

Features

- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology
- ★ 100% EAS Guaranteed

Product Summery

BVDSS	RDSON	ID
30V	15m $Ω$	20A
-30V	25mΩ	-23A

Description

The 3020 is th high performance complementary N-ch and P-ch MOSFETs with high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The 3020 meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

TO252-4 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating		Units	
Symbol	Parameter	N-Ch	N-Ch	Units	
VDS	Drain-Source Voltage	30	-30	V	
Vgs	Gate-Source Voltage	±20	±20	V	
Ib@Tc=25°C	Continuous Drain Current, Vcs @ 10V1	20	-23	Α	
I _D @T _C =100°C	Continuous Drain Current, Vos @ 10V ¹	15	-14	Α	
Ірм	Pulsed Drain Current ²	60	-60	Α	
EAS	Single Pulse Avalanche Energy ³	26.6	38	mJ	
P _D @T _C =25°C	Total Power Dissipation ₄	20.8	20.8	W	
PD@TA=25°C	Total Power Dissipation₄	2	2	W	
Тѕтс	Storage Temperature Range	-55 to 150	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient 1		62	°C/W
Rejc	Thermal Resistance Junction-Case ₁		6	°C/W

N-Channel Electrical Characteristics T_J=25°C unless otherwise s ecified

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVpss	Drain-Source Breakdown Voltage	V _G s=0V , I _D =250uA	30			V
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.023		V/°C
Decem		V _{GS} =10V , I _D =10A		15	20	mΩ
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =6A		20	25	1115.2
VGS(th)	Gate Threshold Voltage		1		2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.2		mV/°C
	Dunin Course Leakers Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	
loss	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	- uA
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		14		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.3		Ω
Qg	Total Gate Charge (4.5V)			5		
Qgs	Gate-Source Charge	V _{DS} =20V , V _{GS} =4.5V , I _D =10A		1.11		nC
Qgd	Gate-Drain Charge			2.61		
T _{d(on)}	Turn-On Delay Time			7.7		
Tr	Rise Time	V _{DD} =12V , V _{GS} =10V ,		46		
T _{d(off)}	Turn-Off Delay Time	R _G =3.3Ω I _D =6A		11		ns
Tf	Fall Time			3.6		1
Ciss	Input Capacitance			416		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		62		pF
Crss	Reverse Transfer Capacitance			51		1

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
ls	Continuous Source Current _{1,5}	\/ -\/ -0\/ Faras Current			20	Α
Іѕм	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			40	Α
VsD	Diode Forward Voltage ²	V _G s=0V , I _S =1A , T _J =25°C			1.2	V

Note:

1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3.The EAS data shows Max. rating . The test condition isVDD=25V,VGs=10V,L=0.1mH,IAS=20A

4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics (T_J=25°Cunless otherwise specified)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V
△BV _{DSS} /△T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C , l₀=-1mA		-0.021		V/°C
RDS(ON)	Static Drain-Source On-Resistance ₂	V _{GS} =-10V , I _D =-8A		25	30	mΩ
RDS(ON)	Static Diam-Source On-Resistance2	V _{GS} =-4.5V , I _D =-6A	-	30	35	1115.2
VGS(th)	Gate Threshold Voltage	\/\/	-1		-2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	V _{GS} =V _{DS} , I _D =-250uA		-4.2		mV/°C
le co	Drain Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			1	
loss	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			5	uA
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-8A		12.6		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		15		Ω
Qg	Total Gate Charge (-4.5V)			9.8		
Qgs	Gate-Source Charge	V _{DS} =-20V , V _{GS} =-4.5V , I _D =-6A		2.2		nC
Q_{gd}	Gate-Drain Charge			3.4		
Td(on)	Turn-On Delay Time			16.4		
Tr	Rise Time	V _{DD} =-24V , V _{GS} =-10V ,		20.2		no
Td(off)	Turn-Off Delay Time	R _G =3.3Ω, I _D =-1A		55		ns
Tf	Fall Time			10		
Ciss	Input Capacitance			930		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		148		pF
Crss	Reverse Transfer Capacitance			115		

Diode Characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Units
l s	Continuous Source Current _{1,5}	\/ -\/ -0\/ Fares Current			-23	Α
I _{sм}	Pulsed Source Current _{2,5}	V _G =V _D =0V , Force Current			-35	Α
VsD	Diode Forward Voltage ₂	V _G s=0V , I _S =-1A , T _J =25°C			-1.2	V

Note:

- 1.The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper. 2.The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%
- 3.The EAS data shows Max. rating . The test condition is VDD=-25V,VGS=-10V,L=0.1mH,IAS=-30A
- 4.The power dissipation is limited by 150°C junction temperature
- 5.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

N-Channel Typical Performance Characteristics

Figure1:Output Characteristics

Figure 3:Forward Characteristics Of Rev

Figure 5:Normalized VGS(th) vs. TJ

Figure 2: On-Resistance vs. Gate-Source

Figure 4: Gate-Charge Characteristics

Figure 6: Normalized RDSON vs. TJ

N-Channel Typical Performance Characteristics

Figure7:Capacitance

Figure 8 Safe Operating Area

Figure9:Normalized Maximum Transien

Figure 10: Switching Time Waveform

Figure 11: Unclamped Inductive Switchin

P-Channel Typical Performance Characteristics

Figure1:Capacitance

Figure 3: Forward Characteristics Of Reve

Figure 5: Normalized VGS(th) v.s TJ

Figure 2:On-Resistance v.s Gate-Source

Figure4:Gate-Charge Characteristics

Figure 6:Normalized RDSON v.s TJ

P-Channel Typical Performance Characteristics

Figure7:Capacitance

Figure 8: Safe Operating Areare

Figure 9: Normalized Maximum Transier

Figure 10:Switching Time Waveforms

Figure 11: Unclamped Inductive Switchin

Mechanical Dimensions for TO-252-4L

SYMBOL		MILLIMETER			
SIMBUL	MIN	Typ.	MAX		
A	2. 200	2. 300	2. 400		
A1	0.000		0. 127		
b	0. 550	0.600	0.650		
b1	0.000		0. 120		
c(电镀后)	0.460	0. 520	0. 580		
D	6. 500	6. 600	6. 700		
D1		5.334 REF			
D2		5.346 REF			
D3	4. 490 REF				
E	6. 000	6. 100	6. 200		
е		1.270 TYP			
e1		2.540 TYP			
h	0.000	0. 100	0. 200		
L	9. 900	10. 100	10.300		
L1		2.988 REF			
L2	1. 400	1. 550	1. 700		
L3		1.600 REF			
L4	0.700	0.800	0. 900		
ф	1. 100	1. 200	1. 300		
θ	0°		8°		
θ1	9° TYP				
θ2		9° TYP	·		