

High Accuracy IC Operational Amplifier

AD504

FEATURES

Low Vos: 500µV max (AD504M) High Gain: 106 min (AD504L, M, S) Low Drift: 0.5µV/°C max (AD504M)

Free of Popcorn Noise

PRODUCT DESCRIPTION

The Analog Devices AD504J, K, L, M and S IC operational amplifiers provide ultra-low drift and extremely high gain, comparable to that of modular amplifiers, for precision applications. A new double integrator circuit concept combined with a precise thermally balanced layout achieves gain greater than 106, offset voltage drift of less than 1µV/°C, small signal unity gain bandwidth of 300kHz, and slew rate of 0.12V/us. Because of monolithic construction, the cost of the AD504 is significantly below that of modules, and becomes even lower with larger quantity requirements. The amplifier is externally compensated for unity gain with a single 470pF capacitor; no compensation is required for gains above 500. The inputs are fully protected, which permits differential input voltages of up to ±V_S without voltage gain or bias current degradation due to reverse breakdown. The output is also protected from short circuits to ground and/or either supply voltage, and is capable of driving 1000pF of load capacitance. The AD504J, K, L and M are supplied in the hermetically sealed TO-99 package, and are specified for operation over the 0 to +70°C temperature range. The AD504S is specified over the -55°C to +125°C temperature range and is also supplied in the TO-99 package.

AD504 FUNCTIONAL BLOCK DIAGRAM

TO-99 TOP VIEW

Fally guaranteed and 100 drift combined with voltage offset of 500µV (AD:

2. Fully protected input (±V_S) and output circuitry. The input protection circuit prevents offset voltage and bias current degradation due to reverse breakdown, and is of critical importance in this type of device whose overall performance is strongly dependent upon front-end stability.

3. Single capacitor compensation eliminates elaborate stabilizing networks while providing flexibility not possible with an internally compensated op amp. This feature allows bandwidth to be optimized by the user for his particular

- 4. High gain is maintained independent of offset nulling, power supply voltage and load resistance.
- 5. Bootstrapping of the critical input transistor quad produces CMRR and PSRR compatible with the tight 1µV/°C drift. CMRR and PSRR are both in the vicinity of 120dB.
- 6. Noise performance is closely monitored at Outgoing QC to ensure compatibility with the low error budgets afforded by the performance of all other parameters.
- 7. Every AD504 receives a stabilization bake for 24 hours at 150°C to ensure reliability and long term stability.
- 8. The 100 piece price of the AD504 is 1/3 to 1/2 less than that of modular low drift operational amplifiers, and is competitive with the price of less accurate IC op amps.

SPECIFICATIONS (typical @ +25°C and ±15V dc unless otherwise noted)

PARAMETER	AD504J	AD504K	AD504L		
OPEN LOOP GAIN		-			
$V_{OS} = \pm 10V, R_L \ge 2k\Omega$	250,000 min (4 x 10 ⁶ typ)	500,000 min (4 x 10 ⁶ typ)	10 ⁶ min (8 x 10 ⁶ typ)		
$T_{min} \leq T_A \leq T_{max}$	125,000 min (10 ⁶ typ)	250,000 min (10 ⁶ typ)	500,000 min (10 ⁶ typ)		
OUTPUT CHARACTERISTICS		*			
Voltage at $R_L > 2k\Omega$, $T_{min} < T_A < T_{max}$	±10V min (±13V typ)	•			
Load Capacitance	1000pF	•	•		
Output Current	10mA min	•	•		
Short Circuit Current	25mA	•	•		
FREQUENCY RESPONSE					
Unity Gain, Small Signal, Cc = 390pF	300kHz	•			
Full Power Response, C _c = 390pF	1.5kHz	•	•		
Slew Rate, Unity Gain, Cc = 390pF	0.12V/μs	•	•		
NPUT OFFSET VOLTAGE					
Initial Offset, R _S ≤10k	2.5mV max (0.5mV typ)	1.5mV max (0.5mV typ)	0.5mV max (0.2mV typ)		
vs Temp, Tmin TA Tmax, Vos nulled	$5.0\mu\text{V/}^{\circ}\text{C max} (0.5\mu\text{V/}^{\circ}\text{C typ})$	$3.0\mu\text{V/°C}$ max $(0.5\mu\text{V/°C}$ typ)	$1.0\mu\text{V/}^{\circ}\text{C max} (0.3\mu\text{V/}^{\circ}\text{C typ})$		
T _{min} $<$ T _A $<$ T _{max} , V _{OS} unnulled†	$10\mu V/^{\circ}C \max (1.5\mu V/^{\circ}C typ)$	$5.0\mu\text{V/}^{\circ}\text{C max} (0.5\mu\text{V/}^{\circ}\text{C typ})$	$2.0\mu\text{V/°C}$ max $(1.0\mu\text{V/°C}$ typ		
ys Supply	25μV/V max	15μV/V max (1.5μV/ C typ)	10μV/V max (1.0μV/ C typ		
@ Tmin TA Tmax	40μV/V	25µV/V max	15μV/V max		
vs Time	20μV/mo	15μV/mo	10μV/mo		
NPUT OFFSET CURRENT		20,000	20,477110		
® T _A = 25°¢	40- A	15-4	10-4		
	40nA max	15nA max	10nA max		
INPUT BIAS CURRENT		•	Regions to		
Initial	200nA max	100nA max	80nA max		
T _{min} to T _{max}	300n/A m/ax 300pA//C	150nA max	100nA max		
vs Temp, T _{min} to T _{max}	SUOPA/C	250pA/°C	200pA/°C		
INPUT IMPEDANCE					
Differential	0.5MQ	1.0ΜΩ	1.3MΩ		
Common Mode	100MΩHpF				
INPUT NOISE		$\overline{}$			
Voltage, 0.1 to 10Hz	1.0μV (<u>p-p</u>)		/* / <u>\</u>		
100Hz	$10 \text{nV} / \sqrt{\text{Hz}} (\text{rms})$		/: / ~ 7		
1kHz	$8nV/\sqrt{Hz}(rms)$	•	• / / ~		
Current, 0.1 to 10Hz	50pA(p-p)	•			
100Hz	$0.6 \text{pA}/\sqrt{\text{Hz}}(\text{rms})$:	7		
1kHz	$0.5 \text{pA}/\sqrt{\text{Hz}(\text{rms})}$		7		
INPUT VOLTAGE RANGE					
Differential or Common Mode, Max Safe	±V _S		•		
Common Mode Rejection, V _{IN} = ±10V	94dB min (120dB typ)	100dB min (120dB typ)	110dB min (120dB typ)		
POWER SUPPLY		3000	,,		
Rated Performance	±15V	•	•		
Operating	±(5 to 18)V	•	•		
Current, Quiescent	±4.0mA max (±1.5mA typ)	±3.0mA max (±1.5mA typ)	±3.0mA max (±1.5mA typ)		
TEMPERATURE RANGE		•			
Operating, Rated Performance					
(Tmin to Tmax)	0 to +70°C	• 5 6	•		
Storage	-65°C to +150°C	•	•		
Stotage					

NOTES

Specifications subject to change without notice.

NOTE

Analog Devices 100% tests and guarantees all specified maximum and Analog Devices 100% tests and guarantees all specified maximum and minimum limits. Certain parameters, because of the relative difficulty and cost of 100% testing, have been specified as "typical" numbers. At ADI, "typical" numbers are subjected to rigid statistical sampling and outgoing quality control procedures, resulting in "typicals" that are indicative of the performance that can be expected by the user.

^{*}Specifications same as for AD504J.

¹ See Section 19 for package outline information.

	AD504S(AD504S/883)					
6 typ) 6 typ)	10 ⁶ min (8 x 10 ⁶ typ) 250,000 min					
	:					1
	:					
	•					
	•					
$0.2\mu V/^{\circ}C \text{ typ}$	2.0μV/°C max (1.0μV/°C typ)					
	20µV)V max 10µV/mo					
	10n mix 80nA max		7			
	200pA/°C					
	1.3ΜΩ					
•	:		e I			
	•					
c c	:					
ldB tvn)	* 110dR min (120dR tvn)	-				2
, db () p /		_				
1.5mA typ)	* ±3mA max (±1.5mA typ)					
-	-	- ,				
	-55°C to +125°C -65°C to +150°C		74			
	AD504SH	-				
		106 min (8 x 106 typ) 250,000 min * * * * * * * * * * * *	106 min (8 x 106 typ) 250,000 min * * * * * * * * * * * * *	10 ⁶ typ) 10 ⁶ min (8 x 10 ⁶ typ) 250,000 min (8 x 10 ⁶ typ) 250,000 min (8 x 10 ⁶ typ) 250,000 min (9 x 10 ⁶ typ) 1.0μV/°C typ) 1.0μV/°C max (1.0μV/°C typ) 2.0μV/V max (1.0μV/°C typ) 1.0μV/ν max (20μV/V max 200nA max 2	typ 10 ⁶ min (8 x 10 ⁶ typ) 250,000 min	106 min (8 x 106 typ) 250,000 min 10