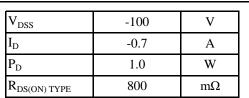
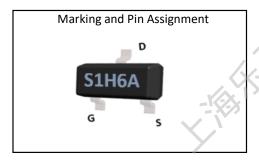
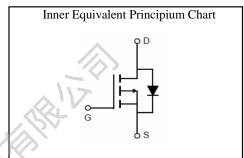


General Description:


The LWS1H6AM uses SGT technology and design to provide excellent $R_{\rm DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. The package form is SOT23, which accords with the ROHS standard and Halogen Free standard.


Features:


- Fast Switching
- Low Gate Charge and R_{DS(ON)}
- Low Reverse transfer capacitances

Applications:

- DC-DC Converter
- Portable Equipment
- Power Management

Package Marking and Ordering Information:

Marking	Part Number	Package	Packing	Qty.
S1H6A	LWS1H6AM	SOT23	Reel	3000 Pcs

Absolute Maximum Ratings:

Symbol	Parameter		Value	Units
V_{DSS}	Drain-to-Source Voltage		-100	V
Ţ	Continuous Drain Current	$T_{\rm C}$ =25 $^{\circ}{\rm C}$	-0.7	A
I_D	Continuous Drain Current	T _C =100°C	-0.45	A
$I_{\mathrm{DM}}^{}^{\mathrm{a1}}}$	Pulsed Drain Current		-2.8	A
V_{GS}	Gate-to-Source Voltage		±20	V
P_{D}	Power Dissipation		1.0	W
T_{J}, T_{STG}	Operating Junction and Storage Tem	perature Range	150, -55 to 150	,°C €
$T_{\rm L}$	Maximum Temperature for Solder	ng	260	C

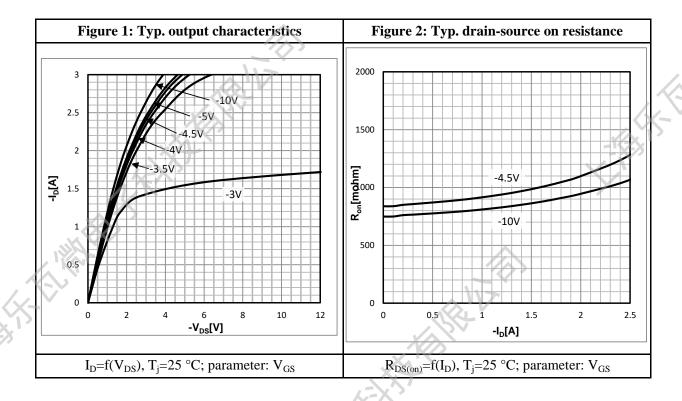
Thermal Characteristics:

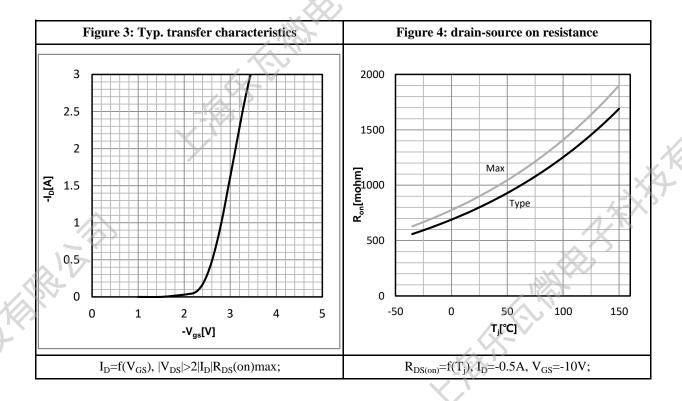
Symbol	Parameter	Value	Units
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	125	°C/W

Electrical Characteristic ($T_A = 25$ °C, unless otherwise specified):

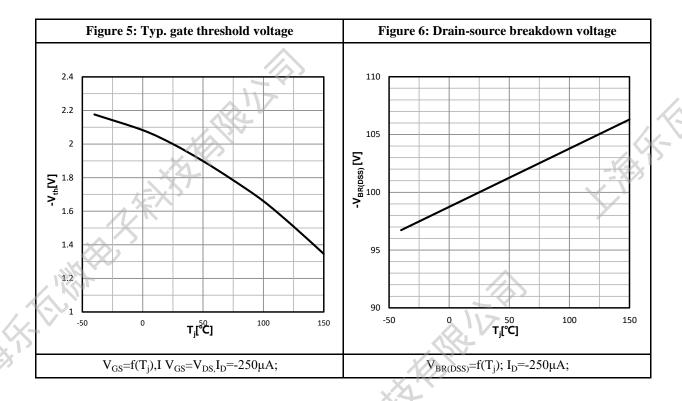
Static Characteristics							
C11	Danamatan	Test Conditions		Value			
Symbol	Parameter	Test Collditions	Min.	Тур.	Max.	Units	
$V_{\rm DSS}$	Drain to Source Breakdown Voltage	V_{GS} =0V, I_{D} =-250 μ A	-100			V	
I_{DSS}	Drain to Source Leakage Current	$V_{DS} = -100V, V_{GS} = 0V$			1.0	μΑ	
$I_{GSS(F)}$	Gate to Source Forward Leakage	V_{GS} =-20V, V_{DS} =0V			100	nA	
$I_{GSS(R)}$	Gate to Source Reverse Leakage	V_{GS} =+20V, V_{DS} =0V			-100	nA	
$V_{\text{GS(TH)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1.5	-2.0	-2.5	V	
$R_{DS(ON)1}$	Drain-to-Source On-Resistance	V_{GS} =-10V, I_{D} =-0.5A		800	900	$m\Omega$	
R _{DS(ON)2}	Drain-to-Source On-Resistance	V_{GS} =-4.5V, I_{D} =-0.3A		900	1100	mΩ	

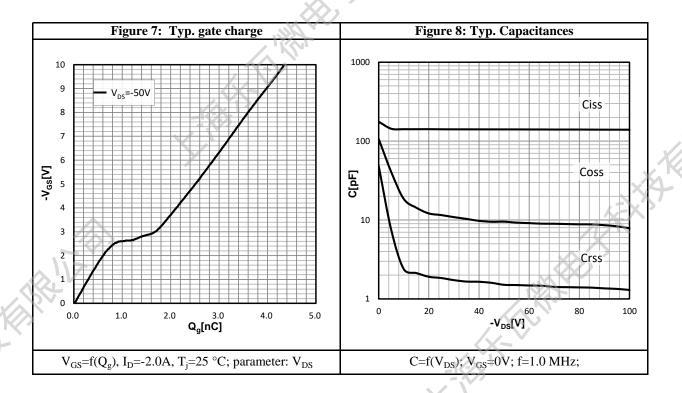
Dynamic	Characteristics					
Symbol	Parameter	Test Conditions		Value		Units
Symbol	rarameter	Test Collations	Min.	Тур.	Max.	Oilles
C_{iss}	Input Capacitance	$V_{GS} = 0V$	7	141		
C_{oss}	Output Capacitance	$V_{DS} = -50V$	Ba	9.53		pF
C_{rss}	Reverse Transfer Capacitance	f = 1.0MHz	()	1.5		

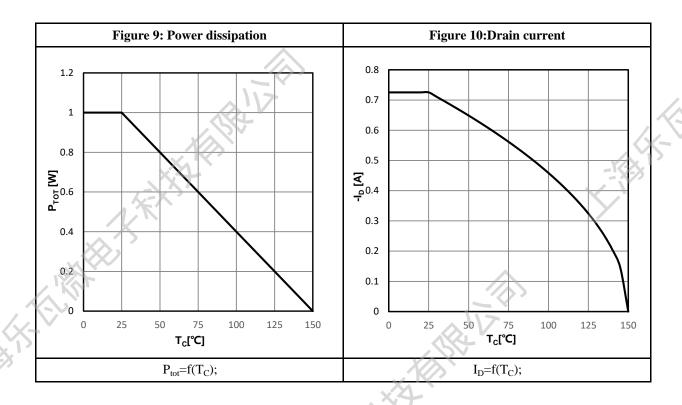

Resistive	Switching Characteristics	\				
Symbol	Parameter	Test Conditions		Value		Units
Symbol	Farameter	Test Collections	Min.	Тур.	Max.	Offics
$t_{d(ON)}$	Turn-on Delay Time	$I_{\rm D} = -0.5 A$		13	-	
t_r	Rise Time	$I_D = -0.5A$ $V_{DS} = -50V$		7		na
$t_{d(OFF)}$	Turn-Off Delay Time	$V_{GS} = -10V$		32		ns
$t_{\rm f}$	Fall Time	$R_G = 5.0\Omega$		3		
Q_{g}	Total Gate Charge	$V_{GS} = -10V$		4.35		
Q_{gs}	Gate Source Charge	$V_{DS} = -50V$		0.51		nC
Q_{gd}	Gate Drain Charge	$I_D = -2A$		0.74		

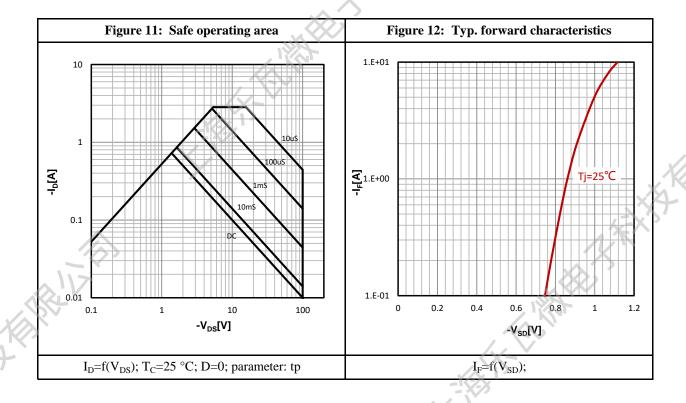

Source-Dr	rain Diode Characteristics					
Symbol	Parameter	Test Conditions		Value		Units
Symbol	rarameter	Test Collutions	Min.	Тур.	Max.	Omis
I_{S}	Diode Forward Current	$T_C = 25 ^{\circ}C$			-0.7	A
V_{SD}	Diode Forward Voltage	I_{S} =-0.5A, V_{GS} =0V			-1.2	V

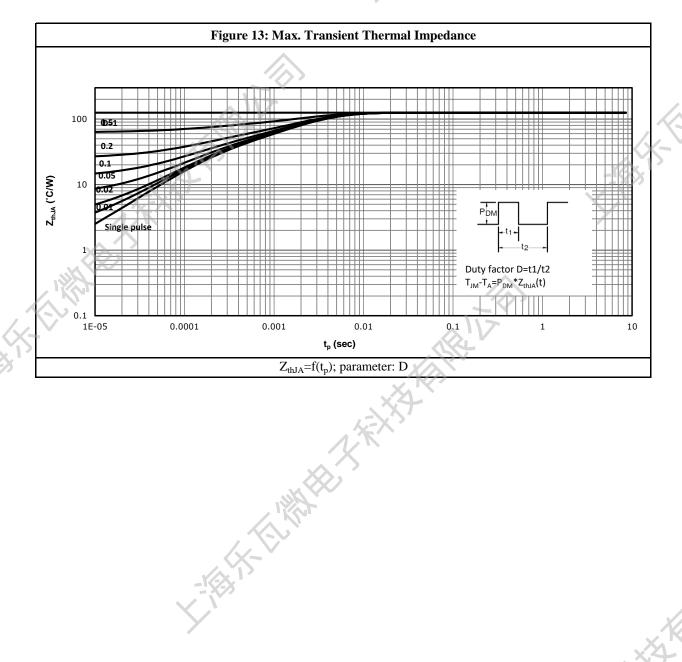
a1: Repetitive rating; pulse width limited by maximum junction temperature




Characteristics Curve:







A XXX KINSTELLY

Test Circuit & Waveform:



Figure 14: Gate Charge Test Circuit & Waveform

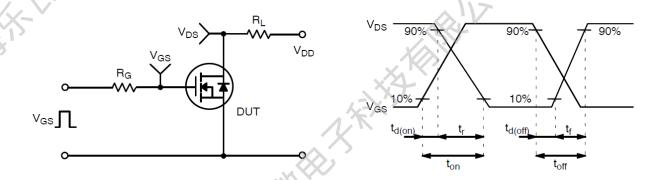
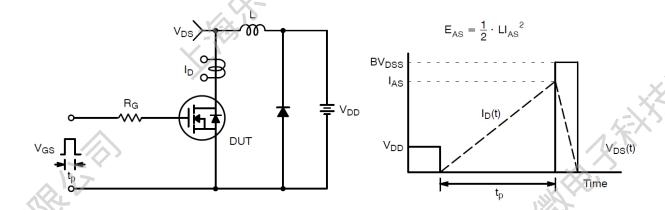
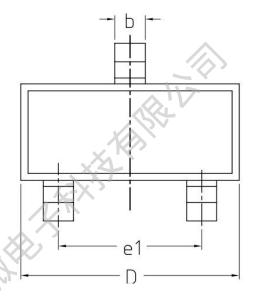
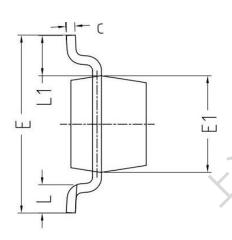
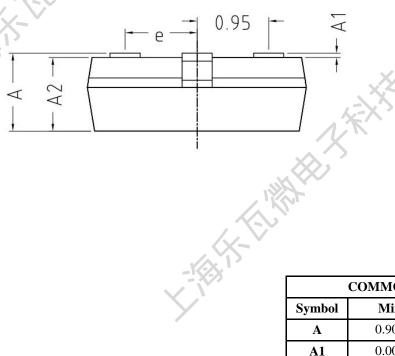


Figure 15: Resistive Switching Test Circuit & Waveforms


Figure 16: Unclamped Inductive Switching Test Circuit & Waveforms

Package Outline:

COMMON IN DIMENSION (MM)						
Symbol	Min.	Nom.	Max.			
A	0.900	1.050	1.150			
A1	0.000	0.050	0.100			
A2	0.900	1.000	1.050			
b	0.300	0.400	0.500			
C	0.100	0.130	0.200			
D	2.800	2.900	3.000			
E	2.250	2.400	2.550			
E 1	1.200	1.300	1.400			
e		0.950 TYP				
e1	1.800	1.900	2.000			
L	0.290	0.390	0.490			
L1		0.550REF				

KXXX KINGELIZA

LW Silicon P-Channel Power MOSFET

Revision History:

Revison	Date		Descriptions	
Rev 1.0	Feb.2024	Initial Version		
	•	1/2		
		117		
		\$LV		
		3/		//-
	XXX			(ax.P
	X			-14-3
	Ϋ́X,			Y ,
	/X \\			
X	> ,			
Hill				
			117	
<i>5</i> % "			X	
			XXXXX	
			X	
			EX ,	

A NATIONAL DESIGNATION OF THE PARTY OF THE P

Disclaimer:

The information in this document is believed to be accurate and reliable. However, no responsibility is assumed by LW-Micro for its use. All operating parameters must be designed, validated and tested to ensure they meet the requirements of your application. LW-Micro reserves the right to make any specification and/or circuitry changes without prior notification. Before starting a brand-new project, please contact LW-Micro Sales to get the most recent relevant information.

Mailing Address: Room 301, Building 2, No.1690 CaiLun Road, China (Shanghai) Pilot Free Trade Zone Shanghai Lewa Micro-electronics Technology Co., Ltd