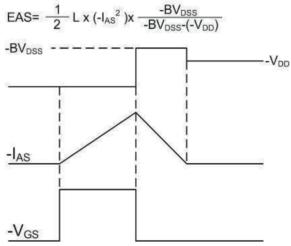


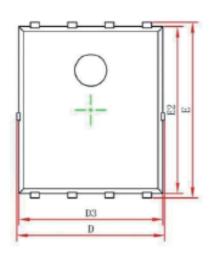
Figure4:Gate-Charge Characteristics

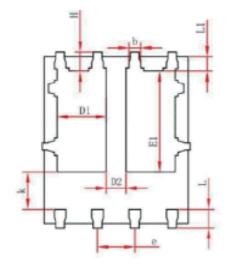





Figure 6: Normalized RDSON v.s TJ



P-Channel Typical Performance Characteristics





Package Mechanical Data- PDFN5X6-8L

Top View

Bottom View

Sido	VIONI
Side	view

Sumbol	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
A	0.900	1.000	0.035	0.039
A3	0.154	4REF.	0.006	REF.
D	4.944	5.096	0.195	0.201
E	5.974	6.126	0.235	0.241
D1	1.470	1.870	0.058	0.074
D2	0.470	0.870	0.019	0.034
E1	3.375	3.575	0.133	0.141
D3	4.824	4.976	0.190	0.196
E2	5.674	5.826	0.223	0.229
k	1.190	1.390	0.047	0.055
b	0.350	0.450	0.014	0.018
e	1.270	DTYP.	0.050	DTYP.
L	0.559	0.711	0.022	0.028
L1	0.424	0.576	0.017	0.023
н	0.574	0.726	0.023	0.029
θ	10°	12°	10°	12°