- Functionally Equivalent to AMD's AM29821 and AM29822
- Provides Extra Data Width Necessary for Wider Address/Data Paths or Buses With Parity
- Outputs Have Undershoot Protection Circuitry
- Powerup High-impedance State
- Package Options Include Plastic Small Outline Packages, Both Plastic and Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Buffered Control Inputs to Reduce DC Loading Effects
- Dependable Texas Instruments Quality and Reliability

description

These 10-bit flip-flops feature 3-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. They are particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.
The ten flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock the Q outputs on the 'AS821 will be true, and on the 'AS822 will be complementary to the data input.
A buffered output-control input can be used to place the ten outputs in either a normal logic state (high or low levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pullup components. The output control ($\overline{\mathrm{OC}})$ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
The SN54AS' family is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74AS' family is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

```
SN54AS821 ... FK PACKAGE
SN74AS821 ... FN PACKAGE
```

 (TOP VIEW)

SN54AS822 . . . JT PACKAGE
SN74AS822 . . . DW OR NT PACKAGE (TOP VIEW)

$\overline{\mathrm{OC}}$		\cup_{24}	V_{CC}
1可	2	23	1Q
$2 \overline{\mathrm{D}}$	3	22	2Q
3"-	4	21] 3Q
4듬	5	20	4Q
5D	6	19	5Q
6D	7	18	6Q
7D	8	17	7Q
8D	9	16	7Q
$9 \overline{\mathrm{D}}$ -	10	15	9Q
10D	11	14	10Q
GND	12	13	1 CLK

SN54AS822 . . . FK PACKAGE
SN74AS822 . . FN PACKAGE (TOP VIEW)

NC-No internal connection
'AS821 FUNCTION TABLE (each flip-flop)

INPUTS			OUTPUT
$\mathbf{O C}$	CLK	\mathbf{D}	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{0}
H	X	X	Z

'AS821 logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
'AS821 logic diagram (positive logic)

'AS822 FUNCTION TABLE (each flip-flop)

INPUTS			OUTPUT
$\mathbf{O C}$	CLK	\mathbf{D}	\mathbf{Q}
L	\uparrow	H	H
L	\uparrow	L	L
L	L	X	Q_{0}
H	X	X	Z

'AS822 logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
'AS822 logic diagram positive logic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
\qquad
Input voltage .. 7 V

Operating free-air temperature range: SN54AS821, SN54AS822 $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74AS821, SN74AS822 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

recommended operating conditions

		SN54AS821 SN54AS822			SN74AS821 SN74AS822			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.8			0.8	V
${ }^{\text {IOH}}$	High-level output current			-24			-24	mA
$\mathrm{IOL}^{\text {I }}$	Low-level output current			32			48	mA
t_{w}	Pulse duration, CLK high or low	9			8			ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	7			6			ns
th	Hold time, data after CLK \uparrow	0			0			ns
T_{A}	Operating free-air temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los.
switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX } \dagger \end{aligned}$				UNIT
			SN5	8821	$\begin{aligned} & \hline \text { SN74A } \\ & \text { SN74A } \end{aligned}$	$\begin{aligned} & 5821 \\ & 5822 \end{aligned}$	
			MIN	MAX	MIN	MAX	
tPLH	CLK	Any Q	3.5	9	3.5	7.5	ns
tPHL			3.5	11.5	3.5	10.5	
tPZH	OC	Any Q	4	12	4	11	ns
tPZL			4	13	4	12	
tPHZ	OC	Any Q	2	10	2	8	ns
tPZL			2	10	2	8	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

