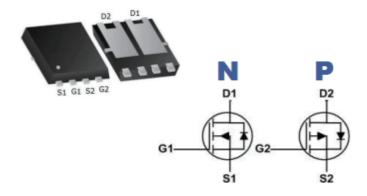


Features

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Product Summery



BVDSS	RDSON	ID
30V	$14 m\Omega$	16A
-30V	25mΩ	-14A

Description

The 30G20D is th high performance complementary N-ch and P-ch MOSFETs with high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The 30G20D meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

PDFN3x3 Pin Configuration

Absolute Maximum Ratings

Symbol	Darameter	Ra	Rating	
Symbol	Parameter	N-Channel	P-Channel	Units
Vos	Drain-Source Voltage	30	-30	V
Vgs	Gate-Source Voltage	±20	±20	V
Ib@Tc=25°C	Continuous Drain Current, Vcs @ 10V ¹	16	-14	А
I _D @T _C =100°C	Continuous Drain Current, Vcs @ 10V ¹	5	-4	А
Id@Ta=25°C	Continuous Drain Current, Vcs @ 10V ¹	2.3	-1.8	A
Id@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ₁	1.8	-1.5	A
lом	Pulsed Drain Current₂	40	-40	A
EAS	Single Pulse Avalanche Energy₃	26.6	110	mJ
las	Avalanche Current	8.7	-20	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	10.8	10.8	W
Pd@Ta=25°C	Total Power Dissipation ⁴	2	2	W
Тѕтс	Storage Temperature Range	-55 to 150	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹	-	62	°CW
Resc	Thermal Resistance Junction-Case ¹	-	6	°C/W

N-Channel Electrical Characteristics T_J=25°C unless otherwise s ecified

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	V _G s=0V , I _D =250uA	30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25°C , l₀=1mA		0.023		V/°C
Rds(on)	Static Drain-Source On-Resistance	Vgs=10V, Ip=10A		14	20	mΩ
NDS(ON)	Static Dialii-Source Off-Resistance2	V_{GS} =4.5V , I_{D} =6A		20	25	11122
V _G S(th)	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_{D}=250uA$	1		2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	v _{GS} -v _{DS} , I _D -230uA		-4.2		mV/°C
Ipss	Drain-Source Leakage Current	V_{DS} =24V, V_{GS} =0V, T_{J} =25°C			1	
IDSS	Diain-Source Leakage Current	V_{DS} =24V, V_{GS} =0V, T_{J} =55 $^{\circ}$ C			5	uA
Igss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _D s=5V , I _D =10A		14		S
Rg	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		2.3		Ω
Qg	Total Gate Charge (4.5V)			5		
Qgs	Gate-Source Charge	V_{DS} =20V, V_{GS} =4.5V, I_{D} =10A		1.11		nC
Qgd	Gate-Drain Charge			2.61		
T _d (on)	Turn-On Delay Time			7.7		
Tr	Rise Time	V_{DD} =12V, V_{GS} =10V, R_{G} =3.3 Ω		46] no
Td(off)	Turn-Off Delay Time	ID=6A		11		ns
T _f	Fall Time			3.6		
Ciss	Input Capacitance			416		
Coss	Output Capacitance Vps=15V, Vgs=0V, f=1			62		pF
Crss	Reverse Transfer Capacitance			51		

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
ls	Continuous Source Current _{1,5}	Vg=Vb=0V . Force Current			16	Α
Isм	Pulsed Source Current ^{2,5}	vg=vb=0v , Force Current			30	Α
VsD	Diode Forward Voltage ²	Vgs=0V, Is=1A, TJ=25°C			1.2	V

Note:

1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is VDD=25V,VGs=10V,L=0.1mH,IAS=12.7A

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics (T_J=25°Cunless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVoss	Drain-Source Breakdown Voltage	Vgs=0V, Ip=-250uA	-30			V
$\triangle BV_{DSS}/\triangle T_{J}$	BVpss Temperature Coefficient	Reference to 25°C , lo=-1mA		-0.021		V/°C
RDS(ON)	Static Drain-Source On-Resistance	Vgs=-10V, Ip=-8A		25	30	mΩ
KDS(ON)	Static Diani-Source On-Nesistance2	V _G s=-4.5V , I _D =-6A		30	35	11152
VGS(th)	Gate Threshold Voltage	Vgs=Vps, Ip =-250uA	-1		-2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID230UA		-4.2		mV/°C
Inss	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			1	uА
IDSS	Diain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			5	uA
Igss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V_{DS} =-5V , I_{D} =-8A		12.6		S
Rg	Gate Resistance	Vos=0V, Vos=0V, f=1MHz		15		Ω
Q_g	Total Gate Charge (-4.5V)			9.8		
Qgs	Gate-Source Charge	V _{DS} =-20V, V _{GS} =-4.5V, I _D =-6A		2.2		nC
Qgd	Gate-Drain Charge			3.4		
T _d (on)	Turn-On Delay Time			16.4		
Tr	Rise Time	V_{DD} =-24 V , V_{GS} =-10 V , R_{G} =3.3 Ω ,		20.2		no
T _d (off)	Turn-Off Delay Time	I _D =-1A		55		ns
Tf	Fall Time			10		
Ciss	Input Capacitance			930		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		148		pF
Crss	Reverse Transfer Capacitance			115		

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
I _S	Continuous Source Current ^{1,5}	\/ -\/ -0\/ Fares Commont			-14	Α
Іѕм	Pulsed Source Current _{2,5}	V _G =V _D =0V , Force Current			-24	Α
Vsp	Diode Forward Voltage ₂	V _{GS} =0V, I _S =-1A, T _J =25°C			-1.2	V

Note:

1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition is VDD=-25V,VGS=-10V,L=0.1mH,IAS=-30A

4.The power dissipation is limited by 150°C junction temperature

5.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

N-Channel Typical Performance Characteristics

Figure 1: Output Characteristics

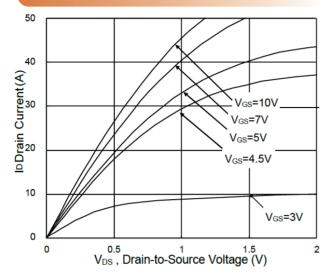


Figure 3: Forward Characteristics Of Rev

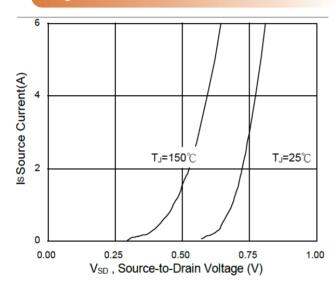


Figure 5: Normalized VGS(th) v.s TJ

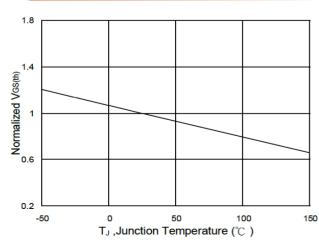


Figure 2: Typical Transfer Characteristic

Figure 4: Gate-Charge Characteristics

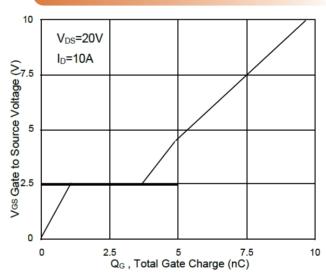
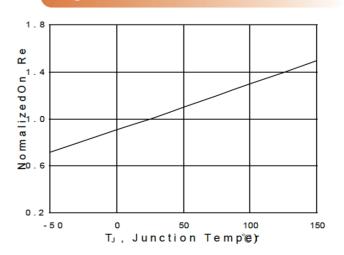



Figure 6: Normalized RDSON v.s TJ

N-Channel Typical Performance Characteristics

Figure7:Capacitance

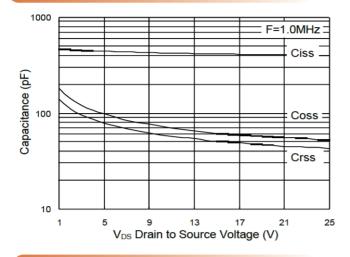


Figure 8:Safe Operating Areaature

30G20D

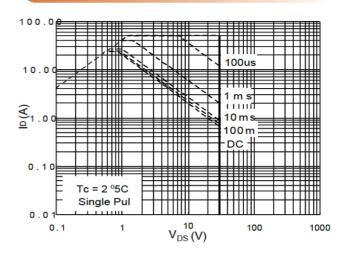


Figure9:Normalized Maximum Transien

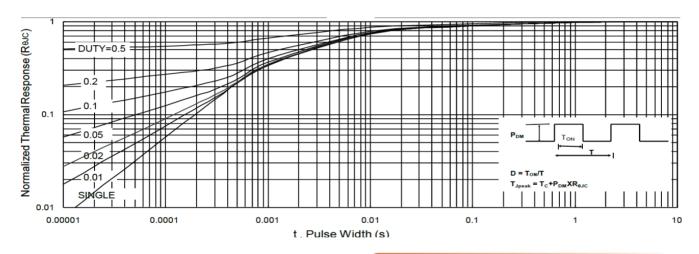
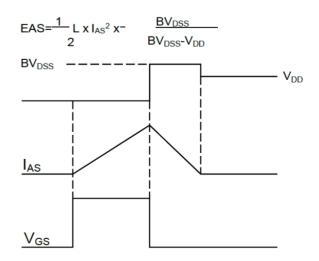
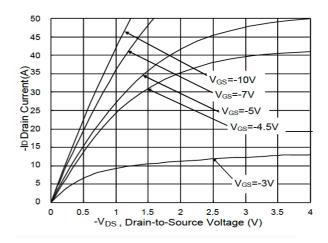



Figure 10: Switching Time Waveform


Figure 11: Unclamped Inductive Switching

P-Channel Typical Performance Characteristics

Figure1:Capacitance

Figure 3: Forward Characteristics Of Reve

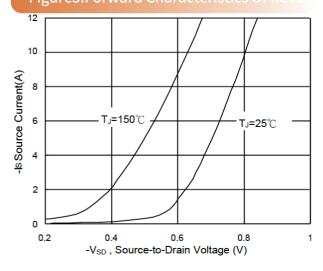


Figure 5: Normalized VGS(th) v.s TJ

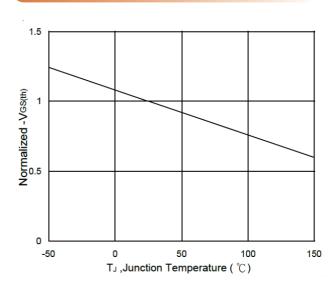


Figure 2: On-Resistance v.s Gate-Source

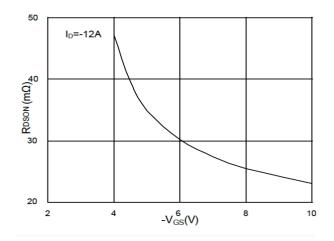


Figure4:Gate-Charge Characteristics

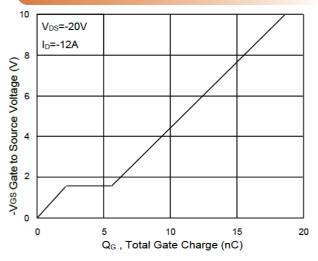
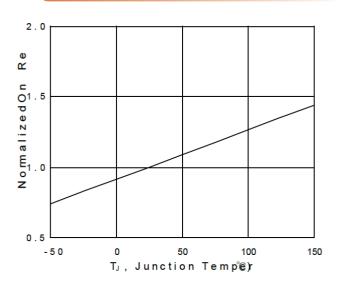



Figure 6: Normalized RDSON v.s TJ

P-Channel Typical Performance Characteristics

Figure7:Capacitance

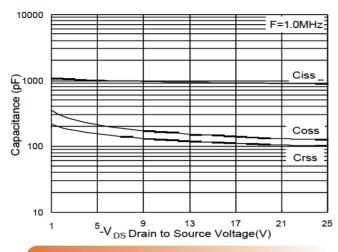


Figure 8: Safe Operating Area

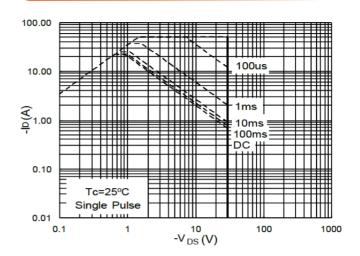


Figure 9:Normalized Maximum Transier

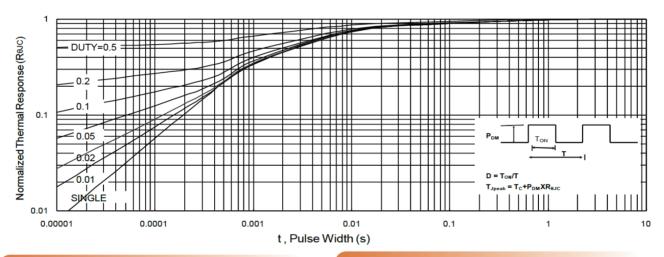


Figure 10:Switching Time Waveform

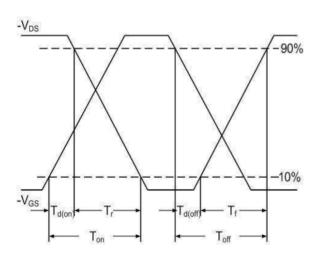
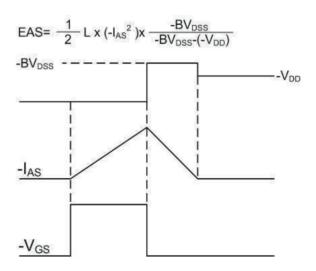
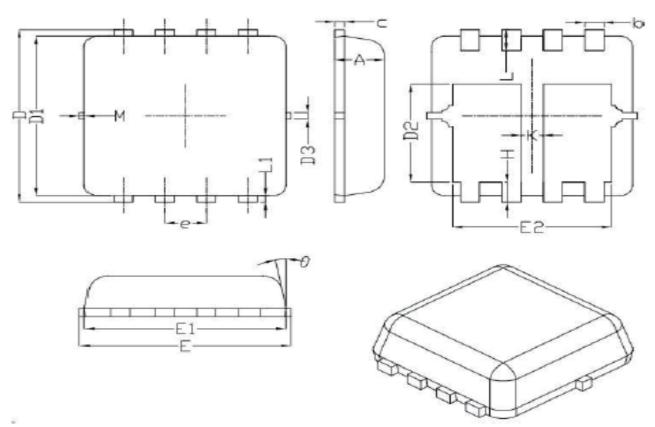




Figure 11: Unclamped Inductive Switchin

Package Mechanical Data- PDFN3X3

	Dimens	it: mm)		
Symbol	Min	Тур	Max	
Α	0.70	0.75	0.80	
b	0.25	0.30	0.35	
С	0.10	0.15	0.25	
D	3.25	3.35	3.45	
D1	3.00	3.10	3.20	
D2	1.78	1.88	1.98	
D3		0.13		
E	3.20	3.30	3.40	
E1	3.00	3.15	3.20	
E2	2.39	2.49	2.59	
e	0	0.65 BSC		
н	0.30	0.39	0.50	
L	0.30	0.40	0.50	
L1		0.13	_	
К	0.30		-	
θ		10°	12°	
М	*	*	0.15	
* Not Specified				

Notes:

- 1. Refer to JEDEC MO-240 variation CA.
- 2. Dimensions "D1" and "E1" do NOT include mold flash protrusions or gate
- 3. Dimensions "D1" amd "E1" include interterminal flash or protrusion.