www.haixindianzi.com

HX07-S General Purpose Amplifier

General Description

The HX07-S is an industry standard for instrumentation applications due to its excellent accuracy and stability. It offers a wide input voltage range of \pm 13 V minimum, high CMRR of 106 dB, and high input impedance, ensuring high accuracy in the noninverting circuit configuration. Even at high closed-loop gains, the HX07-S maintains excellent linearity and gain accuracy. It exhibits outstanding stability of offsets and gain over time and variations in temperature. With its accuracy and stability, combined with the freedom from external nulling, the HX07-S has become widely recognized and used in the instrumentation industry.

Features

- Low VOS: maximum 75 μV
- Low VOS drift: maximum 1.3 μV/°C
- Low noise: maximum 0.6 μV p-p
- Ultrastable vs. time: maximum 1.5 µV per month
- Wide supply voltage range: ±3V to ±18 V
- Wide input voltage range: typical ±14 V
- 125°C temperature-tested dice

Applications

- Wireless base station control circuits
- Optical network control circuits
- Instrumentation
 - Sensors and controls Thermocouples
 - Strain bridges
 - Shunt current measurements
 - Resistor thermal detectors (RTDs)
 - Precision filters

PIN CONFIGURATIONS

Simplified Schematic

Min Typ Max

60

0.4

150

2.0

Unit

μV

µV/Month

www.haixindianzi.com **ELECTRICAL CHARACTERISTICS** Parameter Symbol Conditions **INPUT CHARACTERISTICS** TA = 25°C Input Offset Voltage Vos Long-Term VOS Stability Vos/Time Input Offset Current bo

Input Offset Current	los			0.8	6.0	nA
Input Bias Current	в			±1.8	±7.0	nA
Input Noise Voltage	en p-p	0.1 Hz to 10 Hz		0.38	0.65	µV р-р
		fo = 10 Hz		10.5	20.0	
Input Noise Voltage Density	en	f _O = 100 Hz ^C		0.2	13.5	nV/√Hz
XX		fo = 1 kHz		9.8	11.5	
Input Noise Current	l₀ p-p			15	35	рАр-р
X		fo = 10 Hz		0.35	0.90	
Input Noise Current Density	հ	f _o = 100 Hz ^c		0.15	0.27	pA/√Hz
		fo = 1 kHz		0.13	0.18	
Input Resistance, Differential Mode	Rin		8	33		MΩ
Input Resistance, Common Mode	RINCM			120		GΩ
Input Voltage Range	IVR	<u>^</u>	±13	±14		V
Common-Mode Rejection Ratio	CMRR	V _{см} = ±13V	100	120		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3 V \text{ to } \pm 18 V$		7	32	μV/V
Large Signal Voltage Gain		R∟ ≥ 2 kΩ, V₀ =±10 V	120	400		V/Mv
	Avo	$R_{\perp} \ge 500 \ \Omega, V_{O} = \pm 0.5 \ V, V_{S} = \pm 3 \ V$	100	400		•/1010

-40°C ≤TA ≤ +85°C						
Input Offset Voltage	Vos			85	250	μV
Voltage Drift Without External Trim	TCVos			0.5	1.8	µV/°C
Voltage Drift with External Trim	TCVOSN	R⊳ =20 kΩ		0.4	1.6	µV/°C
Input Offset Current	los			1.6	8.0	nA
Input Offset Current Drift	TClos	X		12	50	pA/°C
Input Bias Current	в			±2.2	±9.0	nA
Input Bias Current Drift	TCl₀			18	50	pA/°C
Input Voltage Range	IVR		±13	±13.5		V
Common-Mode Rejection Ratio	CMRR	Vсм = ±13V	97	120		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3 V \text{ to } \pm 18 V$		10	51	μV/V
Large Signal Voltage Gain	Avo	$R_L \ge 2 k\Omega, V_O = \pm 10 V$	100	400		V/mV

OUTPUT CHARACTERISTICS

TA = 25°C						
Output Voltage Swing		R∟ ≥ 10 kΩ	±12.0	±13.0		
	Vo	R⊾ ≥2 kΩ	±11.5	±12.8		V
		R⊾ ≥ 1 kΩ		±12.0		
-40°C ≤TA ≤ +85°C						
Output Voltage Swing	Vo	R⊾ ≥2 kΩ	±12	±12.6		V
DYNAMIC PERFORMANCE						
TA = 25°C						
Slew Rate	SR	R _L ≥ 2 kΩ	0.1	0.3		V/µs
Closed-Loop Bandwidth	BW	A _{VOL} = 1 ^E	0.4	0.6		MHz
Open-Loop Output Resistance	Ro	$V_{\rm O} = 0, I_{\rm O} = 0$		60		Ω
Power Consumption	Pd	Vs =±15V, No load		80	150	mW
		Vs =±3V, No load		4	8	
Offset Adjustment Range		R _P = 20 kΩ		±4		mV

www.haixindianzi.com

TYPICAL PERFORMANCE CHARACTERISTICS

www.haixindianzi.com

www.haixindianzi.com

www.haixindianzi.com

7 珠海海芯电子有限公司 -XI

www.haixindianzi.com

RF R1 SUM MODE R3 3kΩ ₇9 V+ 2 7 0 R1 10kΩ R2 100kΩ Eo NOTES

Typical Low Frequency Noise Circuit

Optional Offset Nulling Circuit

TEN Test Circuit and Voltage Waveforms

Absolute Value Circuit

www.haixindianzi.com

DIMENSIONAL DRAWINGS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
-	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.780	5.000	0.188	0.197	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270TYP		0.050	DTYP	
L	0.400	1.270	0.016	0.050	
θ	0 °	8°	0°	8°	

Package Type	package	quantity
SOP-8	Taping	2500

www.haixindianzi.com

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Zhuhai Haixin Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "zhuhai Haixindianzi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.haixindianzi.com)

Zhuhai Haixin makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Zhuhai Haixin relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product Haixin Zhuhai demand that the Zhuhai Haixin of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Zhuhai Haixin purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Zhuhai Haixin products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein Haixin product failure could lead to personal injury or death, use or sale of products used in Zhuhai Haixin such applications using client did not express their own risk. Contact your authorized Zhuhai Haixin people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the Haixin act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.