Features

» Green Device Available
^ Super Low Gate Charge

* Excellent CdV/dt effect decline
^ Advanced high cell density Trench technology
* 100\% EAS Guaranteed

Description

The 3020 is th high performance complementary N -ch and P -ch MOSFETs with high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The 3020 meet the RoHS and Green Product requirement 100\% EAS guaranteed with full function reliability approved.

Product Summery
RoHS

BVDSS	RDSON	ID
30 V	$15 \mathrm{~m} \Omega$	20 A
-30 V	$25 \mathrm{~m} \Omega$	-23 A

TO252-4 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating		Units
		$\mathrm{N}-\mathrm{Ch}$	$\mathrm{N}-\mathrm{Ch}$	
Vos	Drain-Source Voltage	30	-30	V
Vgs	Gate-Source Voltage	± 20	± 20	V
$1 \mathrm{O} @ \mathrm{Tc}=25^{\circ} \mathrm{C}$	Continuous Drain Current, VGs @ 10V ${ }^{1}$	20	-23	A
1 O ¢ $\mathrm{c}=100^{\circ} \mathrm{C}$	Continuous Drain Current, VGs @ 10V ${ }^{1}$	15	-14	A
Іом	Pulsed Drain Current ${ }^{2}$	60	-60	A
EAS	Single Pulse Avalanche Energy ${ }^{3}$	26.6	38	mJ
$\mathrm{Po} @ T \mathrm{~T}=25^{\circ} \mathrm{C}$	Total Power Dissipation4	20.8	20.8	W
Pb@ $T_{A}=25^{\circ} \mathrm{C}$	Total Power Dissipation4	2	2	W
Tsts	Storage Temperature Range	-55 to 150	-55 to 150	${ }^{\circ} \mathrm{C}$
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal Data

Symbol	Parameter	Typ.	Max.	Unit
R өנa	Thermal Resistance Junction-Ambient $_{1}$	---	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rөлс	Thermal Resistance Junction-Case ${ }_{1}$	---	6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

N-Channel Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise s ecified

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Units
BVoss	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{Gs}}=0 \mathrm{~V}$, $\mathrm{lo}=250 \mathrm{uA}$	30	---	---	V
$\triangle B V_{\text {Dss }} / \triangle T_{J}$	BVDSS Temperature Coefficient	Reference to $25^{\circ} \mathrm{C}, \mathrm{lo}=1 \mathrm{~mA}$	---	0.023	---	V/ ${ }^{\circ} \mathrm{C}$
Rds(ON)	Static Drain-Source On-Resistance ${ }^{2}$	$\mathrm{V}_{\mathrm{Gs}}=10 \mathrm{~V}, \mathrm{ld}=10 \mathrm{~A}$	---	15	20	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{gs}}=4.5 \mathrm{~V}, \mathrm{ld}=6 \mathrm{~A}$	---	20	25	
VGs(th)	Gate Threshold Voltage		1	---	2.5	V
$\triangle \mathrm{VGS}(\mathrm{th})$	Vos(th) Temperature Coefficient	$\mathrm{V}_{\mathrm{gs}}=\mathrm{V}_{\text {ds }}, \mathrm{ld}=250 \mathrm{u}$	---	-4.2	---	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
loss	Drain-Source Leakage Current	$V_{\text {ds }}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{TJ}=25^{\circ} \mathrm{C}$	---	---	1	uA
		$\mathrm{V}_{\mathrm{ds}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{gs}}=0 \mathrm{~V}, \mathrm{TJ}=55^{\circ} \mathrm{C}$	---	---	5	
lass	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{Gs}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {Ds }}=0 \mathrm{~V}$	---	---	± 100	nA
gfs	Forward Transconductance	$\mathrm{V}_{\mathrm{Ds}}=5 \mathrm{~V}$, lo $=10 \mathrm{~A}$	---	14	---	S
Rg	Gate Resistance	$\mathrm{V}_{\mathrm{ds}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	---	2.3	---	Ω
Q_{9}	Total Gate Charge (4.5V)	$\mathrm{V}_{\mathrm{Ds}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=4.5 \mathrm{~V}, \mathrm{ld}=10 \mathrm{~A}$	---	5	---	nC
Qgs	Gate-Source Charge		---	1.11	---	
Q_{gd}	Gate-Drain Charge		---	2.61	---	
$\mathrm{T}_{\mathrm{d}(0 n)}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=3.3 \Omega \mathrm{l}_{\mathrm{D}}=6 \mathrm{~A} \end{aligned}$	---	7.7	---	ns
T_{r}	Rise Time		---	46	---	
Td(off)	Turn-Off Delay Time		---	11	---	
T_{f}	Fall Time		---	3.6	---	
Ciss	Input Capacitance	$\mathrm{V}_{\mathrm{Ds}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	---	416	---	pF
Coss	Output Capacitance		---	62	---	
Crss	Reverse Transfer Capacitance		---	51	---	

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Units
Is	Continuous Source Current1,5	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$, Force Current	---	---	20	A
Ism	Pulsed Source Current ${ }^{2,5}$		---	---	40	A
Vsd	Diode Forward Voltage ${ }^{2}$	$V_{G s}=0 \mathrm{~V}, \mathrm{Is}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	---	---	1.2	V

Note:
1.The data tested by surface mounted on a 1 inch2 FR-4 board with $20 Z$ copper.
2.The data tested by pulsed, pulse width $\leqq 300$ us, duty cycle $\leqq 2 \%$
3.The EAS data shows Max. rating. The test condition is $V_{D D}=25 \mathrm{~V}, \mathrm{~V}, \mathrm{Gs}=10 \mathrm{~V}, \mathrm{~L}=0.1 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=20 \mathrm{~A}$
4.The power dissipation is limited by $150^{\circ} \mathrm{C}$ junctiontemperature
5.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{Cunless}$ otherwise specified)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Units
BVoss	Drain-Source Breakdown Voltage	$V_{\text {gs }}=0 \mathrm{~V}$, lo $=-250 \mathrm{uA}$	-30	---	---	V
$\triangle \mathrm{BV}_{\text {Dss }} / \triangle \mathrm{T}_{\text {J }}$	BVoss Temperature Coefficient	Reference to $25^{\circ} \mathrm{C}$, $\mathrm{lo}=-1 \mathrm{~mA}$	---	-0.021	---	V/1 ${ }^{\circ}$
Rds(ON)	Static Drain-Source On-Resistance2	$\mathrm{V}_{G S}=-10 \mathrm{~V}, \mathrm{ld}=-8 \mathrm{~A}$	---	25	30	$\mathrm{m} \Omega$
		$\mathrm{V}_{G S}=-4.5 \mathrm{~V}, \mathrm{lo}=-6 \mathrm{~A}$	---	30	35	
VGs(th)	Gate Threshold Voltage	$V_{G s}=V_{\text {ds }}, l_{\text {d }}=-250 \mathrm{~A}$	-1	---	-2.5	V
$\Delta \mathrm{VGS}(\mathrm{th})$	$V_{G S(t h)}$ Temperature Coefficient		---	-4.2	---	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
loss	Drain-Source Leakage Current	$\mathrm{V}_{\mathrm{DS}}=-24 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	---	---	1	uA
		$\mathrm{V}_{\text {DS }}=-24 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{~T}_{J}=55^{\circ} \mathrm{C}$	---	---	5	
Igss	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	---	---	± 100	nA
gfs	Forward Transconductance	Vos=-5V, lo $=-8 \mathrm{~A}$	---	12.6	---	S
Rg_{9}	Gate Resistance	$\mathrm{V}_{\mathrm{Ds}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		15	---	Ω
Q_{g}	Total Gate Charge (-4.5V)	$V_{\text {ds }}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{gs}}=-4.5 \mathrm{~V}, \mathrm{ld}=-6 \mathrm{~A}$	---	9.8	---	nC
Qgs	Gate-Source Charge		---	2.2	---	
Q_{gd}	Gate-Drain Charge		---	3.4	---	
$\mathrm{Td}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & V_{D D}=-24 \mathrm{~V}, V_{G S}=-10 \mathrm{~V}, \\ & R_{G}=3.3 \Omega, l_{D}=-1 \mathrm{~A} \end{aligned}$	---	16.4	---	ns
T_{r}	Rise Time		---	20.2	---	
Td (off)	Turn-Off Delay Time		---	55	---	
Tf	Fall Time		---	10	---	
Ciss	Input Capacitance	$V_{D s}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	---	930	---	pF
Coss	Output Capacitance		---	148	---	
Crss	Reverse Transfer Capacitance		---	115	---	

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Units
Is	Continuous Source Current1,5	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$, Force Current	---	---	-23	A
Ism	Pulsed Source Current2,5		---	---	-35	A
V ${ }_{\text {SD }}$	Diode Forward Voltage2	$V_{G s}=0 \mathrm{~V}, \mathrm{I}_{s}=-1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	---	---	-1.2	V

Note:
1.The data tested by surface mounted on a 1 inch2 FR-4 board with $20 Z$ copper. 2.The data tested by pulsed , pulse width $\leqq 300$ us , duty cycle $\leqq 2 \%$
3.The EAS data shows Max. rating. The test condition is $\mathrm{V}_{\mathrm{DD}}=-25 \mathrm{~V}, \mathrm{~V} G \mathrm{G}=-10 \mathrm{~V}, \mathrm{~L}=0.1 \mathrm{mH}, \mathrm{IAS}=-30 \mathrm{~A}$
4.The power dissipation is limited by $150^{\circ} \mathrm{C}$ junction temperature
5.The data is theoretically the same as ID and Idm, in real applications, should be limited by total power dissipation.

N-Channel Typical Performance Characteristics

Figure1:Output Characteristics

Figure 3:Forward Characteristics 0

Figure 5:Normalized VGS(th) vs. T-

Figure 2: On-Resistance vs. Gate-S

Figure 4: Gate-Charge Characterist

Figure 6: Normalized RDSON vs. T.

N-Channel Typical Performance Characteristics

Figure7:Capacitance

Figure 8 Safe Operating Area

Figure9:Normalized Maximum Transien

Figure10:Switching Time Waveform

Figure11:Unclamped Inductive Sv
$E A S=\frac{1}{2} L \times I A S S^{2} x^{-}$

P-Channel Typical Performance Characteristics

Figure1:Capacitance

Figure3:Forward Characteristics of

Figure5:Normalized VGS(th) v.s TJ

Figure 2:On-Resistance v.s Gate-S

Figure4:Gate-Charge Characteristics

Figure 6:Normalized RDSON v.s TJ

P-Channel Typical Performance Characteristics

Figure7:Capacitance

Figure 8: Safe Operating Areare

Figure 9:Normalized Maximum Transien

Figure 10:Switching Time Waveform

Figure 11:Unclamped Inductive S
$E A S=\frac{1}{2} L \times\left(-I_{A S}{ }^{2}\right) \times \frac{-B V_{D S S}}{-B V_{D S S}-\left(-V_{D D}\right)}$
$-\mathrm{BV}_{\text {DSS }}-----V_{D D}$

Mechanical Dimensions for TO－252－4L

SYMBOL	MILLIMETER		
	MIN	Typ．	MAX
A	2.200	2． 300	2． 400
A1	0.000		0． 127
b	0.550	0.600	0.650
b1	0.000		0． 120
c（电镀后）	0.460	0.520	0.580
D	6． 500	6.600	6． 700
D1	5．334 REF		
D2	5．346 REF		
D3	4．490 REF		
E	6． 000	6． 100	6． 200
e	1．270 TYP		
el	2．540 TYP		
h	0.000	0． 100	0． 200
L	9． 900	10． 100	10.300
L1	2．988 REF		
L2	1.400	1． 550	1.700
L3	1．600 REF		
L4	0.700	0.800	0.900
ϕ	1． 100	1．200	1． 300
θ	0°		8°
$\theta 1$	$9^{\circ} \mathrm{TYP}$		
$\theta 2$	9° TYP		

